International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 4 Issue 04, April-2015

Comparative Analysis on Heuristic Based Load
Balancing Algorithms in Grid Environment

Manthan Brahambhatt
M.E.Student
Computer Department,
St. Francis Institute of Technology
Mumbai, India

Abstract—The solution to increasing demands of
computational resources for completing computational jobs
were found in terms of grid computing. Grid computing is all
new technology in the field of distributed systems, parallel
computing and cluster computing. Grid environment is a
collection of multiple resources, geographically widely
distributed at multiple locations to reach over a common goal.
This environment allows multi owner resources to solve large
scale applications. The major concern and challenge in grid
computing environment is to balance the load of jobs on
resources over the entire network. The criticality lies in the issue
of network aware load balancing algorithms that needs to be
quick and dynamic. Taking dynamicity as a consideration,
heuristic based algorithms are well suited for such applications.
The objective of this paper is to analyze different heuristic based
load balancing algorithms, such as Genetic Algorithm, ant
Colony Optimization, Particle Swarm Optimization and Tabu
Search.

Keywords— Grid computing, load balancing, genetic
algorithm,tabu search, particle swarm optimization, ant colony
optimization.

. INTRODUCTION

Grid computing is defined as a type of parallel and
distributed system that enables the sharing, selection, and
aggregation of geographically distributed autonomous
resources dynamically at runtime depending on their
availability, capability, performance, cost, and quality of
service. A computational grid is a hardware and software
infrastructure that provides a dependable, consistent and
inexpensive access to high end capabilities. This grid
environment supports sharing and coordinated use of
resources, independently of their physical type and location
that share the common goal. All resources come together to
work upon a common task and achieve the maximum
performance. This grid environment allows the use of
geographically widely distributed and multi-owner resources
to solve large scale applications.

In grid computing there are two major parties [1], namely
resource consumers (users) and resource providers
(facilitators). Resource consumers are the one who submit
various applications to the environment, whereas resource
providers are the one who share their resources with the
consumers and help them to achieve their goal. With respect
to the parties there are two objective functions set. These two
objective functions can be classified as Application centric
and Resource centric. Application centric: It functions at

IJERTV41S041010

Dakshata Panchal
Assistant Professor
Computer Department,

St. Francis Institute of Technology
Mumbai, India

application level. It aims to optimize the performance of each
individual application. E.g.: makespan. Resource centric: It
functions at system level. It aims to optimize the performance
of resources. E.g.: throughput, utilization etc.
There are two different types of grid computing environment

a.) Homogeneous environment

b.) Heterogeneous environment

Focusing on heterogeneous environment, heterogeneity
exist in two categories

e Networks that are used to interconnect computational
resources may differ significantly in terms of their
communication protocols and bandwidth.

e Computational resources may differ and have different
computer architectures, memory size, different hardware,
CPU speed, RAM capability etc. and may also have
different software applications such as operating system,
grid management software and so on.

This grid computing environment is used to solve large
scale applications such as meteorological simulations, data
intensive applications, research of DNA sequences etc. The
best examples of grid computing are Garuda by C-DAC India,
seti@home by university of California, Berkeley.

A typical distributed system involves the use of
geographically widely distributed network. This widely
distributed network involves different nodes connected to
each other in the network. Each node possesses some amount
of initial load which represent amount of work to be
performed. This work needs to be evenly balanced in the
whole network and this is called load balancing.

This paper is organized as follows. In section 11, different
methods of performing load balancing for grid environment is
introduced. In section Ill, heuristic based approach of load
balancing is explained. In section IV, comparative analyses of
all algorithms are done. Finally, in the next session,
conclusion and future work is given.

1. DIFFERENT METHODS OF LOAD BALANCING FOR
GRID ENVIRONMENT

As per the literature survey we got to know that load
balancing mainly deals with distributing set of independent
jobs among all the computing nodes of the grid such that the
jobs are uniformly distributed over the entire grid computing
environment and none of the nodes are under loaded or
overloaded [2]. There are two methods of performing load
balancing,

www.ijert.org 802

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Static method: In Static load balancing algorithms, it
assumes that a priori information about all the characteristics
of jobs the computing nodes, the computing nodes and the
communication network is known. It has two major
disadvantages,

- Workload distribution of many applications cannot be

predicted before program execution.

