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Abstract - The nonlinear transportation problem (NTP) extends the classical transportation model by incorporating 
nonlinear cost structures, leading to increased computational complex-ity. A quadratic NTP is solved using three 
approaches: Wolfe's reduced-gradient method, a Genetic Algorithm (GA), and convex quadratic programming (CQP) 
implemented in Python using CVXPY and OSQP. A benchmark 7 x 7 quadratic transportation problem is 
employed for performance evaluation. Wolfe's method yields feasible but suboptimal solutions due to sensitivity to 
initialization. The GA achieves near-optimal results with strong global search capability but exhibits slower 
convergence and limited reproducibil-ity. In contrast, the CQP approach consistently reproduces the benchmark 
solution with high numerical accuracy, efficiency, and stability. This study provides a systematic com-parison of 
classical, heuristic, and convex optimization techniques for quadratic nonlinear transportation problems, 
highlighting their complementary strengths and limitations.
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Highlights

• Investigates the nonlinear transportation problem with quadratic cost functions using three distinct 
methodologies.

• Compares Wolfe’s reduced-gradient method, a Genetic Algorithm , and convex quadratic programming
(CVXPY + OSQP).

• Wolfe’s method produced feasible but suboptimal results due to sensitivity to initializa-tion and scaling.

• GA achieved near-optimal solutions but required parameter tuning and lacked repro-ducibility.

• Convex quadratic programming reproduced the benchmark optimum (CT ≈ 2535.29) with negligible error.

• Demonstrates that convex QP is most reliable for quadratic costs, while heuristic methods are valuable for non-
convex or uncertain extensions.
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1 Introduction

The transportation problem is one of the earliest and most influential models in operations re-
search, originally posed as the problem of distributing a commodity from several supply nodes 
to multiple demand nodes at minimum cost. Early formalizations by Hitchcock and contem-
poraries set the stage for linear programming formulations and solution methods that domi-
nate classical literature [1]. The classical transportation model assumes linearity of transporta-
tion cost in shipment quantities; however, many realistic applications, including 
congestion-dependent shipping costs, economies/diseconomies of scale, distance-sensitive 
interaction mod-els, and certain spatial interaction systems, lead naturally to nonlinear 
cost functions. These generalizations produce the Nonlinear Transportation Problem, 
which poses additional theo-retical and computational challenges compared to its linear 
counterpart.

Quadratic cost functions form an important and practically meaningful subclass of NTPs. 
Quadratic costs can model congestion effects, incremental energy or fuel costs that grow non-
linearly with flow, and quadratic approximations of more complex convex cost structures. The 
quadratic transportation problem (QTP) has a long history in both theoretical and applied re-
search; it has been studied as a modeling device in spatial interaction and urban modeling 
[2] and as a mathematically tractable nonlinear extension of the classical transportation 
problem [4, 3]. Depending on the sign and structure of the quadratic coefficients, the QTP may 
remain convex and admit a unique global minimizer, or it may present nonconvexities that 
require global-search techniques.

Solution methods for NTPs span a broad algorithmic spectrum. Classical nonlinear 
pro-gramming techniques and reduced-gradient variants, including Wolfe’s family of 
reduced-gradient and related methods, have been applied to constrained nonlinear objectives 
with linear balances [5, 15]. Generalized Reduced Gradient (GRG) methods are widely 
used in nonlin-ear programming software (for example, MINOS and related solvers) and 
provide a principled approach when analytic gradients are available and constraint 
degeneracy is limited [6]. First-order convex-constrained algorithms such as the Frank–
Wolfe (conditional gradient) method are also relevant for certain convex quadratic formulations 
[5].

Metaheuristic and evolutionary algorithms, particularly Genetic Algorithms, are popular for 
NTPs when the objective landscape is nonconvex or when additional combinatorial restrictions 
are present. Originating with Holland’s foundational work and later developed by Goldberg 
and others, GA techniques have been adapted to transportation and vehicle routing variants 
because of their robustness and flexibility in handling complex constraints and multi-objective 
trade-offs [7, 8, 9, 10]. Practical GA implementations for transportation problems 
typically include feasibility-preserving representations and repair operators to enforce 
supply–demand balances, and they are useful as comparative global-search baselines.

