
Published by : 

http://www.ijert.org 

International Journal of Engineering Research & Technology (IJERT) 

ISSN: 2278-0181 

Vol. 10 Issue 06, June-2021 

296 IJERTV10IS060072 www.ijert.org 

(This work is licensed under a Creative Commons Attribution 4.0 International License.) 

 

 

Comparative Analysis of Various Machine 

Learning Techniques for Detecting Malicious           

Webpages 
 

Gayaksha Kandolkar 
ME Student, 

Information Technology Department, 
Goa College of Engineering 

Goa-India 

Soniya Usgaonkar 
Assistant Professor, 

Information Technology Department, 

Goa College of Engineering 

Goa-India 
 

Abstract— Due to the rapid growth of the internet, 

websites have become the intruder’s main target. 

Malicious websites, when visited by an unsuspecting victim 

infect their machine to steal valuable information, redirect 

them to malicious targets or compromise their system to 

mount future attack. At times a malicious dynamic HTML 

code is usually embedded in a normal webpage. Anti-virus 

software packages commonly use signature-based 

approaches which might not be able to efficiently identify 

camouflaged malicious HTML codes. Therefore, using 

machine learning approach to detect malicious web 

content is a better alternative. The objective of this project 

is to train various machine learning classifier models on 

the dataset created to predict malicious websites. The 

study is also conducted to measure and compare the 

performance level of these machine learning classifiers. 
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I. INTRODUCTION 

Malicious web pages are those, which contain 

content that can be used by attackers to exploit end 

users. This includes web pages with phishing URLs, 

spam URLS, JavaScript malware scripts, Adware etc. A 
Malicious URL or a malicious web site hosts a variety of 

spontaneous content within the shape of spam, phishing, 

or drive-by- exploits in order to dispatch attacks. 

Attackers on the web put up hyperlinks to malicious 

content that can harm the victims in one way or another. 

They may choose customers to download their malware, 

phish their credentials, steal sessions etc. Nowadays, it 

is becoming very difficult to detect such vulnerabilities 

due to the continuous development of new techniques 

for carrying out such attacks. At times a malicious 

dynamic HTML code is embedded in a normal webpage. 

Dynamic HTML gives attackers a new and powerful 
technique to compromise the security of computer 

systems. The malicious webpage infects the victim 

when a user browses it. Naive users using a browser 

have no idea about the back-end of the page. The users 

might be tricked into giving away their credentials or 

downloading malicious data. Furthermore, such 

DHTML code can disguise itself easily through 

obfuscation or transformation, which makes the 

detection even harder. 

So, detecting and preventing the user from these 

attacks are significant task. Malicious attack detection 

and prevention system plays an immense role against 

these attacks by protecting the system’s critical 
information. The internet security softwares and 

firewalls are not enough to provide full protection to the 

system. Anti-virus software packages commonly use 

signature-based approaches which might not be able to 

efficiently identify camouflaged malicious HTML 

codes. Therefore, using machine learning to detect such 

web content will be a better alternative. 

 
II. LITERATURE SURVEY 

Significant research has been carried out on Malicious 

Website detection using Machine Learning Techniques. 

However, these papers have restricted themselves to few 

attributes for machine learning. In the paper “Detection 

of Malicious URLs using Machine Learning 

Techniques” [1] the authors extracted the Lexical 

Analysis Features in addition to the 3rd party feature, 

geo ranking and used the Convolutional Neural 

Networks (CNN) algorithm for feature extraction and 

classification. They said that malicious URLs could be 

detected by extracting the lexical features. Their 
presented work was an early effort in malicious URL 

detection. 

In this paper “Malicious web content detection using 

machine learning” [2] the authors proposed the 

development of an extension for Google Chrome which 

acted as middleware between the users and the 

malicious websites to ensure safe browsing. They used 

the UCI Dataset of Phishing Website to train the 

classifier. Whenever a user entered the URL, the features 

were extracted and the URL was tested on the trained 

classifier to obtain the result. They extracted around 22 

URL features also called as lexical features and domain- 

based features called as host-based features. They also 

compared the following three classification algorithms - 
K-Nearest Neighbours (kNN), Support Vector Machines 

(SVM), and Random Forest and concluded that Random 

Forest algorithm gave better accuracy in comparison 

with the two others. 

Yuan-Tsung Hou et.al [3] proposed a malicious web 

page detection model based on dynamic HTML and 

some Java script native functions using the boosted 

decision tree algorithm. The author used the technique 
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of machine learning for the classification of web pages. 

They explored the possible content-based Features 

(dynamic HTML and some Java script native functions) 

and compared the following four classification 

algorithms - Naive Bayes, Decision Tree, Support 
Vector Machine, and Boosted Decision Tree. Their 

experiment showed that Boosted Decision Tree gave 

better test results and so the same was implemented. 

In this paper “Using supervised machine learning 

algorithms to detect suspicious URLs in online social 

networks” [4] the authors built a supervised machine 

learning classification model to detect the distribution 

of malicious content in online social networks (ONSs). 

