

Comparative Analysis on Heuristic Based Load

Balancing Algorithms in Grid Environment

Manthan Brahambhatt
M.E.Student

Computer Department,

St. Francis Institute of Technology

Mumbai, India

Dakshata Panchal
Assistant Professor

Computer Department,

St. Francis Institute of Technology

Mumbai, India

Abstract—The solution to increasing demands of

computational resources for completing computational jobs

were found in terms of grid computing. Grid computing is all

new technology in the field of distributed systems, parallel

computing and cluster computing. Grid environment is a

collection of multiple resources, geographically widely

distributed at multiple locations to reach over a common goal.

This environment allows multi owner resources to solve large

scale applications. The major concern and challenge in grid

computing environment is to balance the load of jobs on

resources over the entire network. The criticality lies in the issue

of network aware load balancing algorithms that needs to be

quick and dynamic. Taking dynamicity as a consideration,

heuristic based algorithms are well suited for such applications.

The objective of this paper is to analyze different heuristic based

load balancing algorithms, such as Genetic Algorithm, ant

Colony Optimization, Particle Swarm Optimization and Tabu

Search.

Keywords— Grid computing, load balancing, genetic

algorithm,tabu search, particle swarm optimization, ant colony

optimization.

I. INTRODUCTION

Grid computing is defined as a type of parallel and

distributed system that enables the sharing, selection, and

aggregation of geographically distributed autonomous

resources dynamically at runtime depending on their

availability, capability, performance, cost, and quality of

service. A computational grid is a hardware and software

infrastructure that provides a dependable, consistent and

inexpensive access to high end capabilities. This grid

environment supports sharing and coordinated use of

resources, independently of their physical type and location

that share the common goal. All resources come together to

work upon a common task and achieve the maximum

performance. This grid environment allows the use of

geographically widely distributed and multi-owner resources

to solve large scale applications.

In grid computing there are two major parties [1], namely

resource consumers (users) and resource providers

(facilitators). Resource consumers are the one who submit

various applications to the environment, whereas resource

providers are the one who share their resources with the

consumers and help them to achieve their goal. With respect

to the parties there are two objective functions set. These two

objective functions can be classified as Application centric

and Resource centric. Application centric: It functions at

application level. It aims to optimize the performance of each

individual application. E.g.: makespan. Resource centric: It

functions at system level. It aims to optimize the performance

of resources. E.g.: throughput, utilization etc.

There are two different types of grid computing environment

a.) Homogeneous environment

b.) Heterogeneous environment

Focusing on heterogeneous environment, heterogeneity

exist in two categories

 Networks that are used to interconnect computational

resources may differ significantly in terms of their

communication protocols and bandwidth.

 Computational resources may differ and have different

computer architectures, memory size, different hardware,

CPU speed, RAM capability etc. and may also have

different software applications such as operating system,

grid management software and so on.

This grid computing environment is used to solve large

scale applications such as meteorological simulations, data

intensive applications, research of DNA sequences etc. The

best examples of grid computing are Garuda by C-DAC India,

seti@home by university of California, Berkeley.

A typical distributed system involves the use of

geographically widely distributed network. This widely

distributed network involves different nodes connected to

each other in the network. Each node possesses some amount

of initial load which represent amount of work to be

performed. This work needs to be evenly balanced in the

whole network and this is called load balancing.

This paper is organized as follows. In section II, different

methods of performing load balancing for grid environment is

introduced. In section III, heuristic based approach of load

balancing is explained. In section IV, comparative analyses of

all algorithms are done. Finally, in the next session,

conclusion and future work is given.

II. DIFFERENT METHODS OF LOAD BALANCING FOR

GRID ENVIRONMENT

As per the literature survey we got to know that load

balancing mainly deals with distributing set of independent

jobs among all the computing nodes of the grid such that the

jobs are uniformly distributed over the entire grid computing

environment and none of the nodes are under loaded or

overloaded [2]. There are two methods of performing load

balancing,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041010

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

802

Static method: In Static load balancing algorithms, it

assumes that a priori information about all the characteristics

of jobs the computing nodes, the computing nodes and the

communication network is known. It has two major

disadvantages,

- Workload distribution of many applications cannot be

predicted before program execution.