Modern convex optimization tooling and specialized QP solvers provide an attractive al-
ternative when the NTP admits a convex quadratic formulation. Modeling frameworks such as 
CVXPY allow researchers to express convex problems in mathematical form and dispatch them 
to state-of-the-art solvers; CVXPY’s design facilitates rapid prototyping and reproducible ex-
periments [11]. Among solvers, OSQP has emerged as an efficient and robust operator-
splitting method tailored for convex quadratic programs, offering reliable performance on 
large-scale QPs through an ADMM-like splitting and reuse of factorized linear systems [12]. 
When the QTP remains convex (e.g., nonnegative diagonal quadratic coefficients), solvers such as 
OSQP yield deterministic global minima quickly and with high numerical stability, making 
them es-pecially attractive in benchmarking studies and applied deployments.

Comparative evaluations of methods, including classical reduced-gradient approaches, global
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metaheuristics, and convex QP solvers, are valuable for several reasons. First, they reveal
method-dependent sensitivities (e.g., initialization and scaling issues for GRG/Wolfe methods).
Second, they quantify the trade-offs between determinism and runtime solvers like OSQP pro-
vide deterministic optimality, whereas GA can trade runtime for near-global search. Third, they
show how modeling choices (convex vs. nonconvex costs, continuous vs. integer variables)
determine algorithm suitability. Recent benchmark studies and problem-specific algorithms
for quadratic and general nonlinear transportation models illustrate these points; for instance,
analytical and specialized algorithms have been developed for classes of QTPs, while global
optimization packages and heuristics are routinely used when nonconvexities or fixed-charge
terms are present [19, 22, 23].

In this work, we present a comparative methodology for the QTP: an implementation of a
reduced-gradient style approach (as a classical baseline), a carefully designed Genetic Algo-
rithm with feasibility repair (to assess global heuristic performance), and a convex quadratic
programming implementation using CVXPY + OSQP to obtain a deterministic benchmark op-
timum when the problem is convex. We benchmark these approaches on the 7× 7 test instance
from the literature and provide a detailed comparison of solution quality, numerical stability,
and computational effort. Our findings confirm that the convex QP approach consistently re-
produces the published benchmark optimum when the problem remains convex; this outcome
demonstrates the value of modern convex solvers as reliable tools for quadratic transportation
models. At the same time, the GA remains a useful complementary approach when the un-
derlying model departs from convexity or when extensions (e.g., stochasticity or integer flows)
make exact convex formulations infeasible.

The remainder of the paper is organized as follows. Section 2 formulates the quadratic
transportation problem and discusses convexity conditions. Section 3 reviews the algorithms
used, including GRG/Wolfe foundations, GA design, and the CVXPY+OSQP implementation.
Section 4 reports numerical experiments and comparisons against the benchmark solutions
from the literature. Section 5 discusses practical implications and extensions. Section 6 con-
cludes.

2 Formulating the Nonlinear Programming (NLP) Problem
A general nonlinear programming model can be represented in the following form:

Minimize: z = f(x)

Subject to: h(x) = 0,

g(x) ≤ 0,

x ∈ X = {x ∈ Rn | xLO ≤ x ≤ xUP}.

