
Published by :

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 10 Issue 06, June-2021

296 IJERTV10IS060072 www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Comparative Analysis of Various Machine

Learning Techniques for Detecting Malicious

Webpages

Gayaksha Kandolkar
ME Student,

Information Technology Department,
Goa College of Engineering

Goa-India

Soniya Usgaonkar
Assistant Professor,

Information Technology Department,

Goa College of Engineering

Goa-India

Abstract— Due to the rapid growth of the internet,

websites have become the intruder’s main target.

Malicious websites, when visited by an unsuspecting victim

infect their machine to steal valuable information, redirect

them to malicious targets or compromise their system to

mount future attack. At times a malicious dynamic HTML

code is usually embedded in a normal webpage. Anti-virus

software packages commonly use signature-based

approaches which might not be able to efficiently identify

camouflaged malicious HTML codes. Therefore, using

machine learning approach to detect malicious web

content is a better alternative. The objective of this project

is to train various machine learning classifier models on

the dataset created to predict malicious websites. The

study is also conducted to measure and compare the

performance level of these machine learning classifiers.

Keywords— Machine Learning, Malicious webpages,

Random Forest, XGBoost

I. INTRODUCTION

Malicious web pages are those, which contain

content that can be used by attackers to exploit end

users. This includes web pages with phishing URLs,

spam URLS, JavaScript malware scripts, Adware etc. A
Malicious URL or a malicious web site hosts a variety of

spontaneous content within the shape of spam, phishing,

or drive-by- exploits in order to dispatch attacks.

Attackers on the web put up hyperlinks to malicious

content that can harm the victims in one way or another.

They may choose customers to download their malware,

phish their credentials, steal sessions etc. Nowadays, it

is becoming very difficult to detect such vulnerabilities

due to the continuous development of new techniques

for carrying out such attacks. At times a malicious

dynamic HTML code is embedded in a normal webpage.

Dynamic HTML gives attackers a new and powerful
technique to compromise the security of computer

systems. The malicious webpage infects the victim

when a user browses it. Naive users using a browser

have no idea about the back-end of the page. The users

might be tricked into giving away their credentials or

downloading malicious data. Furthermore, such

DHTML code can disguise itself easily through

obfuscation or transformation, which makes the

detection even harder.

So, detecting and preventing the user from these

attacks are significant task. Malicious attack detection

and prevention system plays an immense role against

these attacks by protecting the system’s critical
information. The internet security softwares and

firewalls are not enough to provide full protection to the

system. Anti-virus software packages commonly use

signature-based approaches which might not be able to

efficiently identify camouflaged malicious HTML

codes. Therefore, using machine learning to detect such

web content will be a better alternative.

II. LITERATURE SURVEY

Significant research has been carried out on Malicious

Website detection using Machine Learning Techniques.

However, these papers have restricted themselves to few

attributes for machine learning. In the paper “Detection

of Malicious URLs using Machine Learning

Techniques” [1] the authors extracted the Lexical

Analysis Features in addition to the 3rd party feature,

geo ranking and used the Convolutional Neural

Networks (CNN) algorithm for feature extraction and

classification. They said that malicious URLs could be

detected by extracting the lexical features. Their
presented work was an early effort in malicious URL

detection.

In this paper “Malicious web content detection using

machine learning” [2] the authors proposed the

development of an extension for Google Chrome which

acted as middleware between the users and the

malicious websites to ensure safe browsing. They used

the UCI Dataset of Phishing Website to train the

classifier. Whenever a user entered the URL, the features

were extracted and the URL was tested on the trained

classifier to obtain the result. They extracted around 22

URL features also called as lexical features and domain-

based features called as host-based features. They also

compared the following three classification algorithms -
K-Nearest Neighbours (kNN), Support Vector Machines

(SVM), and Random Forest and concluded that Random

Forest algorithm gave better accuracy in comparison

with the two others.

Yuan-Tsung Hou et.al [3] proposed a malicious web

page detection model based on dynamic HTML and

some Java script native functions using the boosted

decision tree algorithm. The author used the technique

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by :

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 10 Issue 06, June-2021

297 IJERTV10IS060072 www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

of machine learning for the classification of web pages.

They explored the possible content-based Features

(dynamic HTML and some Java script native functions)

and compared the following four classification

algorithms - Naive Bayes, Decision Tree, Support
Vector Machine, and Boosted Decision Tree. Their

experiment showed that Boosted Decision Tree gave

better test results and so the same was implemented.