- Assumptions made may not apply to distributed
environment.

Because of static approach cannot respond to dynamic
runtime environment, it may lead to load imbalance on some
nodes and significantly increase the load balancing time.

Dynamic Method: In dynamic load balancing algorithms,
it attempts to use the runtime state information to make more
informative decisions in sharing the system load. Though

dynamic algorithms have higher runtime complexity than
static algorithms, they give better performance than latter.
These kinds of algorithms are preferred for heterogeneous
network where network elements may vary in capacity or
number at runtime.

Dynamic load balancing algorithms are further classified
into two different approaches.

a) Centralized Approach: In this method only one node
acts as the central controller for the whole grid
computing environment. Job allocation to the all slave
nodes is done by this controller. It is a simple
approach and beneficial when the communication cost
is less significant. This kind of approach is mainly
used for small grid computing environment. The main
drawbacks of this kind of approach are, it limits the
scalability of the grid by becoming bottleneck and
Failure of central controller node causes entire system
to fail.

b) Decentralized Approach: In this approach all nodes
get involved in making load balancing decision. They
are scalable and have better fault tolerance. This
approach is preferred because elements of network
may vary in capacity or number during run time. The
major drawback of this approach is that it increases
the communication overhead to a large extent.

This approach is again classified into three
different categories: Receiver initiated where heavily
loaded nodes take the initiative, Sender initiated where
lightly loaded nodes takes the initiative, symmetrically
initiated combines the advantage of both the above

types.

1l. HEURISTIC BASED APPROACH FOR LOAD BALANCING
ALGORITHM

This section describes different types of heuristics and
evolutionary based algorithms. These search techniques are
used to find solution to optimization and search problem [3].
These techniques are inspired from evolutionary biology and
apply features such as inheritance, selection, crossover and
mutation. These methods have been proved to work better as
compared to classical algorithms. We will look four different
evolutionary based load balancing algorithms those are

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 4 Issue 04, April-2015

Genetic Algorithm:

A Genetic Algorithm is a biologically inspired
optimization and search technique [3] [4]. The behavior of
Genetic Algorithm mimics the evolution of simple, single
celled organisms. This algorithm is particularly useful in
situations where the solution space to be searched is so huge,
making sequential search, time consuming and
computationally very expensive. It is a type of guided random
search technique, able to find efficient solutions in variety of
cases.

The evolution of the GA population from one generation
to the next is usually achieved through the use of three
operators that are fundamental in GA: selection, crossover,
and mutation.

Selection: It is a process of selecting chromosomes from
the current generation for processing to the next generation.

Crossover: Once chromosomes are selected, crossover is
applied to the chosen individuals. The crossover operator
usually operates on two individuals or parents to produce two
children. It ensures that characteristics of each parent are
inherited in the children.

Mutation: While the crossover operator works on a pair or
more of chromosomes to produce two or more offspring, the
mutation operator works on each individual offspring. The
mutation operator helps prevent early convergence of the
genetic algorithm by changing characteristics of
chromosomes in the population.

Algorithm:
Begin
Initialize the population, P.
Evaluate P.
While stopping conditions not true do
Select Elite in P consisting of k(1<k<population
size) best individuals.
Apply selection from individuals in P to create
Prmating: CONsisting of (population size-k)
individuals.
Crossover Pating.
Mutate Ppating.
Copy the whole individuals of Ppaing to P,
replace the worst (population size-k) individuals
inP.
Evaluate P.
If Escape condition true then Escape
End While
End

Tabu search:

Tabu search (TS) was first proposed in its current form by
Glover. It has been successfully applied to a wide range of
theoretical and practical problems, including graph coloring,
vehicle routing, job shop scheduling, course scheduling, and
maximum independent set problem. One main ingredient of
Tabu search (TS) is the use of adaptive memory to guide
problem solving. One may argue that memory is a necessary
component for ‘intelligence’, and intelligent problem solving.
Tabu search uses a set of strategies and learned information

Genetic Algorithm, Tabu Search, Particle Swarm ‘mimic’ h siohts i bl i .

optimization, Ant Colony Optimization. to “mimic’ human Insights for problem solving, creating
essentially an ‘artificial intelligence’ unto itself—though

IJERTV41S041010 www.ijert.org 803

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

problem specific it may be. In its most basic sense, a Tabu
search can be thought of as a local search procedure, whereby
it ‘moves’ from one solution to a ‘neighboring’ solution. In
choosing the next solution to move to, however, Tabu search
uses memory and extra knowledge endowed about the
problem. A basic Tabu search algorithm is shown below.