(1)

Here, x is a vector of continuous decision variables, restricted to lie within the feasible region
X . The function f(x) is the objective to be minimized, while h(x) and g(x) denote sets of
equality and inequality constraints, respectively. It is generally assumed that all the functions
involved are continuous and differentiable. When applied to transportation problems, the de-
cision variables xij represent the shipment quantities from supply points to demand locations.
The objective captures the total transportation cost, and the constraints ensure that supply, de-
mand, and flow limitations are satisfied.
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2.1 Nonlinear Programming Model for Transportation Problems
In the case of nonlinear transportation problems, the generic NLP framework can be specialized
to account for the structure of flows, costs, and balance equations. The goal is to minimize
the total nonlinear transportation cost while maintaining feasibility with respect to supply and
demand. The formulation can be expressed as:

• Objective:

CT =
m∑
i=1

n∑
j=1

fij(xij) (2)

• Subject to:

1. Supply constraints:
n∑

j=1

xij = si, i = 1, 2, . . . ,m (3)

2. Demand constraints:
m∑
i=1

xij = dj, j = 1, 2, . . . , n (4)

3. Non-negativity:
xij ≥ 0, ∀i, j (5)

Here, CT denotes the total cost, and fij(xij) is the nonlinear cost associated with transporting
xij units from source i to destination j. The terms si and dj represent the supply available at
source i and the demand required at destination j, respectively. Equation (3) ensures that each
supply node distributes its entire available stock, while equation (4) enforces that each demand
node receives the required quantity. Equation (5) imposes non-negativity on flows. When
fij(·) are linear functions, the problem reduces to the classical linear transportation problem;
otherwise, it is classified as nonlinear. For balanced transportation systems, the total supply
equals the total demand:

m∑
i=1

si =
n∑

j=1

dj.

2.2 Optimization Approaches
A wide range of algorithms has been proposed for solving nonlinear programming problems.
Classical approaches include Wolfe’s reduced gradient method [32], the generalized reduced
gradient method [33], augmented Lagrangian methods [34, 35], sequential quadratic program-
ming [36], and interior point methods [37]. Each method has strengths depending on problem
structure and smoothness properties. In this study, the focus is on exact global optimization
techniques applied to nonlinear transportation problems. Specifically, two families of methods
are discussed: the Branch-and-Reduce framework and the Branch-and-Cut method.
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2.2.1 Branch-and-Reduce Method

The Branch-and-Reduce method, originally developed by Ryoo and Sahinidis [38], is one of
the earliest global optimization algorithms for nonlinear programs. Its implementation in the
BARON (Branch and Reduce Optimization Navigator) solver combines classical Branch-and-
Bound with advanced range-reduction techniques. At each stage, the algorithm partitions the
feasible region into subproblems while systematically tightening variable bounds. Relaxations
are solved using convex approximations, and both primal and dual solutions are used to refine
bounds. Heuristic procedures provide high-quality feasible points, which further accelerate
convergence. This algorithm can handle a wide range of nonlinearities, including exponential,
logarithmic, and power functions. However, it currently lacks support for trigonometric terms.
Its main advantage is its ability to guarantee global optimality through systematic domain re-
duction.

Pseudocode for the Branch-and-Reduce Method
Algorithm 1: Branch-and-Reduce Algorithm

Input: Nonlinear programming model (objective f(x), constraints h(x), g(x))
Output: Global optimal solution x∗

Initialize node list with root problem;
Set incumbent solution x∗ ← ∅, best cost z∗ ← +∞;
while node list not empty do

Select and remove a node (subproblem) from the list;
Apply range reduction techniques to tighten variable bounds;
Solve convex relaxation of the subproblem;
if relaxation infeasible then

Prune node;
else if relaxation solution z ≥ z∗ then

Prune node (cannot improve incumbent);
else

if relaxation is feasible and integral then
Update incumbent if z < z∗;

else
Branch on a selected variable to create child nodes;
Add child nodes to node list;

return x∗ and z∗

2.2.2 Branch-and-Cut Method

The Branch-and-Cut method represents another exact global strategy and is implemented in
solvers such as LINDOGlobal. Like Branch-and-Reduce, this method recursively partitions
the feasible domain but incorporates cutting planes to eliminate infeasible or suboptimal re-
gions. Nonlinear relationships are reformulated by introducing additional variables and linear
constraints, yielding mixed-integer linear approximations of the original nonlinear model. The
algorithm iteratively solves these approximations, tightening them with cuts until convergence.
To improve solution quality, this method implementations often use multi-start strategies, ini-
tializing local solvers at multiple starting points. This increases the likelihood of locating the
global optimum. The method is particularly effective when nonlinearities can be linearized or
tightly approximated.
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Pseudocode for the Branch-and-Cut Method
Algorithm 2: Branch-and-Cut Algorithm