In this paper “Using supervised machine learning

algorithms to detect suspicious URLs in online social

networks” [4] the authors built a supervised machine

learning classification model to detect the distribution

of malicious content in online social networks (ONSs).

Multisource features were used to detect social network

posts that contain malicious Uniform Resource

Locators. For the data collection stage, the Twitter

streaming application programming interface (API) was
used and VirusTotal was used for labelling the dataset.

To explore the best-performance machine learning

algorithms for the classification of spam and non-spam

URLs associated with tweets the following algorithms

were used: - Naïve Bayes (NB), k-Nearest Neighbors (k-

NN), Random Forest (RF), and Logistic Regression

(LR). They trained and tested four classifiers using the

same set of 36 features and results showed that RF had

the best performance. They aimed to find the highest

performance model using the smallest number of

features and the smallest structural parameters (tree
number, max tree depth and maximum leaf size) in order

to find the least complex but high performing classifier.

[5] gives the insight about the Dynamic attack detection

method in which the JavaScript was embedded to the

URL to bypass the detection mechanisms the false
positive rate produced by this technique is less than

4.2% in the best case.

Sahingoz et al. [6] proposed a model to detect whether

the URL in the email is legitimate or phishing in real

time. Features used are Word Vector, NLP based and

Hybrid. To find the word vector a word list is created.

Each word from the URL is separated from one another

using separators, removed the digits and random letter

words. Meaningful existing words are added to the list

to be analyzed. Words consisting of 2 meaningful words

is separated using a word decomposition module. For
example, SECURELOGIN is separated to SECURE and

LOGIN and are added to the list. 7 classification

algorithms were used namely Naive Bayes, Random

Forest, KNN (n = 3), Ada boost, K-star, SMO and

Decision Tree. Random Forest Algorithm proved to

give the best giving 97.98% accuracy.

In the paper "Detection of phishing URLs using

machine learning techniques", the author [7] discusses

about the rise of phishing websites and give techniques

to extract features and implement machine learning

algorithms to classify the same. They have extracted

features like traffic rank details, lexical features, page
rank etc. They have presented a study of different

machine learning algorithms. A fixed result showing

the best algorithm is not done in the paper, we will

give statistical analysis of all the algorithms and even

the accuracy of the chosen algorithm to prove the result.

III. METHODOLOGY
The idea is to use URL/Lexical features, Page content

features as well as Host-based features.
Lexical features: Lexical features are features obtained

from the properties of the URL name or the URL string.

Page-Content features: The content-based features of a

webpage can be drawn primarily from its HTML and

JavaScript content. The idea is to capture the URLs

which bypass the lexical features.

Host-based features: In addition to URL-based, HTML-

based and JavaScript features, we extract Host based

features which are dependent on the domain of the

URL.

In this work, the Host-based features are extracted

using the WHOIS information of the domain.
A. Obtaining Dataset

The set of malicious URLs are collected from

opensource service called Phish Tank[8]. This

service provides a set of phishing URLs in

multiple formats like csv, json etc. From this

dataset, 5000 random phishing URLs are collected

to train the ML models. The legitimate URLs are

obtained from the open datasets of the University

of New Brunswick[9]. This dataset has a collection

of benign, spam, phishing, malware & defacement

URLs. Out of all these types, the benign URL
dataset is considered for this project. 5000 random

legitimate URLs are collected from this dataset to

train the ML models.

B. Feature Extraction

In the context of machine learning, features are

used to provide discriminative power in the

classification process. Fig. 1 depicts a more

detailed insight of the feature extraction step in the

proposed system.

Fig. 1. Overview of feature extraction

When a URL is appended into this model, the

first step is to read the URL and parse through it.

Once the URL is parsed, next step is to extract

relevant features from the URLs. Python in-built

libraries are used to parse and extract features

some of the features. In our study we have

extracted a total of 17 features as shown in Table I.