Initialise

Explore

Yes

No improvement in
solution

Yes

Stopping condition

Mild Diversification

Fig 1. Tabu Search Framework

Algorithm
Input : Parameter for the Tabu Search.
Output: A feasible Solution to the Problem.

Begin
Generate an initial solution s.
while stopping condition not true do
select next solution neighboring s.
update memory.
End

Three things are most important in Tabu search
Framework i.e. Tabu list, Search Intensification, Search
Diversification. For detail view please follow figure 1. of
Tabu Search Framework.

Particle swarm optimization:

Particle swarm optimization (PSO) is an algorithm
modelled on swarm intelligence, that finds a solution to an
optimization problem in a search space, or model and predict
social behaviour in the presence of objectives [5]. The PSO is

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 4 Issue 04, April-2015

velocity vector of each particle randomly by
using equation
XK0 = Xmin T (Xmax'xmin)* r
VK0 =Viin + (Vinax-Vmin) *1
Where Xmaxs Xmine Vmaxe Vmin are any random
values and r is random number between 0 and 1.
Apply SPV rule to find the permutation for the

tasks
= Step 2.:
— Update iteration variable
= Step 3.:
— Update inertia weight
W = Wepg + (Wstart'Wend) * B where
B = (1/ 1+(0xX / Xiax))
= Step4.:
— Update velocity
V= WV +cirandy() x (pbest;-
5) + corand,() x (gbest-s¥)
And update velocity of each particle
= Step5.:
— Update position
Sk = gk 4yl
And update particle of each position
= Step6.:
— Apply the SPV rule to find the permutation.
= Step7.:
— Update personal best, by evaluating the
particle.
= Step 8.
— Update global best
= Step9.:

Stopping criterion. If the number of
iteration exceeds the maximum number of
iteration, then stop, otherwise go to Step 2.
Ant Colony Optimization:

It is a meta-heuristic using artificial ant to find desirable
solutions to difficult combinatorial optimization problems
[6]. The behaviour of artificial ants is based on the traits of
real ants as described above, plus additional capabilities that
make them more effective, such as a memory of past actions.
Each ant of the “colony” builds a solution to the problem
under consideration and uses information collected on the
problem characteristics and its own performance to change
how other ants see the problem.

a stochastic, population-based computer algorithm modelled A.Igorlstthm:l.
on swarm intelligence. Swarm intelligence is based on social- &L Initialize the value of A N.T. RU:
psychological principles and provides insights into social B n'd'a |Ize etva ﬁe of a B ’f ’.I’ f’ ’ hl
behaviour, as well as contributing to engineering and aiso set pheromone trails for €ac
applications. The particle swarm optimization algorithm was . Step2- resource.
first described in 1995 by James Kennedy and Russell C. ep e Select th t task t
Eberhart. — Select the next task t.
Algorithm:
-g Step 1. = Step 3. _ N N
— Initialization: Set the contents for this PSO B Dfeterrrr:me the trghsn.lon probability (load)
algorithm. Define the active resource and the list ot eac resource[rjas).]a *[n 1
of tasks. The dimension of PSO algorithm is the p(t) =— 7
number of tasks. Initialize position vector and ! Z:r[z'r o1 *7.Y
IJERTV41S041010 www.ijert.org 804

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

= Step4.:
— Find resource R; with high transition
probability among all resources:
p:(t) =max p,(7)
leN
— i.e. resource R; is having minimum load
= Step5.:
— Assigntasktto R;.
= Step6.:
- SetT=T-1
= Step7.:
— Check whether any task completion or
failure reported. If no, go to Step 11.
= Step8.:
— If (task completion at any resource R;) then
Increase pheromone of R; as:
Ti(t) = () +A
— reporting R; as lightly loaded.
= Step9.:
— RU;=RU; + FT{
= Step 10.:
— If (task failure at any resource R;) then
decrease pheromone of R; as:
() =Ti(t) - A
— reporting R; as heavily loaded
= Step1l.
— If (T>0) then go to Step 2.
= Step 12.:
— ForeachresourceR;, 1 <i<N
Compute RU, = RY,

Z::l RU K

— Print resource utilization of R;.

