Published by :
http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 10 Issue 06, June-2021

Comparative Analysis of Various Machine
Learning Techniques for Detecting Malicious
Webpages

Gayaksha Kandolkar
ME Student,
Information Technology Department,
Goa College of Engineering
Goa-India

Abstract— Due to the rapid growth of the internet,
websites have become the intruder’s main target.
Malicious websites, when visited by an unsuspecting victim
infect their machine to steal valuable information, redirect
them to malicious targets or compromise their system to
mount future attack. At times a malicious dynamic HTML
code is usually embedded in a normal webpage. Anti-virus
software packages commonly use signature-based
approaches which might not be able to efficiently identify
camouflaged malicious HTML codes. Therefore, using
machine learning approach to detect malicious web
content is a better alternative. The objective of this project
is to train various machine learning classifier models on
the dataset created to predict malicious websites. The
study is also conducted to measure and compare the
performance level of these machine learning classifiers.

Keywords— Machine Learning, Malicious webpages,
Random Forest, XGBoost

I. INTRODUCTION

Malicious web pages are those, which contain
content that can be used by attackers to exploit end
users. This includes web pages with phishing URLSs,
spam URLS, JavaScript malware scripts, Adware etc. A
Malicious URL or a malicious web site hosts a variety of
spontaneous content within the shape of spam, phishing,
or drive-by- exploits in order to dispatch attacks.
Attackers on the web put up hyperlinks to malicious
content that can harm the victims in one way or another.
They may choose customers to download their malware,
phish their credentials, steal sessions etc. Nowadays, it
is becoming very difficult to detect such vulnerabilities
due to the continuous development of new techniques
for carrying out such attacks. At times a malicious
dynamic HTML code is embedded in a normal webpage.
Dynamic HTML gives attackers a new and powerful
technique to compromise the security of computer
systems. The malicious webpage infects the victim
when a user browses it. Naive users using a browser
have no idea about the back-end of the page. The users
might be tricked into giving away their credentials or
downloading malicious data. Furthermore, such
DHTML code can disguise itself easily through
obfuscation or transformation, which makes the
detection even harder.

So, detecting and preventing the user from these

Soniya Usgaonkar
Assistant Professor,
Information Technology Department,
Goa College of Engineering
Goa-India

attacks are significant task. Malicious attack detection
and prevention system plays an immense role against
these attacks by protecting the system’s critical
information. The internet security softwares and
firewalls are not enough to provide full protection to the
system. Anti-virus software packages commonly use
signature-based approaches which might not be able to
efficiently identify camouflaged malicious HTML
codes. Therefore, using machine learning to detect such
web content will be a better alternative.

Il. LITERATURE SURVEY

Significant research has been carried out on Malicious
Website detection using Machine Learning Techniques.
However, these papers have restricted themselves to few
attributes for machine learning. In the paper “Detection
of Malicious URLs using Machine Learning
Techniques” [1] the authors extracted the Lexical
Analysis Features in addition to the 3rd party feature,
geo ranking and wused the Convolutional Neural
Networks (CNN) algorithm for feature extraction and
classification. They said that malicious URLs could be
detected by extracting the lexical features. Their
presented work was an early effort in malicious URL
detection.

In this paper “Malicious web content detection using
machine learning” [2] the authors proposed the
development of an extension for Google Chrome which
acted as middleware between the users and the
malicious websites to ensure safe browsing. They used
the UCI Dataset of Phishing Website to train the
classifier. Whenever a user entered the URL, the features
were extracted and the URL was tested on the trained
classifier to obtain the result. They extracted around 22
URL features also called as lexical features and domain-
based features called as host-based features. They also
compared the following three classification algorithms -
K-Nearest Neighbours (kNN), Support Vector Machines
(SVM), and Random Forest and concluded that Random
Forest algorithm gave better accuracy in comparison
with the two others.

Yuan-Tsung Hou et.al [3] proposed a malicious web
page detection model based on dynamic HTML and
some Java script native functions using the boosted
decision tree algorithm. The author used the technique

IJERTV101S060072

www.ijert.org 296

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by :
http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 10 Issue 06, June-2021

of machine learning for the classification of web pages.
They explored the possible content-based Features
(dynamic HTML and some Java script native functions)
and compared the following four classification
algorithms - Naive Bayes, Decision Tree, Support
Vector Machine, and Boosted Decision Tree. Their
experiment showed that Boosted Decision Tree gave
better test results and so the same was implemented.