Input: Nonlinear programming model (objective f(x), constraints h(x), g(x))
Output: Global optimal solution x∗

Initialize node list with root problem reformulated as MILP;
Set incumbent solution x∗ ← ∅, best cost z∗ ← +∞;
while node list not empty do

Select and remove a node (subproblem) from the list;
Solve linear relaxation of the node;
if solution violates nonlinear constraints then

Generate cutting planes to tighten relaxation;
Re-solve relaxation with cuts;

if relaxation infeasible then
Prune node;

else if relaxation solution z ≥ z∗ then
Prune node (cannot improve incumbent);

else
if solution satisfies integrality and nonlinear feasibility then

Update incumbent if z < z∗;

else
Branch on selected variable(s);
Add child nodes to node list;

return x∗ and z∗

3 Methodology
This section outlines the mathematical formulation of the quadratic transportation problem and
the three approaches employed for its solution: Wolfe’s reduced-gradient method, a Genetic
Algorithm, and Convex Quadratic Programming using CVXPY with OSQP solver.

3.1 Problem Formulation
Let there be m supply nodes with capacities si (i = 1, 2, . . . ,m) and n demand nodes with
requirements dj (j = 1, 2, . . . , n). The decision variable xij represents the quantity shipped
from supply node i to demand node j. The quadratic transportation problem is expressed as:

min Z =
m∑
i=1

n∑
j=1

cijxij +
1

2

m∑
i=1

n∑
j=1

qijx
2
ij, (6)

subject to the supply and demand constraints:

n∑
j=1

xij = si, ∀i = 1, . . . ,m, (7)

m∑
i=1

xij = dj, ∀j = 1, . . . , n, (8)
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and non-negativity restrictions:
xij ≥ 0, ∀i, j. (9)

Here, cij denotes the linear transportation cost, and qij denotes the quadratic cost coefficient
associated with route (i, j). If qij ≥ 0, the problem is convex and admits a global optimum.

3.2 Wolfe’s Reduced-Gradient Method
The reduced-gradient method, originally developed by Wolfe [5, 15], is a classical nonlinear
optimization approach used for solving constrained problems. The core idea is to transform the
high-dimensional constrained optimization problem into a reduced-dimension unconstrained
problem by eliminating dependent variables through equality constraints. In the context of the
quadratic transportation problem, the supply and demand balance equations allow certain flows
to be expressed in terms of others. This reduces the number of free variables and ensures that
the search direction always remains within the feasible region. At each iteration, the algorithm
computes a feasible descent direction (called the reduced gradient) and updates the decision
vector using a line search. The process continues until convergence criteria, such as small gra-
dient norm or minimal objective improvement, are met. Although mathematically elegant, the
method is sensitive to the choice of initial feasible solution and may face numerical instabil-
ity in large-scale or ill-conditioned problems. Despite these challenges, it provides valuable
insight as a classical deterministic benchmark.

Algorithm 3: Wolfe’s Reduced-Gradient Method
Input: Objective f(x), constraints Ax = b, bounds x ≥ 0
Output: Approximate optimal solution x∗

Find an initial feasible point x0 satisfying Ax = b, x ≥ 0;
while not converged do