These extracted features are categorized into

 URL based Features

 Domain based Features

 HTML & JavaScript based Features

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by :

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 10 Issue 06, June-2021

298 IJERTV10IS060072 www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

TABLE I. PROPOSED FEATURE SET

 Feature Feature Source

Domain of URL URL string

IP Address in URL URL string

"@" Symbol in URL URL string

Length of URL URL string

Depth of URL URL string

Redirection "//" in URL URL string

"http/https" in Domain name URL string

Using URL Shortening

Services “TinyURL”

URL string

Prefix or Suffix "-" in

Domain

URL string

DNS Record Domain WHOIS Info

Website Traffic Domain WHOIS Info

 Age of Domain Domain WHOIS Info

 End Period of Domain Domain WHOIS Info

 IFrame Redirection Web Page Content

 Status Bar Customization Web Page Content

Disabling Right Click Web Page Content

 Website Forwarding Web Page Content

C. Model selection

The following machine learning algorithms were

considered to evaluate and compare the best

performance. Support Vector Machines classifiers - The
SVM algorithm uses a dataset where the input samples

are divided into two classes with labels either 0 or 1.

The methodology includes finding a line (in two-

dimension space) or a plane (in multi- dimension space)

also called as a hyperplane which will most efficiently

separate the two classes [10].

K-Nearest Neighbours (kNN) - kNN algorithm can

be used for both classification as well as regression

problems. However, mostly it is used for classification

problems. ‘k’ in the kNN algorithm stands for the

number of nearest neighbours we wish to take vote

from. When predicting fora new data sample, this
algorithm will run a search on the training dataset to

find the closest k-samples. The predicted class of those

similar samples is then found out and the summary of

that is given out as the class label for this new data

sample [11].

Naive Bayes - Naive Bayes classifier is one of the

commonly used learning algorithms. The Naive Bayes

classifier is a probabilistic model based on the Bayes

rule. ‘Naïve’ refers to the assumption of conditional

independence among features [12].

Logistic Regression - LR classifier: a probabilistic
classifier, typically working on binary classification

problems [13].

Decision tree classifier - A Decision tree is a

machine learning classifier based on the tree structure.

Each node in the tree is associated with a particular

feature, and the edges from the node separate the data

based on the value of the feature. Each leaf node binds

to a class in the classifier model. The training data is key

point for the information gain (IG) of the feature

selection policy. A decision tree simply asks a question,

and based on the answer (Yes/No), it further split the tree

into subtrees [14].

Random forest classifier - A Random forest classifier

is an ensemble algorithm. Ensemble algorithm is the

combination of same or different kind of algorithms. Set

of trees make a forest. Here, Random forest is a set of

decision trees. The voting of each decision tree is taken

and the new output case is added to that class which has
highest vote [15].

XGBOOST - (Extreme Gradient Boosted Tree) is an

optimized implementation of gradient boosted trees first
introduced by [16]. It is mostly employed in

classification task where it is used as a classifier for

mapping input pattern into a specific class. It is a recent

supervised learning algorithm that implements a process

known as boosting to improve the performance of

gradient boosted trees. All the algorithms above were

implemented in this study by using Scikit-learn, which

is an open-source machine learning library in Python.

We trained and tested these classifiers using

the same set of 17 features described in Table 1.

The dataset was randomly divided into a 80%
training and 20% testing set. The said classifiers

were trained and tested.

IV. EVALUATION CRITERIA

We used the Scikit learn default parameter values

for all the algorithms. Table II shows the confusion

matrix in which TP (True Positive) is a case where

the predicted value matches the actual value. The

actual value was positive and the model predicted

a positive value.

FP (False Positive) is a case where the predicted
value was falsely predicted. The actual value was

negative but the model predicted a positive value.

TN (True Negative) is a case where the predicted

value matches the actual value. The actual value

was negative and the model predicted a negative

value.

FN (False negative) is when the predicted value

was falsely predicted. The actual value was

positive but the model predicted a negative value.

TABLE II. CONFUSION MATRIX

Predicted Positive

Class

Predicted Negative

Class

Actual

positive class

TP FP

Actual negative class

FN TN

There exists several metrics that utilize the

confusion matrix.

• Precision is the ratio of true positives to the
sum of a true positive and false positive, as shown

in (1).

Precision = TP/(TP + FP) (1)
• Recall is the ratio of correct true positive

classifier decisions to the all true positive examples

in the test set as shown in (2).

Recall = TP/(TP + FN) (2)

• F-measure (F1) represents the previous

metrics precision and recall combined as follows in

(3)

F1 = 2 ∗ (precision ∗ recall) / (precision + recall) (3)

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by :

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 10 Issue 06, June-2021

299 IJERTV10IS060072 www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

• Accuracy is the measure of the true

predictions divided by the total, shown in (4)

Accuracy = (TP + TN)/(TP +TN + FP+ FN) (4)
• Support is the number of actual occurrences

of the class in the specified dataset.

