
Comparative Analysis of Performance of

Controllers in Software Defined Networks using

Mininet

Maria George
Department of Computer Science

CHRIST(Deemed to be University),Hosur Road

Bangalore-29,Karnataka

Deepa V Jose
Department of Computer Science

CHRIST(Deemed to be University),Hosur Road

Bangalore-29,Karnataka

Abstract—This Software Defined Networks, the latest trend

in networking architecture aims to provide agile and flexible

networks. It is one of the most highlighted research areas in

networking. As the number of nodes increases in the network it

is difficult or sometime impossible to handle all the nodes which

are connected to same or different network in different

scenarios. This was one of the limitations in the traditional

networking. This research work aims to analyze and test the

capability of the controllers to come up with a solution to this

issue. The performance analysis is done based on scalability and

throughput on different number of nodes and varying topology

scenarios. From among the multiple existing controllers that

provide Software Defined Networks functionalities, two of the

best choices- the Beacon Controller and the Floodlight

Controller are used along with Mininet for performance

analysis using simulation.

Keywords—Beacon;Controller;FloodLight;Mininet;

Networking; OpenFlow;Software Defined Networks; Simulation

I. INTRODUCTION

Computer Networks is a complex collection of

heterogeneous network devices interconnected with each other

which enable data communication from anyone to anywhere

at any time. With the internet services, more devices such as

switches, routers, firewalls etc. also gets into this network. In

this scenario, it is often hectic for the network operators to

configure the network with various high-level policies and

respond to wide range of network requirements that may

occur.

Technology has made a lot of innovation the field of

networks. One among them is the Software Defined

Networking (SDN). The term SDN was originally defined to

represent the ideas and work around OpenFlow, the

communications protocol that gives access to the forwarding

plane of a network switch or router over the network.

Since the number of users and in turn the number of

devices has drastically increased along with the time, some

major problems emerged to occur like configuring each

system, decentralization, difficulty in reprogramming devices

etc. These issues are very critical and is a time consuming

process. This was one of the drawbacks of traditional

switching in which the reprogrammability of switches is not

applicable.

The control plane and data plane is coupled together in

switches which leads to the introduction of SDN. So due to

this reason SDN helps in centralizing the devices and

programmability became easy which reduced the cost and

increased time efficiency. Some of the popular SDN

controllers are

POX[1],Ryu[2],OpenDayLight[3],NOX[4],ONOS and so

forth. They would manage and configure the available

switches dynamically according to the necessity of the user.

These controllers would control all the operations for the

forwarding of the packets from the source to the destination

using interfaces like NorthBound API and SouthBound API.

NorthBound API such as REST, acts as a interface between

the Application Layer and Control Layer which is used for the

implementation of business policy over application layer. This

also uses service policy to state traffic behaviour. The

interface between the Control Layer and the Infrastructure

Layer is the Southbound API that has got a forwarding rule

after installation of the controller. Some of the southbound

API are Opflex [5], OpenFlow [6], NETCONF[7], POF [8],

ForCES [9] etc.

SDN has got an architecture which comprises of mainly

three layers. They are Application Layer,Control Layer and

Infrastructure Layer as mentioned in Fig 1. The Application

Layer can program explicitly in this layer to communicate

with the network. Further it also helps to get the abstract view

of the network by collecting the data from the control plane

for taking decisions. It consists of an abstract view of business

applications to program explicitly. Control Layer is the logical

entity where all the instructions are received from other

networking components. It has the controller who can control

and extract information about the network from the hardware

components and make communication possible. Infrastructure

layer consists of switches that is used to forward the packets

and has an inbuilt flow table to check the incoming and

outgoing packet from one host to another. A southbound API

connects the controller and the switch and the Northbound

API connects the controller and the applications to make

communication possible.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS070214
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 07, July-2019

516

www.ijert.org
www.ijert.org
www.ijert.org

Fig 1: SDN Architecture

 SDN is one of the widely used technology that has been

used for home[10] and by companies such as Google, CISCO,

Facebook etc. that decouples the control plane from the data

plane and are kept for different scenario on scalability by a

remote system. To analyze this scalability issue and its

performance certain experiments are taken to evaluate by

comparing the two controllers. This paper is organized as

follows. An outline of the related work is mentioned in

Section 2.Section 3 gives an overview of Floodlight controller

and beacon controller. Section 4 deals with the simulation test

on scalability with certain scenarios to analyze which one

among the controllers is more scalable. Section 5 elaborates

the obtained experimental results and gives evaluation of the

performance followed by conclusion and future scope.