Multisource features were used to detect social network 

posts that contain malicious Uniform Resource 

Locators. For the data collection stage, the Twitter 

streaming application programming interface (API) was 
used and VirusTotal was used for labelling the dataset. 

To explore the best-performance machine learning 

algorithms for the classification of spam and non-spam 

URLs associated with tweets the following algorithms 

were used: - Naïve Bayes (NB), k-Nearest Neighbors (k- 

NN), Random Forest (RF), and Logistic Regression 

(LR). They trained and tested four classifiers using the 

same set of 36 features and results showed that RF had 

the best performance. They aimed to find the highest 

performance model using the smallest number of 

features and the smallest structural parameters (tree 
number, max tree depth and maximum leaf size) in order 

to find the least complex but high performing classifier. 

[5] gives the insight about the Dynamic attack detection 

method in which the JavaScript was embedded to the 

URL to bypass the detection mechanisms the false 
positive rate produced by this technique is less than 

4.2% in the best case. 

Sahingoz et al. [6] proposed a model to detect whether 

the URL in the email is legitimate or phishing in real 

time. Features used are Word Vector, NLP based and 

Hybrid. To find the word vector a word list is created. 

Each word from the URL is separated from one another 

using separators, removed the digits and random letter 

words. Meaningful existing words are added to the list 

to be analyzed. Words consisting of 2 meaningful words 

is separated using a word decomposition module. For 
example, SECURELOGIN is separated to SECURE and 

LOGIN and are added to the list. 7 classification 

algorithms were used namely Naive Bayes, Random 

Forest, KNN (n = 3), Ada boost, K-star, SMO and 

Decision Tree. Random Forest Algorithm proved to 

give the best giving 97.98% accuracy. 

In the paper "Detection of phishing URLs using 

machine learning techniques", the author [7] discusses 

about the rise of phishing websites and give techniques 

to extract features and implement machine learning 

algorithms to classify the same. They have extracted 

features like traffic rank details, lexical features, page 
rank etc. They have presented a study of different 

machine learning algorithms. A fixed result showing 

the best algorithm is not done in the paper, we will 

give statistical analysis of all the algorithms and even 

the accuracy of the chosen algorithm to prove the result. 

 

III. METHODOLOGY 
The idea is to use URL/Lexical features, Page content 

features as well as Host-based features. 
Lexical features: Lexical features are features obtained 

from the properties of the URL name or the URL string. 

Page-Content features: The content-based features of a 

webpage can be drawn primarily from its HTML and 

JavaScript content. The idea is to capture the URLs 

which bypass the lexical features. 

Host-based features: In addition to URL-based, HTML- 

based and JavaScript features, we extract Host based 

features which are dependent on the domain of the 

URL. 

In this work, the Host-based features are extracted 

using the WHOIS information of the domain. 
A. Obtaining Dataset 

The set of malicious URLs are collected from 

opensource service called Phish Tank[8]. This 

service provides a set of phishing URLs in 

multiple formats like csv, json etc. From this 

dataset, 5000 random phishing URLs are collected 

to train the ML models. The legitimate URLs are 

obtained from the open datasets of the University 

of New Brunswick[9]. This dataset has a collection 

of benign, spam, phishing, malware & defacement 

URLs. Out of all these types, the benign URL 
dataset is considered for this project. 5000 random 

legitimate URLs are collected from this dataset to 

train the ML models. 

 

B. Feature Extraction 

In the context of machine learning, features are 

used to provide discriminative power in the 

classification process. Fig. 1 depicts a more 

detailed insight of the feature extraction step in the 

proposed system. 
 

Fig. 1. Overview of feature extraction 
 

When a URL is appended into this model, the 

first step is to read the URL and parse through it. 

Once the URL is parsed, next step is to extract 

relevant features from the URLs. Python in-built 

libraries are used to parse and extract features 

some of the features. In our study we have 

extracted a total of 17 features as shown in Table I. 

These extracted features are categorized into 

 URL based Features 

 Domain based Features 

 HTML & JavaScript based Features 
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TABLE I. PROPOSED FEATURE SET 
 

 Feature Feature Source 

Domain of URL URL string 

IP Address in URL URL string 

"@" Symbol in URL URL string 

Length of URL URL string 

Depth of URL URL string 

Redirection "//" in URL URL string 

"http/https" in Domain name URL string 

Using URL Shortening 

Services “TinyURL” 

URL string 

Prefix or Suffix "-" in 

Domain 

URL string 

DNS Record Domain WHOIS Info 

Website Traffic Domain WHOIS Info 

 Age of Domain Domain WHOIS Info 

 End Period of Domain Domain WHOIS Info 

 IFrame Redirection Web Page Content 

 Status Bar Customization Web Page Content 

Disabling Right Click Web Page Content 

 Website Forwarding Web Page Content 

 
C. Model selection 

The following machine learning algorithms were 

considered to evaluate and compare the best 

performance. Support Vector Machines classifiers - The 
SVM algorithm uses a dataset where the input samples 

are divided into two classes with labels either 0 or 1. 