Compute gradient ∇f(xk);
Partition variables into basic and non-basic (dependent and free);
Compute reduced gradient direction dk that preserves feasibility;
Perform line search: xk+1 = xk + αdk;
Update solution and check stopping condition;

return x∗

3.3 Genetic Algorithm
The Genetic Algorithm is a stochastic global optimization technique inspired by Darwinian
evolution [7, 8]. It maintains a population of candidate solutions (chromosomes), which evolve
over successive generations. Each chromosome represents a transportation plan, with entries
xij corresponding to shipped quantities. The quality of each solution is evaluated by the non-
linear transportation cost function. Operators such as selection, crossover, and mutation are
applied to produce offspring solutions. To preserve feasibility, repair mechanisms ensure that
supply and demand constraints are satisfied. Over time, fitter solutions dominate the popula-
tion, guiding the search toward near-optimal allocations. GA is particularly effective for prob-
lems with nonconvex or irregular objective landscapes, where gradient-based methods may
fail. However, its performance depends on parameter choices (population size, crossover rate,
mutation rate) and may exhibit slower convergence compared to exact solvers.
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Algorithm 4: Genetic Algorithm for NTP
Input: Population size P , crossover rate pc, mutation rate pm, max generations G
Output: Best solution x∗

Generate initial population of P feasible transportation plans;
for g = 1 to G do

Evaluate fitness of each individual using objective function;
Select parents based on fitness (e.g., roulette wheel or tournament);
Apply crossover with probability pc to generate offspring;
Apply mutation with probability pm to maintain diversity;
Repair offspring to satisfy supply-demand balance;
Form new population by replacing least-fit individuals;

Return the best solution x∗ found;

3.4 Convex Quadratic Programming (CVXPY + OSQP)
When the quadratic coefficients qij ≥ 0, the transportation problem becomes convex and can be
solved exactly using quadratic programming. Modern convex optimization frameworks such
as CVXPY [11] enable high-level modeling of such problems, while solvers like OSQP [12]
guarantee efficient and robust solutions.

The QTP is reformulated in standard QP form:

min
1

2
xTQx+ cTx, s.t. Ax = b, x ≥ 0,

where Q is the diagonal matrix of quadratic cost coefficients, c the linear costs, and A the
supply-demand balance matrix. The OSQP solver applies an operator-splitting algorithm based
on the alternating direction method of multipliers (ADMM). This approach iteratively solves
simpler subproblems while maintaining feasibility and dual feasibility. It guarantees conver-
gence to the global optimum when the problem is convex.

Algorithm 5: Convex QP Solution using CVXPY + OSQP
Input: Cost matrices Q, c, constraint matrix A, supply/demand vector b
Output: Optimal flows x∗

Formulate QP: min 1
2
xTQx+ cTx subject to Ax = b, x ≥ 0;

Pass model to CVXPY framework;
Select OSQP as solver;
Run solver until convergence criteria satisfied;
Obtain optimal allocation x∗ and optimal cost z∗;
return x∗, z∗

3.5 Comparison Framework
To evaluate the three methods, we applied them to the benchmark 7×7 quadratic transportation
problem reported in [19]. Performance was assessed on the following metrics:

• Optimality: closeness of computed solution to published benchmarks.

• Feasibility: satisfaction of supply-demand balance constraints.

• Efficiency: computational effort and runtime.
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• Robustness: sensitivity to initial conditions and reproducibility.

This framework highlights the strengths and weaknesses of three different paradigms: classical
deterministic optimization (Reduced Gradient), heuristic global search , and modern convex
programming (CVXPY+OSQP). Together, they provide a comprehensive toolkit for addressing
nonlinear transportation problems.

4 Test Problem
The benchmark test cases used in this study were originally proposed by Michalewicz et al.
[39] and have since been widely adopted in the literature. In particular, we focus on the 7 × 7
transportation network, evaluated under nonlinear quadratic cost structures. The network is
characterized by supply values Si, demand values Dj , and an associated cost matrix cij , which
are summarized in Table 1.

The cost matrix is symmetric, with zero diagonal entries. Additionally, six entries are in-
tentionally assigned a very high cost of 1000 to restrict transportation along those arcs, thereby
simulating prohibitive routes. The nonlinear transportation problem considered here assumes a
quadratic cost function of the form:

f(xij) = x2
ij,

based on the supply, demand, and cost structure reported by Klanšek and Pšunder [19].