VI. EXPERIMENTAL RESULT AND

COMPARISON

All the classifiers were implemented using the same

performance metric for a fair comparison. Below is

the screenshot depicting the results of all the

algorithms with the different performance metrics

and the same is summarized in Table III.

Fig. 2. Classification reports for different algorithms

TABLE III. TEST PERFORMANCE OF THE ALGORITHMS

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/

Published by :

http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 10 Issue 06, June-2021

300 IJERTV10IS060072 www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

The result can be represented in graphical form for

better analysis and understanding.

Fig 4 shows that XGBoost Classifier returned the best

accuracy among all other the algorithms followed by

Random Forest, whereas Naïve Bayes obtained lowest

accuracy rate.

Fig. 4. Accuracy Chart Representation of Classification models

VI. CONCLUSION

The detection of malicious URLs is a binary

classification problem and various machine learning

classifier models are trained on the dataset created to

predict malicious websites. In this paper, we aimed to

find the highest performance model. Out of the seven

different classifiers that are evaluated XGBoost

Classifier model gave the best accuracy of 85.60%

followed by Random Forest Classifier.

VII. REFERENCES

[1] Immadisetti Naga Venkata Durga Naveen, Manamohana K,

Rohit Verma, “Detection of Malicious URLs using Machine

Learning Techniques”, International Journal of Innovative

Technology and Exploring Engineering (IJITEE) ISSN: 2278-

3075, Volume-8 Issue-4S2 March, 2019.

[2] A. Desai, J. Jatakia, R. Naik and N. Raul, "Malicious web

content detection using machine leaning," 2017 2nd IEEE

International Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT),

Bangalore, 2017.

[3] Hou, Y.T., Chang, Y., Chen, T., Laih, C.S., Chen, C.M.:

Malicious web content detection by machine learning. Expert

Systems with Applications, International Journal 2010.

[4] Mohammed Al-Janabi, Ed de Quincey, and Peter Andras. 2017.

Using supervised machine learning algorithms to detect

suspicious URLs in online social networks. In Proceedings of the

2017 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining 2017.

[5] Hung Le, Quang Pham, Doyen Sahoo, Steven C.H Ho, “URL

Net: Learning a URL Representation with Deep Learning for

Malicious URL Detection”, arXiv:1802.03162v2 Mar 2018.

[6] Sahingoz, Ozgur & Buber, Ebubekir & Demir, Onder & Diri,

Banu. (2019). Machine learning based phishing detection from

URLs. Expert Systems with Applications.

[7] James, Joby, L. Sandhya, and Ciza Thomas, ”Detection of

phishing URLs using machine learning techniques,” Control

Communication and Computing (ICCC), 2013 International

Conference on. IEEE, 2013.

[8] https://www.phishtank.com/developer_info.php
[9] https://www.unb.ca/cic/datasets/url-2016.html

[10] J. Brownlee, “Support Vector Machines for Machine Learning -

Machine Learning Mastery”, Machine Learning Mastery, 2017.

[Online] https://machinelearningmastery.com/support-

vectormachines-for-machine-learning/

[11] J. Brownlee, “Tutorial To Implement k- Nearest Neighbors in

Python From Scratch - Machine Learning Mastery”, Machine

Learning Mastery, 2017[Online]

https://machinelearningmastery.com/k-nearest- neighbors-for

machine-learning/

[12] https://machinelearningmastery.com/naive-bayes-for-machine-

learning/

[13] https://machinelearningmastery.com/naive-bayes-for-machine-

learning/

[14] https://www.javatpoint.com/machine- learning-

decision-tree-classification-algorithm

[15] “Random Forests Algorithm”,
Datasciencecentral.com, 2017[Online]

https://www.datasciencecentral.com/profiles/blogs/random-

forests-algorithm

[16] T. Chen and C. Guestrin. XGBOOST: A scalable tree boosting

system. In Proceedings of the 22Nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM,

2016, pp. 785-794.

http://www.ijert.org/
http://www.ijert.org/
http://www.ijert.org/
http://www.phishtank.com/developer_info.php
http://www.unb.ca/cic/datasets/url-2016.html
http://www.javatpoint.com/machine-
http://www.datasciencecentral.com/profiles/blogs/random-

	Gayaksha Kandolkar
	Soniya Usgaonkar