V. COMPARATIVE ANALYSIS

When we compare all the algorithms with their properties
like working and stopping conditions the results are as
follows in the following table

Tablel. Comparison of Properties of Heuristics and Evolutionary

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 4 Issue 04, April-2015

1) If number of task increases then execution time also
increases

2) If number of agent increases then execution time
decreases

Whenever we increase number of tasks keeping all
resources same and number of resources also same then
resource utilization per resources also increases and hence
execution time increases though overall effect of makespan of
that grid remains same.

a) Comparing with respect to number of tasks, If number
of task increases then

Table2. Comparison with respect to number of tasks

Properties GA TS PSO ACO
Resource utilization T T T generalized
Execution time T T T T

Whenever we increase number of resources keeping
number of tasks same then task distribution is done in such a
manner that resource utilization per resource decreases and
hence decreasing resource time effecting overall makespan
time and decreases makespan too.

b) With respect to number of resources, if number of
resources increases then

Table3. Comparison with respect to number of resources

Properties GA TS PSO ACO
Resource utilization L L L L
Execution time L L L L

Based Algorithm
PROPERTIES GA TS PSO ACO
WORKING Fitness Fitness Objective Pheromone
function function function value
and
moves
made
ITERATION/ Evolution Iterations Iteration No of tasks
INERTIA period value T
VALUE Inertia
value 1
AGENTS Not Not Present Present
present present
STOPPING Evolution Iterations Iterations No of tasks
CONDITIONS period

In all the following algorithms there are two things very
important and common in all of them.

IJERTV41S041010

V. CONCLUSION AND FUTURE WORK

Load balancing in grid computing is really important to be
taken into consideration for any grid environment. It has been
convincingly proved that load balancing and task scheduling
is best solved by heuristics and evolutionary algorithms.
These heuristics and evolutionary algorithm s give far better
results than traditional load balancing algorithms like receiver
broadcasting algorithms, bidding approach, dynamic
scheduling using weights etc. It may happen that these
algorithms may take extra processing requirement and incur
extra storage space but eventually performs better load
balancing than traditional algorithms.

In future, hybridization of the techniques will improve the
load balancing and utilization of the grid further. This hybrid
technique then can be implemented in the real world problem
on large scale and then performance can be measured such
that the next generation grid computing environment must be
intelligent enough and autonomous to meet requirements of
self-management.

REFERENCES

[1] Belabbas Yagoubi, and Meriem Meddeber, “Distributed Load
Balancing model for Grid Computing”, Revue ARIMA journal volume.
12, pp.43-60, September 2010.

[2] Janhavi B., Sunil Surve, and Sapna Prabhu,“Comparison Of Load
Balancing in a Grid”, IEEE Computer Society, 2010 International

www.ijert.org 805

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

[3] R.Rajeswari, Dr. N.Kasthuri ,”Comparative Survey on Load Balancing
Techniques in Computational Grids ”, International Journal of
Scientific & Engineering Research (IJSER), VVolume 4, Issue 9, [6]
September-2013 ISSN 2229-5518

[4] Riky Subrata, Albert Y. Zomaya, Bjorn Landfeldt “Artificial life
techniques for load balancing in computational grids” Journal of
Computer and System Sciences 73 (2007), Elsevier,
doi:10.1016/j.jcss.2007.02.006

IJERTV41S041010 www.ijert.org

Conference on Data Storage and Data Engineering, pp. 20-23,
doi:10.1109/DSDE.2010.13

(5]

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 4 Issue 04, April-2015

Mr. P.Mathiyalagan, U.R.Dhepthie ,Dr. S.N.Sivanandam “Grid
Scheduling using enhanced PSO algorithm”, International Journal on
Computer Science and Engineering(IJJCSE), Vol. 02, No. 02, 2010,
ISSN : 0975-3397, 140-145.

Sandip Kumar Goyal , Manpreet Singh “ Adaptive and Dynamic Load
Balancing in Grid Using Ant Colony Optimization” International
Journal of Engineering and Technology (IJET) ISSN : 0975-4024 Vol.
4 No 4 Aug-Sep 2012.

806

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