II. RELATED WORK

Erel et al.[11] did a Mininet-based simulation that improved

the total flow throughput and scalability of the overall

network.The authors in their demonstration have used

OpenDaylight controller to simulate flow admission control

module , OpenFlow version 1.3. for communication between

separated Data and Control plane and Linux based operating

system to build Mininet 2.1.0 are deployed in the simulator

environment.

Sidki et al.[12] proposed an approach for the issue of fault

tolerance by using a slave controller architecture with local

mechanisms of virtual controller redundancy and

synchronization between the controllers. The authors claims

that this proposed approach enabled the network to cope with

control plane crashes in the controllers without changing the

OF protocol between controllers and switches.Tatang et

al.[13] presented SDN-GUARD, a novel system for

detecting and mitigating SDN rootkits. The basic idea is to

perform a dual-view comparison that detects malicious

network programming attempts. According to the authors ,the

proposed approach is more effective and flexible in terms of

application, and has less performance overhead.

Khorsandroo and Tosun[14]introduced a testbed and

investigated SDN controller live migration in a virtual data

center. It identifies container size, traffic volume, traffic

pattern and transport layer protocol throughput as

contributing factors of a successful SDN controller live

migration. It then clarifies how these factors may affect a live

migration process in terms of migration time and downtime

through conducting experiments on a state-of-the art cloud

data center testbed.

III. OVERVIEW OF FLOODLIGHT CONTROLLER

AND BEACON CONTROLLER

Floodlight[10] controller is a part of floodlight project

that helps the beginners to expertise in the field of SDN. It is a

Apache licensed, Java based OpenFlow controller and one of

the momentous contribution from Big Switch Network,

developed by an open community of developers and has got a

user-friendly GUI.This helps to easily understand and create

the connectivity link, number of switches, number of hosts

and to make the controller active or inactive. The architecture

of Floodlight is given in Figure 2.It can handle OpenFlow and

non OpenFlow networks and multiple hardware switches. An

http REST command is used to interact with the controller and

to retrieve information and services.

Fig:2 Architecture of FloodLight

The architecture of Floodlight consists of internal and

utility services which contains various modules. One such

module is Topology and path management where the

computation of the shortest path is done using Dijkstra's

algorithm The Link discovery module is responsible for

maintaining the link state information by using LLDP packet.

Routing module routes the packets from source to destination.

Device manager keep track of all the source storage and

network nodes. Forwarding is a module that forwards the

packets of applications and many more.

Beacon is a fast, cross-platform, modular, Java-based

OpenFlow controller that supports both event-based and

threaded operation. Beacon has been in development since

early 2010, and has been used in several research projects,

networking classes, and trial deployments. It currently powers

a 100-vswitch, 20-physical switch experimental data center

and has run for months without downtime. It’s also a Java

based cross platform and runs on many platforms from high

end multi-core Linux servers to Android phones. Beacon’s

goals are to improve developer productivity, provide the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS070214
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 07, July-2019

517

www.ijert.org
www.ijert.org
www.ijert.org

runtime ability to start and stop existing and new applications,

and to provide high performance. Developer’s productivity is

a definition of design and architectural choices with the aim of

enabling developers to expand their time spent productively

developing applications. Runtime modularity is an

implementation supporting starting and stopping both existing

and new applications from a running beacon instance.

Performance is designs considered for the read and write paths

of Beacon, resulting in a multithreaded implementation with

linear performance scaling. The beacon architecture is given

in Fig 3.

In beacon architecture, the device manager tracks all the

devices that are seen in the network topology which consists

of IP address, ethernet, switch and port last seen etc. It’s an

interface to search for new devices that will register with the

network and updates the information. Topology is used to find

the connection between the OpenFlow switches and also

retrieves the information of every links being connected.

Routing is a module that provides the shortest path between

two devices in the network. It depends on the topology and

device manager.

IV. SIMULATION ENVIRONMENT

For doing the performance evaluation of Floodlight and

Beacon controllers different scenarios are created. A custom

topology has been created with ten different scenarios by

incrementing the number of nodes. Mininet [11] is the

simulator being used and as controllers Floodlight and

Beacon. Mininet is installed in Ubuntu as in dual boot

system which connects remotely to the Floodlight controller

and Beacon controller one at a time. A python script is

written for the customized topology with specific number of

switches and increment in the number of hosts. These hosts

are connected to the switch and the switches are connected to

these controllers. The default switch of the Mininet has been

used with the OpenFlow protocol. To evaluate the

performance statistics a custom linear topology is

implemented over 5 switches with ten different scenarios

where these 5 switches are connected to each other.