In this paper “Using supervised machine learning
algorithms to detect suspicious URLs in online social
networks” [4] the authors built a supervised machine
learning classification model to detect the distribution
of malicious content in online social networks (ONSS).
Multisource features were used to detect social network
posts that contain malicious Uniform Resource
Locators. For the data collection stage, the Twitter
streaming application programming interface (API) was
used and VirusTotal was used for labelling the dataset.
To explore the best-performance machine learning
algorithms for the classification of spam and non-spam
URLs associated with tweets the following algorithms
were used: - Naive Bayes (NB), k-Nearest Neighbors (k-
NN), Random Forest (RF), and Logistic Regression
(LR). They trained and tested four classifiers using the
same set of 36 features and results showed that RF had
the best performance. They aimed to find the highest
performance model using the smallest number of
features and the smallest structural parameters (tree
number, max tree depth and maximum leaf size) in order
to find the least complex but high performing classifier.

[5] gives the insight about the Dynamic attack detection
method in which the JavaScript was embedded to the
URL to bypass the detection mechanisms the false
positive rate produced by this technique is less than
4.2% in the best case.

Sahingoz et al. [6] proposed a model to detect whether
the URL in the email is legitimate or phishing in real
time. Features used are Word Vector, NLP based and
Hybrid. To find the word vector a word list is created.
Each word from the URL is separated from one another
using separators, removed the digits and random letter
words. Meaningful existing words are added to the list
to be analyzed. Words consisting of 2 meaningful words
is separated using a word decomposition module. For
example, SECURELOGIN is separated to SECURE and
LOGIN and are added to the list. 7 classification
algorithms were used namely Naive Bayes, Random
Forest, KNN (n = 3), Ada boost, K-star, SMO and
Decision Tree. Random Forest Algorithm proved to
give the best giving 97.98% accuracy.

In the paper "Detection of phishing URLs using
machine learning techniques”, the author [7] discusses
about the rise of phishing websites and give techniques
to extract features and implement machine learning
algorithms to classify the same. They have extracted
features like traffic rank details, lexical features, page
rank etc. They have presented a study of different
machine learning algorithms. A fixed result showing
the best algorithm is not done in the paper, we will
give statistical analysis of all the algorithms and even

the accuracy of the chosen algorithm to prove the result.

I1l. METHODOLOGY

The idea is to use URL/Lexical features, Page content
features as well as Host-based features.
Lexical features: Lexical features are features obtained
from the properties of the URL name or the URL string.
Page-Content features: The content-based features of a
webpage can be drawn primarily from its HTML and
JavaScript content. The idea is to capture the URLS
which bypass the lexical features.
Host-based features: In addition to URL-based, HTML-
based and JavaScript features, we extract Host based
features which are dependent on the domain of the
URL.
In this work, the Host-based features are extracted
using the WHOIS information of the domain.
A. Obtaining Dataset

The set of malicious URLs are collected from
opensource service called Phish Tank[8]. This
service provides a set of phishing URLs in
multiple formats like csv, json etc. From this
dataset, 5000 random phishing URLs are collected
to train the ML models. The legitimate URLS are
obtained from the open datasets of the University
of New Brunswick[9]. This dataset has a collection
of benign, spam, phishing, malware & defacement
URLs. Out of all these types, the benign URL
dataset is considered for this project. 5000 random
legitimate URLSs are collected from this dataset to
train the ML models.

B. Feature Extraction

In the context of machine learning, features are
used to provide discriminative power in the
classification process. Fig. 1 depicts a more
detailed insight of the feature extraction step in the
proposed system.