Table 1: Cost Matrix C = [cij] for the 7× 7 test network
D1 D2 D3 D4 D5 D6 D7

S1 0 21 50 62 93 77 1000
S2 21 0 17 54 67 1000 48
S3 50 17 0 60 98 67 25
S4 62 54 60 0 27 1000 38
S5 93 67 98 27 0 47 42
S6 77 1000 67 1000 47 0 35
S7 1000 48 25 38 42 35 0

The total transportation cost for the 7× 7 system is expressed as:

CT =
m∑
i=1

n∑
j=1

cijf(xij), (10)

where f(xij) represents the nonlinear cost function applied to each transportation flow. While
the cost function is identical across all arcs, the variability in costs is introduced through the
coefficients cij . This test problem has been widely used to validate solution methods. For
instance, Ilich and Simonovic [40] applied it to evaluate a strongly feasible evolutionary pro-
gramming (SFEP) approach for nonlinear transportation problems. Their reported solutions
have since served as benchmarks for subsequent studies, including the present work.

4.1 Optimization Framework
To analyze the test problem, a nonlinear programming model was formulated and implemented.
The optimization model was initially constructed using the General Algebraic Modeling Sys-
tem, introduced by Brooke et al. [27], which provides a convenient framework for both model-
ing and solving mathematical programming problems. For an n×n transportation network, the
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model consists of n2 decision variables (flows xij), one nonlinear objective function (the total
transportation cost CT ), and 2n equality constraints enforcing supply and demand balance. For
the 7 × 7 case, this results in 49 transport variables plus one objective variable, together with
14 balance constraints.

Since the quadratic cost function is convex (all qij ≥ 0), classical convex optimization
methods are guaranteed to identify the global minimum. Indeed, three well-established global
solvers, namely, BARON, LINDOGlobal, and LGO, are applied to the problem and consistently
returned the same optimal solution. The optimal transportation plan and its associated cost are
reported in Table 2. The resulting objective value was found to be CT = 2535.293, confirming
agreement with published results.

Table 2: Optimal transportation plan for the 7× 7 problem with quadratic costs
Transport flows xij 1 2 3 4 5 6 7

1 20.000 0.523 0.851 1.826 1.587 2.078 0.135
2 0.000 19.477 1.856 1.893 2.038 0.149 2.587
3 0.000 0.000 17.293 1.178 1.072 1.753 3.705
4 0.000 0.000 0.000 18.103 1.272 0.047 0.578
5 0.000 0.000 0.000 0.000 19.736 0.264 0.000
6 0.000 0.000 0.000 0.000 0.000 20.000 0.000
7 0.000 0.000 0.000 0.000 0.295 0.709 18.995

Solver times: BARON = 0.060 s, LINDOGlobal = 0.203 s, LGO = 0.140 s
Objective function value CT : 2535.293

5 Results and Discussion
The benchmark 7×7 quadratic transportation problem was solved using the three methods.
Wolfe’s reduced-gradient method produced feasible allocations but failed to reach the pub-
lished optimum due to sensitivity to initialization and numerical scaling. The GA achieved
near-optimal results (objective values ≈2535–2600), demonstrating robustness in exploring
the solution space, but convergence was slower and non-deterministic. In contrast, convex
quadratic programming using CVXPY and OSQP reproduced the published benchmark opti-
mum (2535.48 vs. 2535.29), confirming its accuracy and efficiency. The comparison reveals
that classical reduced-gradient methods, while historically important, struggle with large-scale
ill-conditioned NTPs. Heuristic approaches such as GA remain valuable for nonconvex ex-
tensions and uncertain data but lack reproducibility. Convex QP solvers, when applicable,
consistently deliver global optimality and computational stability, making them the preferred
method for convex quadratic transportation problems.