- Assumptions made may not apply to distributed

environment.

Because of static approach cannot respond to dynamic

runtime environment, it may lead to load imbalance on some

nodes and significantly increase the load balancing time.

Dynamic Method: In dynamic load balancing algorithms,

it attempts to use the runtime state information to make more

informative decisions in sharing the system load. Though

dynamic algorithms have higher runtime complexity than

static algorithms, they give better performance than latter.

These kinds of algorithms are preferred for heterogeneous

network where network elements may vary in capacity or

number at runtime.

Dynamic load balancing algorithms are further classified

into two different approaches.

a) Centralized Approach: In this method only one node

acts as the central controller for the whole grid

computing environment. Job allocation to the all slave

nodes is done by this controller. It is a simple

approach and beneficial when the communication cost

is less significant. This kind of approach is mainly

used for small grid computing environment. The main

drawbacks of this kind of approach are, it limits the

scalability of the grid by becoming bottleneck and

Failure of central controller node causes entire system

to fail.

b) Decentralized Approach: In this approach all nodes

get involved in making load balancing decision. They

are scalable and have better fault tolerance. This

approach is preferred because elements of network

may vary in capacity or number during run time. The

major drawback of this approach is that it increases

the communication overhead to a large extent.

This approach is again classified into three

different categories: Receiver initiated where heavily

loaded nodes take the initiative, Sender initiated where

lightly loaded nodes takes the initiative, symmetrically

initiated combines the advantage of both the above

types.

III. HEURISTIC BASED APPROACH FOR LOAD BALANCING

ALGORITHM

This section describes different types of heuristics and

evolutionary based algorithms. These search techniques are

used to find solution to optimization and search problem [3].

These techniques are inspired from evolutionary biology and

apply features such as inheritance, selection, crossover and

mutation. These methods have been proved to work better as

compared to classical algorithms. We will look four different

evolutionary based load balancing algorithms those are

Genetic Algorithm, Tabu Search, Particle Swarm

optimization, Ant Colony Optimization.

Genetic Algorithm:

A Genetic Algorithm is a biologically inspired

optimization and search technique [3] [4]. The behavior of

Genetic Algorithm mimics the evolution of simple, single

celled organisms. This algorithm is particularly useful in

situations where the solution space to be searched is so huge,

making sequential search, time consuming and

computationally very expensive. It is a type of guided random

search technique, able to find efficient solutions in variety of

cases.

The evolution of the GA population from one generation

to the next is usually achieved through the use of three

operators that are fundamental in GA: selection, crossover,

and mutation.

Selection: It is a process of selecting chromosomes from

the current generation for processing to the next generation.

Crossover: Once chromosomes are selected, crossover is

applied to the chosen individuals. The crossover operator

usually operates on two individuals or parents to produce two

children. It ensures that characteristics of each parent are

inherited in the children.

Mutation: While the crossover operator works on a pair or

more of chromosomes to produce two or more offspring, the

mutation operator works on each individual offspring. The

mutation operator helps prevent early convergence of the

genetic algorithm by changing characteristics of

chromosomes in the population.

Algorithm:

Begin

 Initialize the population, P.

 Evaluate P.

 While stopping conditions not true do

 Select Elite in P consisting of k(1<k<population

size) best individuals.

Apply selection from individuals in P to create

Pmating, consisting of (population size-k)

individuals.

Crossover Pmating.

Mutate Pmating.

Copy the whole individuals of Pmating to P,

replace the worst (population size-k) individuals

in P.

Evaluate P.

If Escape condition true then Escape

 End While

End

Tabu search:

Tabu search (TS) was first proposed in its current form by

Glover. It has been successfully applied to a wide range of

theoretical and practical problems, including graph coloring,

vehicle routing, job shop scheduling, course scheduling, and

maximum independent set problem. One main ingredient of

Tabu search (TS) is the use of adaptive memory to guide

problem solving. One may argue that memory is a necessary

component for ‗intelligence‘, and intelligent problem solving.