Input } [Parse URL] I:"}[Extract] [Pre-pmcessing]

Feature extractor tool

dataset features
Model
generator

When a URL is appended into this model, the
first step is to read the URL and parse through it.
Once the URL is parsed, next step is to extract
relevant features from the URLs. Python in-built
libraries are used to parse and extract features
some of the features. In our study we have
extracted a total of 17 features as shown in Table I.
These extracted features are categorized into

e URL based Features
e Domain based Features
e HTML & JavaScript based Features

Fig. 1. Overview of feature extraction

IJERTV101S060072

www.ijert.org 297

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by :
http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 10 Issue 06, June-2021

TABLE . PROPOSED FEATURE SET
Feature Feature Source
Domain of URL URL string
IP Address in URL URL string
"@" Symbol in URL URL string
Length of URL URL string
Depth of URL URL string
Redirection "//" in URL URL string
"http/https” in Domain name URL string
Using URL Shortening URL string
Services “TinyURL”
Prefix or Suffix "-" in URL string
Domain
DNS Record Domain WHOIS Info
Website Traffic Domain WHOIS Info
Age of Domain Domain WHOIS Info
End Period of Domain Domain WHOIS Info
IFrame Redirection Web Page Content
Status Bar Customization Web Page Content
Disabling Right Click Web Page Content
Website Forwarding Web Page Content

C. Model selection

The following machine learning algorithms were
considered to evaluate and compare the best
performance. Support Vector Machines classifiers - The
SVM algorithm uses a dataset where the input samples
are divided into two classes with labels either O or 1.
The methodology includes finding a line (in two-
dimension space) or a plane (in multi- dimension space)
also called as a hyperplane which will most efficiently
separate the two classes [10].

K-Nearest Neighbours (kNN) - kNN algorithm can
be used for both classification as well as regression
problems. However, mostly it is used for classification
problems. k> in the KNN algorithm stands for the
number of nearest neighbours we wish to take vote
from. When predicting fora new data sample, this
algorithm will run a search on the training dataset to
find the closest k-samples. The predicted class of those
similar samples is then found out and the summary of
that is given out as the class label for this new data
sample [11].

Naive Bayes - Naive Bayes classifier is one of the
commonly used learning algorithms. The Naive Bayes
classifier is a probabilistic model based on the Bayes
rule. ‘Naive’ refers to the assumption of conditional
independence among features [12].

Logistic Regression - LR classifier: a probabilistic
classifier, typically working on binary classification
problems [13].

Decision tree classifier - A Decision tree is a
machine learning classifier based on the tree structure.
Each node in the tree is associated with a particular
feature, and the edges from the node separate the data
based on the value of the feature. Each leaf node binds
to a class in the classifier model. The training data is key
point for the information gain (IG) of the feature
selection policy. A decision tree simply asks a question,
and based on the answer (Yes/No), it further split the tree
into subtrees [14].

Random forest classifier - A Random forest classifier

is an ensemble algorithm. Ensemble algorithm is the
combination of same or different kind of algorithms. Set
of trees make a forest. Here, Random forest is a set of
decision trees. The voting of each decision tree is taken
and the new output case is added to that class which has
highest vote [15].

XGBOOST - (Extreme Gradient Boosted Tree) is an
optimized implementation of gradient boosted trees first
introduced by [16]. It is mostly employed in
classification task where it is used as a classifier for
mapping input pattern into a specific class. It is a recent
supervised learning algorithm that implements a process
known as boosting to improve the performance of
gradient boosted trees. All the algorithms above were
implemented in this study by using Scikit-learn, which
is an open-source machine learning library in Python.

We trained and tested these classifiers using
the same set of 17 features described in Table 1.

The dataset was randomly divided into a 80%
training and 20% testing set. The said classifiers
were trained and tested.

IV. EVALUATION CRITERIA
We used the Scikit learn default parameter values
for all the algorithms. Table 11 shows the confusion
matrix in which TP (True Positive) is a case where
the predicted value matches the actual value. The
actual value was positive and the model predicted
a positive value.
FP (False Positive) is a case where the predicted
value was falsely predicted. The actual value was
negative but the model predicted a positive value.
TN (True Negative) is a case where the predicted
value matches the actual value. The actual value
was negative and the model predicted a negative
value.
FN (False negative) is when the predicted value
was falsely predicted. The actual value was
positive but the model predicted a negative value.

TABLE Il. CONFUSION MATRIX

Predicted Positive Predicted Negative
Class Class

Actual TP FP
positive class

FN TN

Actual negative class

There exists several metrics that utilize the
confusion matrix.