Scenario A.20 hosts are connected to each switch(Total of

100 hosts + 5 switches+1 controller).

Scenario B.40 hosts are connected to each switch(Total of

200 hosts + 5 switches+1 controller).

Scenario C.60 hosts are connected to each switch(Total of

300 hosts + 5 switches+1 controller).

Scenario D.80 hosts are connected to each switch(Total of

400 hosts + 5 switches+1 controller).

Scenario E.100 hosts are connected to each switch(Total of

500 hosts + 5 switches+1 controller).

Scenario F.120 hosts are connected to each switch(Total of

600 hosts + 5 switches+1 controller).

Scenario G.140 hosts are connected to each switch(Total of

700 hosts + 5 switches+1 controller).

Scenario H.160 hosts are connected to each switch(Total of

800 hosts + 5 switches+1 controller).

Scenario I.180 hosts are connected to each switch(Total of

900 hosts + 5 switches+1 controller)

Scenario J.200 hosts are connected to each switch(Total of

1000 hosts + 5 switches+1 controller).

This same scenario from A to J is taken for the Beacon

controller with 5 switches and 1 controller. The performance

analysis has been taken for all these scenarios. Mininet has

got inbuilt features of NOX controller that supports all the

basic functionalities. In this paper, the comparative

performance analysis of both Beacon and Floodlight

controller is implemented. The default controller is not used

for this experiment. The version of the floodlight used is 1.2

and for the beacon is 1.0.4. Fig 4 and 5 shows the creation of

nodes. It is done by connecting a linear custom topology

which calculates the minimum and maximum throughput

while transmission of the data packets using TCP

transmission. In Fig.5 the different scenarios is taken with 6

switches in a linear custom topology where all the nodes are

connected to the switches. There is no direct connection

between each node.

Fig 4: Creation of nodes

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS070214
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 07, July-2019

518

www.ijert.org
www.ijert.org
www.ijert.org

The purpose for generating this scenario is to analyze the

scalability issue and to choose which controller is more

scalable depending on the situation and the performance

traffic is been evaluated using TCP flow. This flow

generation is simulated using Iperf for analyzing the

throughput. Iperf is the tool which is used to measure the

parameters like transfer rate, bandwidth, duration, packet

delivery ratio, packet drops etc. For this research work the

parameter used for comparing the controllers are throughput

and scalability. The communication of packets in each

scenario is between the first node and the last node of the

network topology. Iperf is the tool used to get the desired

result and this result is being plotted using the tool GNUplot.

Filtering of the data is done using the ‘grep’ and ‘awk’

commands for the required parameters.

V. PERFORMANCE ANALYSIS

The comparison of controllers was done for those different

test scenarios to analyze the throughput with respect to the

traffic network. The parameter that is chosen for comparison

is throughput. To obtain the accurate throughput, TCP flow is

used and is compared with the performance analysis of both

controllers. Fig 6 and 7 displays the resultant graph for the

given scenario. The switches are connected to each host and

no hosts are directly connected to each other. The plotting is

done using the tool GNUplot. According to the statistics of

floodlight controller the average throughput is in the range

2.6 GB to 6.3 GB. According to the graphs the throughput is

stable in the case of Floodlight controller which consists of

hundred nodes in the linear custom topology. The

communication is happening between these hosts virtually

from a client to server. In the Fig 8 and 9 same parameters are

taken with 300 number of nodes connected with five

switches. According to the graph throughput is between 3.5

to 5.2 GB. The simulation executes in 150 seconds. In

majority of the scenarios the throughput is stable even though

the number of hosts is increased. By considering the third

graph the scenario is with 500 numbers of hosts with the

fixed number of switches. It is in the range of 2.6 to 5.2 GBs

for the same duration of time. The stability is not much varied

compared to the above graphs. Generally throughput will

decrease when the number of nodes connected with all the

switches in the network. It happens because there will be a

heavy traffic when the packets flows for a long time.

Fig 6: Throughput of Floodlight Controller(Scenario 1)

In Fig 8 and 9 the performance analysis of Beacon controller

that was experimented with the same scenarios of the

Floodlight controller but with another controller. According

to the graphs it’s clearly visible the stability of the controller

with respect to the topology is less. In the first graph the

throughput ranges from 3.4Gbytes to 5.3 Gbytes.The

communication takes place with the TCP from the first node

to the last node that are connected to the network with these 5

switches.