Tabu search uses a set of strategies and learned information

to ‗mimic‘ human insights for problem solving, creating

essentially an ‗artificial intelligence‘ unto itself—though

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041010

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

803

problem specific it may be. In its most basic sense, a Tabu

search can be thought of as a local search procedure, whereby

it ‗moves‘ from one solution to a ‗neighboring‘ solution. In

choosing the next solution to move to, however, Tabu search

uses memory and extra knowledge endowed about the

problem. A basic Tabu search algorithm is shown below.

Fig 1. Tabu Search Framework

Algorithm

Input : Parameter for the Tabu Search.

Output: A feasible Solution to the Problem.

Begin

 Generate an initial solution s.

 while stopping condition not true do

 select next solution neighboring s.

 update memory.

End

Three things are most important in Tabu search

Framework i.e. Tabu list, Search Intensification, Search

Diversification. For detail view please follow figure 1. of

Tabu Search Framework.

Particle swarm optimization:

Particle swarm optimization (PSO) is an algorithm

modelled on swarm intelligence, that finds a solution to an

optimization problem in a search space, or model and predict

social behaviour in the presence of objectives [5]. The PSO is

a stochastic, population-based computer algorithm modelled

on swarm intelligence. Swarm intelligence is based on social-

psychological principles and provides insights into social

behaviour, as well as contributing to engineering

applications. The particle swarm optimization algorithm was

first described in 1995 by James Kennedy and Russell C.

Eberhart.

Algorithm:

 Step 1.:

– Initialization: Set the contents for this PSO

algorithm. Define the active resource and the list

of tasks. The dimension of PSO algorithm is the

number of tasks. Initialize position vector and

velocity vector of each particle randomly by

using equation

 XK
0
 = xmin + (xmax-xmin)* r

 VK
0
 =Vmin + (Vmax-Vmin)*r

Where xmax, xmin, Vmax, Vmin are any random

values and r is random number between 0 and 1.

Apply SPV rule to find the permutation for the

tasks

 Step 2.:

– Update iteration variable

 Step 3.:

– Update inertia weight

w = wend + (wstart-wend) * β where

 β = (1/ 1+(αx / xmax))

 Step 4.:

– Update velocity

Vi
k+1

= wVi
k
 +c1rand1() x (pbesti-

si
k
) + c2rand2() x (gbest-si

k
)

And update velocity of each particle

 Step 5.:

– Update position

 Si
k+1

 = Si
k
 + Vi

k+1

And update particle of each position

 Step 6.:

– Apply the SPV rule to find the permutation.

 Step 7.:

– Update personal best, by evaluating the

particle.

 Step 8.:

– Update global best

 Step 9.:

– Stopping criterion. If the number of

iteration exceeds the maximum number of

iteration, then stop, otherwise go to Step 2.

 Ant Colony Optimization:

It is a meta-heuristic using artificial ant to find desirable

solutions to difficult combinatorial optimization problems

[6]. The behaviour of artificial ants is based on the traits of

real ants as described above, plus additional capabilities that

make them more effective, such as a memory of past actions.

Each ant of the ―colony‖ builds a solution to the problem

under consideration and uses information collected on the

problem characteristics and its own performance to change

how other ants see the problem.

Algorithm:

 Step 1.:

– Initialize the value of α ,β ,ρ ,Δ, N, T, RUi

and also set pheromone trails for each

resource.

 Step 2.:

– Select the next task t.

 Step 3.:

– Determine the transition probability (load)

of each resource Rj as:




r rr

jj

j
t

t
tp









][*)]([

][*)]([
)(

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041010

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

804

 Step 4.:

– Find resource Ri with high transition

probability among all resources:

– i.e. resource Ri is having minimum load

 Step 5.:

– Assign task t to Ri .

 Step 6.:

– Set T = T - 1

 Step 7.:

– Check whether any task completion or

failure reported. If no, go to Step 11.

 Step 8.:

– If (task completion at any resource Ri) then

Increase pheromone of Ri as:

 τi(t) = τi(t)+Δ

– reporting Ri as lightly loaded.

 Step 9.:

– RUi =RUi + FTi
t

 Step 10.:

– If (task failure at any resource Ri) then

decrease pheromone of Ri as:

 τi(t) = τi(t) - Δ

– reporting Ri as heavily loaded

 Step 11.:

– If (T>0) then go to Step 2.