« Precision is the ratio of true positives to the
sum of a true positive and false positive, as shown
in (1).

Precision = TP/(TP + FP) (1)

« Recall is the ratio of correct true positive
classifier decisions to the all true positive examples
in the test set as shown in (2).

Recall = TP/(TP + FN) (2)

« F-measure (F1) represents the previous
metrics precision and recall combined as follows in
@)

F1 =2 « (precision = recall) / (precision + recall) (3)

IJERTV101S060072

www.ijert.org 298

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by :
http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 10 Issue 06, June-2021

» Accuracy is the measure of the true
predictions divided by the total, shown in (4)

Accuracy = (TP+TN)/(TP+TN+ FP+ FN) (4)
« Support is the number of actual occurrences
of the class in the specified dataset.

VI. EXPERIMENTAL RESULT AND

COMPARISON
All the classifiers were implemented using the same
performance metric for a fair comparison. Below is
the screenshot depicting the results of all the

Decion Tree : classifaction report on test Data:

precision recall fil-score support
%] @.72 9.99 9.84 976
1 9.98 0.64 0.78 1024
accuracy @.81 2000
macro avg ©.85 0.81 .81 2000
weighted avg 2.86 0.81 .81 2000

Decision Tree: Accuracy on test Data: 81.850 %

Random Forest : classifaction report on test Data:

. . . . recision recall fl-score support
algorithms with the different performance metrics ° e
and the same is summarized in Table I1I. 0 0.80 0.93 0.86 976

1 9.92 @.78 9.85 1624
SWM : classifaction report on test Data:
accuracy 9.85 2000
precision recall fil-score support _macro avg 0.86 9.86 2.8 2090
weighted avg 9.86 9.85 .85 2000
5} @.71 9.98 9.82 976
1 0.97 9.61 8.75 1024 Random Forest: Accuracy on test Data: 85.400 %
accuracy 8.79 2000 XG Boost : classifaction report on test Data:
macro avg 0.84 0.80 9.79 20008 Sresy 1 f
veighted avg 0.84 9.79 0.79 2008 precision peca 1-score support
SVM : Accuracy on test Data: 79.300 % ° 0,81 9,93 ©.86 976
1 0.92 8.79 0.85 1024
KNN : classifaction report on test Data:
accuracy 0.86 2000
precision recall fi-score support MACrO:-ave .86 0.86 9.86 2000
weighted avg 0.86 0.86 0.86 2000
5] 0.77 0.81 0.79 976
1 8.81 0.77 5.79 1024 XG Boost: Accuracy on test Data: 85.600 ¥
accuracy 9.79 2000 . e . .
macro ave 0.79 0.79 .79 2000 Fig. 2. Classification reports for different algorithms
weighted avg 0.79 08.79 9.79 2000
TABLE Ill. TEST PERFORMANCE OF THE ALGORITHMS
KNN : Accuracy on test Data: 79.100 %
Naive Bayes: classifaction report on test Data: Machine Accuracy Precision Recall Fl-Score
L Learning (%)
precision recall fl-score support algorithms
e .67 0.99 0.76 976 Support 7930 0.97 0.61 0.75
1 9.86 9.57 0.68 1624 Vector
accuracy 0.73 2000 Machine
macro avg .76 9.73 9.72 2000 E-Nearest 70.10 0.81 0.77 0.70
weighted avg 8.76 8.73 8.72 2000 Neighbour
Naive Bayes: Accuracy on test Data: 73.05@ % Naive 71.05 0.86 0.57 0.68
Bayes
Logistic Regression: classifaction report on test Data: =
Logistic 79.10 0.92 0.64 0.76
precision recall fi1-score support Regression
0 0.72 0.94 0.82 976 Decision 81.05 0.98 0.64 0.78
1 9.92 0.64 0.76 124 Tree
accuracy 0.79 2000 Random 85.40 0.92 0.78 0.85
macro avg 8.82 8.79 8.79 2000 Forest
weighted avg 2.82 8.79 0.79 2000 XGBoost 85.60 0.02 0.70 085
Logistic Regression: Accuracy on test Data: 79.100 %
IJERTV101S060072 www.ijert.org 299

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by : International Journal of Engineering Research & Technology (IJERT)

http://www.ijert.org ISSN: 2278-0181
Vol. 10 Issue 06, June-2021

The result can be represented in graphical form for [6] Sahingoz, Ozgur & Buber, Ebubekir & Demir, Onder & Diri,

better analysis and understanding_ Banu. (2019). Machine learning based phishing detection from
URLs. Expert Systems with Applications.