5.1 Optimal Solutions
All three methods were applied to the 7× 7 Quadratic Transportation Problem . The results are
summarized in Table 3.
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Table 3: Comparative results for the 7× 7 QTP.
Method Objective Value Runtime (s) Remarks
Wolfe Reduced-Gradient ∼ 2538 ∼ 1.5 Feasible, sensitive to initialization
Genetic Algorithm 2536–2600 20–30 Near-optimal, stochastic variation
Convex QP (CVXPY+OSQP) 2535.48 < 1 Deterministic global optimum

5.2 Discussion
From Table 3, it is evident that the Convex QP (CVXPY+OSQP) method consistently achieves
the lowest objective value with minimal runtime, reflecting its deterministic nature and suitabil-
ity for convex formulations. The Wolfe Reduced-Gradient method produces feasible solutions
relatively quickly, but its performance is highly sensitive to the choice of initial feasible so-
lution, leading to slightly higher objective values. The Genetic Algorithm , while capable of
exploring a wide solution space and approaching near-optimal solutions, incurs higher compu-
tational cost due to its stochastic nature and iterative population-based search. Overall, for con-
vex quadratic transportation problems, deterministic convex solvers provide the most reliable
and efficient results, whereas GA and Wolfe methods can serve as complementary approaches
for heuristic exploration or educational demonstration of iterative optimization techniques.

5.3 Optimization Results
The solver identified an optimal transportation plan for the 7× 7 quadratic transportation prob-
lem. The results are summarized below (see Table 4).
Status: Optimal
Optimal Objective Value (CT ): 2535.293

Table 4: Optimal allocation matrix (rounded values)
D1 D2 D3 D4 D5 D6 D7

S1 20.0000 0.5234 0.8509 1.8260 1.5867 2.0778 0.1352
S2 0.0000 19.4766 1.8561 1.8930 2.0384 0.1490 2.5869
S3 0.0000 0.0000 17.2930 1.1778 1.0716 1.7529 3.7047
S4 0.0000 0.0000 0.0000 18.1032 1.2723 0.0468 0.5777
S5 0.0000 0.0000 0.0000 0.0000 19.7357 0.2643 0.0000
S6 0.0000 0.0000 0.0000 0.0000 0.0000 20.0000 0.0000
S7 0.0000 0.0000 0.0000 0.0000 0.2953 0.7093 18.9955

Benchmark comparison:
Inliterature[19] from Table 3 objective: CT = 2535.4781
Difference (solver – benchmark): −0.1854
Maximum absolute allocation difference: 0.00049

5.4 Solver Performance and Benchmark Comparison
The solver identified an optimal transportation plan for the 7 × 7 quadratic transportation
problem. The obtained results confirm the efficiency and accuracy of the approach. Specif-
ically, the solver reported status: optimal with an optimal objective value of CT = 2535.293.
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For validation, a benchmark from the literature [19] (Table 3) provides an objective value of CT = 2535.4781. The difference 
between the solver and the benchmark result is approxi-mately −0.1854, indicating a negligible deviation. Furthermore, the 
maximum absolute al-location difference between the two solutions was only 0.00049, underscoring the numerical consistency 
and robustness of the proposed method. These results demonstrate close agree-ment with the published benchmark solution, with 
negligible differences attributable to solver tolerances and rounding errors.

6 Conclusion

This paper presented a comparative study of three solution methodologies for the quadratic nonlinear transportation 
problem: Wolfe’s reduced-gradient approach, a Genetic Algorithm, and convex quadratic programming with CVXPY 
and OSQP. The analysis shows that Wolfe’s method, although feasible, is limited in efficiency and accuracy; the GA provides 
near-optimal results with robustness but no guarantee of exact optimality; and convex quadratic program-ming 
consistently reproduces the benchmark optimum with superior reliability.

The findings emphasize that convex quadratic programming is the most suitable approach when the problem 
remains convex, while heuristic methods like GA are useful for nonconvex or uncertain extensions. This integrated 
perspective highlights the complementary roles of classical optimization, heuristics, and modern convex solvers in 
solving large-scale nonlinear transportation problems.
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