The methodology includes finding a line (in two- 

dimension space) or a plane (in multi- dimension space) 

also called as a hyperplane which will most efficiently 

separate the two classes [10]. 

K-Nearest Neighbours (kNN) - kNN algorithm can 

be used for both classification as well as regression 

problems. However, mostly it is used for classification 

problems. ‘k’ in the kNN algorithm stands for the 

number of nearest neighbours we wish to take vote 

from. When predicting fora new data sample, this 
algorithm will run a search on the training dataset to 

find the closest k-samples. The predicted class of those 

similar samples is then found out and the summary of 

that is given out as the class label for this new data 

sample [11]. 

Naive Bayes - Naive Bayes classifier is one of the 

commonly used learning algorithms. The Naive Bayes 

classifier is a probabilistic model based on the Bayes 

rule. ‘Naïve’ refers to the assumption of conditional 

independence among features [12]. 

Logistic Regression - LR classifier: a probabilistic 
classifier, typically working on binary classification 

problems [13]. 

Decision tree classifier - A Decision tree is a 

machine learning classifier based on the tree structure. 

Each node in the tree is associated with a particular 

feature, and the edges from the node separate the data 

based on the value of the feature. Each leaf node binds 

to a class in the classifier model. The training data is key 

point for the information gain (IG) of the feature 

selection policy. A decision tree simply asks a question, 

and based on the answer (Yes/No), it further split the tree 

into subtrees [14]. 

Random forest classifier - A Random forest classifier 

is an ensemble algorithm. Ensemble algorithm is the 

combination of same or different kind of algorithms. Set 

of trees make a forest. Here, Random forest is a set of 

decision trees. The voting of each decision tree is taken 

and the new output case is added to that class which has 
highest vote [15]. 

XGBOOST - (Extreme Gradient Boosted Tree) is an 

optimized implementation of gradient boosted trees first 
introduced by [16]. It is mostly employed in 

classification task where it is used as a classifier for 

mapping input pattern into a specific class. It is a recent 

supervised learning algorithm that implements a process 

known as boosting to improve the performance of 

gradient boosted trees. All the algorithms above were 

implemented in this study by using Scikit-learn, which 

is an open-source machine learning library in Python. 

We trained and tested these classifiers using 

the same set of 17 features described in Table 1. 

The dataset was randomly divided into a 80% 
training and 20% testing set. The said classifiers 

were trained and tested. 

 

IV. EVALUATION CRITERIA 

We used the Scikit learn default parameter values 

for all the algorithms. Table II shows the confusion 

matrix in which TP (True Positive) is a case where 

the predicted value matches the actual value. The 

actual value was positive and the model predicted 

a positive value. 

FP (False Positive) is a case where the predicted 
value was falsely predicted. The actual value was 

negative but the model predicted a positive value. 

TN (True Negative) is a case where the predicted 

value matches the actual value. The actual value 

was negative and the model predicted a negative 

value. 

FN (False negative) is when the predicted value 

was falsely predicted. The actual value was 

positive but the model predicted a negative value. 

 

TABLE II. CONFUSION MATRIX 
 

  

Predicted Positive 

Class 

 

Predicted Negative 

Class 

Actual 

positive class 

TP FP 

 
Actual negative class 

FN TN 

There exists several metrics that utilize the 

confusion matrix. 

• Precision is the ratio of true positives to the 
sum of a true positive and false positive, as shown 

in (1). 

Precision = TP/( TP + FP) (1) 
• Recall is the ratio of correct true positive 

classifier decisions to the all true positive examples 

in the test set as shown in (2). 

Recall = TP/(TP + FN) (2) 

• F-measure (F1) represents the previous 

metrics precision and recall combined as follows in 

(3) 

F1 = 2 ∗ (precision ∗ recall) / (precision + recall) (3) 
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• Accuracy is the measure of the true 

predictions divided by the total, shown in (4) 

Accuracy = (TP + TN)/( TP +TN + FP+ FN ) (4) 
• Support is the number of actual occurrences 

of the class in the specified dataset. 

VI. EXPERIMENTAL RESULT AND 

COMPARISON 

All the classifiers were implemented using the same 

performance metric for a fair comparison. Below is 

the screenshot depicting the results of all the 

algorithms with the different performance metrics 

and the same is summarized in Table III. 
 

 

 

Fig. 2. Classification reports for different algorithms 

TABLE III. TEST PERFORMANCE OF THE ALGORITHMS 
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The result can be represented in graphical form for 

better analysis and understanding. 
 

Fig 4 shows that XGBoost Classifier returned the best 

accuracy among all other the algorithms followed by 

Random Forest, whereas Naïve Bayes obtained lowest 

accuracy rate. 
 

Fig. 4. Accuracy Chart Representation of Classification models 

 

VI. CONCLUSION 
 

The detection of malicious URLs is a binary 

classification problem and various machine learning 

classifier models are trained on the dataset created to 

predict malicious websites. In this paper, we aimed to 

find the highest performance model. Out of the seven 

different classifiers that are evaluated XGBoost 

Classifier model gave the best accuracy of 85.60% 

followed by Random Forest Classifier. 
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