[7] James, Joby, L. Sandhya, and Ciza Thomas, “Detection of

Fig 4 shows that XGBoost Classifier returned the best phishing URLs using machine learning techniques.” Control

accuracy among all other the algorithms followed by Communication and Computing (ICCC), 2013 International
Random Forest, whereas Naive Bayes obtained lowest Conference on. IEEE, 2013.
accuracy rate. [8] https://www.phishtank.com/developer info.php
[9] https://www.unb.ca/cic/datasets/url-2016.html
Comparisons of results based on accuracy [10] J. Brownlee, “Support Vector Machines for Machine Learning -
86 1 Machine Learning Mastery”, Machine Learning Mastery, 2017.
e [Online] https://machinelearningmastery.com/support-
c vectormachines-for-machine-learning/
‘o [11] J. Brownlee, “Tutorial To Implement k- Nearest Neighbors in
5 & Python From Scratch - Machine Learning Mastery”, Machine
© Learning Mastery, 2017[Online]
g 80 1 https://machinelearningmastery.com/k-nearest- neighbors-for
o machine-learning/
2 78 [12] https://machinelearningmastery.com/naive-bayes-for-machine-
© learning/
Em [13] https://machinelearningmastery.com/naive-bayes-for-machine-
£ learning/
DM [14] https://www.javatpoint.com/machine- learning-
I ! ! I ! ! ! decision-tree-classification-algorithm
SVM KNN NB LR DT RF XGB [15] “Random Forests Algorithm”,
Classifiers Datasciencecentral.com, 2017[Online]
Fig. 4. Accuracy Chart Representation of Classification models https://www.datasciencecentral.com/profiles/blogs/random-
forests-algorithm
VI. CONCLUSION [16] T. Chen and C. Guestrin. XGBOOST: A scalable tree boosting

system. In Proceedings of the 22Nd ACM SIGKDD International
. L . . Conference on Knowledge Discovery and Data Mining. ACM,
The detection of malicious URLs is a binary 2016, pp. 785-794.
classification problem and various machine learning
classifier models are trained on the dataset created to
predict malicious websites. In this paper, we aimed to
find the highest performance model. Out of the seven
different classifiers that are evaluated XGBoost
Classifier model gave the bhest accuracy of 85.60%
followed by Random Forest Classifier.

VIl. REFERENCES

[1] Immadisetti Naga Venkata Durga Naveen, Manamohana K,
Rohit Verma, “Detection of Malicious URLs using Machine
Learning Techniques”, International Journal of Innovative
Technology and Exploring Engineering (IJITEE) ISSN: 2278-
3075, Volume-8 Issue-4S2 March, 2019.

[2] A. Desai, J. Jatakia, R. Naik and N. Raul, "Malicious web
content detection using machine leaning," 2017 2nd IEEE
International Conference on Recent Trends in Electronics,
Information & Communication Technology (RTEICT),
Bangalore, 2017.

[31 Hou, Y.T., Chang, Y., Chen, T., Laih, C.S., Chen, C.M.:
Malicious web content detection by machine learning. Expert
Systems with Applications, International Journal 2010.

[4] Mohammed Al-Janabi, Ed de Quincey, and Peter Andras. 2017.
Using supervised machine learning algorithms to detect
suspicious URLSs in online social networks. In Proceedings of the
2017 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2017.

[5] Hung Le, Quang Pham, Doyen Sahoo, Steven C.H Ho, “URL
Net: Learning a URL Representation with Deep Learning for
Malicious URL Detection”, arXiv:1802.03162v2 Mar 2018.

IJERTV101S060072 www.ijert.org 300
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/
http://www.phishtank.com/developer_info.php
http://www.unb.ca/cic/datasets/url-2016.html
http://www.javatpoint.com/machine-
http://www.datasciencecentral.com/profiles/blogs/random-

	Gayaksha Kandolkar
	Soniya Usgaonkar