 Step 12.:

– For each resource Ri , 1 ≤ i ≤ N

 Compute

 


N

K K

i
i

RU

RU
RU

1

– Print resource utilization of Ri.

IV. COMPARATIVE ANALYSIS

When we compare all the algorithms with their properties

like working and stopping conditions the results are as

follows in the following table

Table1. Comparison of Properties of Heuristics and Evolutionary

Based Algorithm
PROPERTIES GA TS PSO ACO

WORKING Fitness
function

Fitness
function

and

moves
made

Objective
function

Pheromone
value

ITERATION/

INERTIA

VALUE

Evolution

period

Iterations Iteration

value

Inertia

value

No of tasks

AGENTS Not

present

Not

present

Present Present

STOPPING

CONDITIONS

Evolution

period

Iterations Iterations No of tasks

In all the following algorithms there are two things very

important and common in all of them.

1) If number of task increases then execution time also

increases

2) If number of agent increases then execution time

decreases

Whenever we increase number of tasks keeping all

resources same and number of resources also same then

resource utilization per resources also increases and hence

execution time increases though overall effect of makespan of

that grid remains same.

a) Comparing with respect to number of tasks, If number

of task increases then

Table2. Comparison with respect to number of tasks

Properties GA TS PSO ACO

Resource utilization

generalized

Execution time

Whenever we increase number of resources keeping

number of tasks same then task distribution is done in such a

manner that resource utilization per resource decreases and

hence decreasing resource time effecting overall makespan

time and decreases makespan too.

b) With respect to number of resources, if number of

resources increases then

Table3. Comparison with respect to number of resources

Properties GA TS PSO ACO

Resource utilization

Execution time

V. CONCLUSION AND FUTURE WORK

Load balancing in grid computing is really important to be

taken into consideration for any grid environment. It has been

convincingly proved that load balancing and task scheduling

is best solved by heuristics and evolutionary algorithms.

These heuristics and evolutionary algorithm s give far better

results than traditional load balancing algorithms like receiver

broadcasting algorithms, bidding approach, dynamic

scheduling using weights etc. It may happen that these

algorithms may take extra processing requirement and incur

extra storage space but eventually performs better load

balancing than traditional algorithms.

In future, hybridization of the techniques will improve the

load balancing and utilization of the grid further. This hybrid

technique then can be implemented in the real world problem

on large scale and then performance can be measured such

that the next generation grid computing environment must be

intelligent enough and autonomous to meet requirements of

self-management.

REFERENCES

[1] Belabbas Yagoubi, and Meriem Meddeber, ―Distributed Load
Balancing model for Grid Computing‖, Revue ARIMA journal volume.
12, pp.43-60, September 2010.

[2] Janhavi B., Sunil Surve, and Sapna Prabhu,―Comparison Of Load
Balancing in a Grid‖, IEEE Computer Society, 2010 International

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041010

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

805

Conference on Data Storage and Data Engineering, pp. 20-23,
doi:10.1109/DSDE.2010.13

[3] R. Rajeswari, Dr. N.Kasthuri ,‖Comparative Survey on Load Balancing
Techniques in Computational Grids ‖, International Journal of
Scientific & Engineering Research (IJSER), Volume 4, Issue 9,
September-2013 ISSN 2229-5518

[4] Riky Subrata, Albert Y. Zomaya, Bjorn Landfeldt ―Artificial life
techniques for load balancing in computational grids‖ Journal of
Computer and System Sciences 73 (2007), Elsevier,
doi:10.1016/j.jcss.2007.02.006

[5] Mr. P.Mathiyalagan, U.R.Dhepthie ,Dr. S.N.Sivanandam ―Grid
Scheduling using enhanced PSO algorithm‖, International Journal on
Computer Science and Engineering(IJCSE), Vol. 02, No. 02, 2010,
ISSN : 0975-3397, 140-145.

[6] Sandip Kumar Goyal , Manpreet Singh ― Adaptive and Dynamic Load
Balancing in Grid Using Ant Colony Optimization‖ International
Journal of Engineering and Technology (IJET) ISSN : 0975-4024 Vol.
4 No 4 Aug-Sep 2012.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041010

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

806