Fig 7: Throughput of Floodlight Controller(Scenario 2)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS070214
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 07, July-2019

519

www.ijert.org
www.ijert.org
www.ijert.org

It was observed that second graph of fig.6 with 300 number

of host and 5 switches the packets dropped at the 50th second

at the rate of 3.5GB and at the same time the rate increased to

4.9 GB. There is a huge change in the transfer rate of data

which has less stability. Even in the first scenario the first

packet drop happens in the 40th second and also increased at

the same time. The variation is much higher in the case of

Beacon controller.

In the last graph of fig.6 the packet drops at the 15 second

where the time interval is decreasing with respect to the

increment of the hosts at the rate 3.3 GB. In only the 600 and

900 number of nodes the stability increases rest of the

scenarios the stability is very less according to this topology.

This happens due to the optimal usage of bandwidth when the

communication is connectionless and also within the same

network

Fig 8: Throughput of Beacon Controller(Scenario 1)

Fig 9:Throughput of Beacon Controller(Scenario 2)

CONCLUSION

AND

FUTURE

SCOPE

According to the simulation results, Floodlight controller is

more scalable than the Beacon controller for

the various

scenarios implemented. In the simulation environment the

scalability features of Floodlight and Beacon controller is

clearly visible. A comparative analysis of the various other

controllers available and optimal placement of the controllers

will be the future work.

REFERENCES

[1]

McCauley, M. (2012). POX,

http://www.noxrepo.org/

[2]

Nippon Telegraph and Telephone Corporation, RYU network
operating system, 2012, http://osrg.github.com/ryu

[3]

OpenDaylight, Linux Foundation Collaborative Project,

2013,http://www.opendaylight.org

[4]

Gude al, N. (2008). NOX: Towards an operating system networks.

ACM SIGCOMM Computer Communication Review,vol. 38, no. 3,

pp. 105–110.

[5]

Smith M. (2014). OpFlex

control protocol, Internet Engineering Task

Force, http://tools.ietf.org/html/draft-smith-opflex-00

[6]

McKeown , “OpenFlow: Enabling

innovation in campus networks,”
ACM SIGCOMM -

Computer Communication Review, vol. 38, no.

2, p. 69–74, 2008.

[7]

Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A. (2011).
Network configuration protocol (NETCONF). Internet Engineering

Task Forc,http://www.ietf.org/rfc/rfc6241.txt

[8]

Song, H. ,Protocol-oblivious forwarding: Unleash the power of SDN
through a future-

proof forwarding plane.Proceedings of ACM

SIGCOMM Workshop Hot Topics Software Defined Netw II. p.

127–132, 2013.

[9]

Doria et al, Forwarding and control element separation

(ForCES)

protocol specification. Internet Engineering Task Force. (2010),

http://www.ietf.org/r/fc/rfc5810.txt.

[10]

Project Floodlight, Floodlight.

(2012),http://floodlight.openflowhub.org/

[11]

Mu¨ge Erel, Emre Teoman, Yusuf O¨ zc¸evik, Go¨khan Sec¸inti, and
Berkk,Scalability Analysis and Flow Admission Control in Mininet-

based SDN Environment, IEEE Conference on Network Function

Virtualization and Software Defined Networks , 2015.

[12]

Liran Sidki , Yehuda Ben-Shimol , Akiva Sadovski.” Fault Tolerant

Mechanisms for SDN Controllers”, IEEE Conference on Network

Function Virtualization and Software Defined Networks (NFV-
SDN), 2016.

[13]

Muge Erel, Emre Teoman, Yusuf Ozc¸evik, Gokhan Sec¸inti, and
Berk Canberk,” Scalability Analysis and Flow Admission Control in

Mininet-based SDN Environment,” EEE NFV-SDN -

Third

International Workshop on Security in NFV-SDN,2017.

[14]

Sajad Khorsandroo,Ali Saman Tosun ,” An Experimental

Investigation of SDN Controller Live Migration in Virtual Data

Centers, “IEEE NFV-SDN 2017 -

Workshop on Federated Testbeds
for NFV/SDN/5G: Experiences and Feedbacks, 20

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS070214
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 07, July-2019

520

www.ijert.org
www.ijert.org
www.ijert.org

