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Abstract- The power system analysis and design is generally 

done by Using Load flow analysis. The main information 

attained from this study includes the magnitudes and phase 

angles of load bus voltages, reactive powers at generator 

buses, real and reactive power flow on transmission lines. This 

information is essential for the continuous monitoring of the 

current state of the system, Planning, operation, economic 

scheduling and exchange of power between utilities. 

        Different methods are used for load flow analysis. The 

objective of this study is to develop MATLAB programs for 

load flow study to calculate bus voltages, their phase angles, 

real power loss and reactive power loss in the power system, 

computational time, and number of iterations, accuracy and 

memory for IEEE 9, IEEE 14, IEEE 25 bus systems. The 

different methods of load flow study are analysed and 

compared with each other. Every method has advantages and 

disadvantages in different conditions. So, comparison of these 

methods can be useful to select the best method for a typical 

network. As a result, some suggestions are proposed to apply 

the methods. 

 

Keywords-Load flow, An Approximate method, Gauss Seidel 

method, Newton Raphson method, Fast decoupled method. 

 

I. INTRODUCTION 

Load flow studies [9] are used to ensure that electrical 

power transfer from generators to consumers through the 

grid system is stable, reliable and economic. Load flow 

analysis is fundamental to the study of power systems. This 

analysis is at the heart of contingency analysis and the 

implementation of real-time monitoring systems.  The 

study gives steady state solutions of the voltages at all the 

buses, for a particular load condition. Different steady state 

solutions can be obtained, for different operating 

conditions, to help in planning, design and operation of the 

power system. Thus the load flow problem consists of 

finding the power flows (real and reactive) and voltages of 

a network for given bus conditions. At each bus, there are 

four quantities of interest to be 

known for further analysis: the real and reactive power, the 

voltage magnitude and its phase angle.   

  
II. LOAD FLOW ANALYSIS 

The complex power (Si)  injected by the source into the i
th

 

bus of a power system is:  

                         (1) 

Where Pi is the real power and Qi is injected power into the 

i
th

 bus. 

                                                   

i=1, 2…..n                                                           (2) 

    i=1, 2…..n                                                            

(3) 

Where Vi is the voltage at the ith bus, Vk is the voltage at 

the kth bus, Yik is the mutual admittance 

between nodes i and k, θik is the angle of Yik, δk is the angle 

of  Vk and δi is angle of Vi.  

 Bus Classification: A bus is a node at which one or many 

lines, one or many loads and generators are connected. In a 

power system each node or bus is associated with 4 

quantities, such as magnitude of voltage, phage angle of 

voltage, active or true power and reactive power in load 

flow problem two out of these 4 quantities are specified 

and remaining 2 are required to be determined through the 

solution of equation. Depending on the quantities that have 

been specified, the buses are classified into 3 categories: 

 Load Buses: In these buses no generators are connected. 

At this type of bus, the net power Pi and Qi are specified 

whereas |Vi| and δi are unspecified. 

Voltage Controlled Buses: These are the buses where 

generators are connected. At this type of bus, the net power 

PGi and |Vi| are specified whereas Qi and δi are unspecified. 

    Slack or Swing Buses: Usually this bus is numbered as 

1.This bus is distinguished from other two types of buses 

by the fact that real and reactive powers at this bus are not 

specified. Instead, voltage magnitude and phase angle are 

specified.  

III. APPROXIMATE (APPROX.) LOAD FLOW 

In this method [7] following assumptions and 

approximations are made in the load flow equations:  
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 Line resistances being small are neglected i.e. PL, 

the active power loss of the system is zero. Thus 

 and . 

 (δi –δk) is small (˂ п/6) so that sin (δi- δk )  (δi- δk 

).This is justified from considerations of stability. 

 All buses other than the slack bus are PV buses 

i.e. voltage magnitudes at all the buses including 

the slack bus are specified. 

Equations then reduce to 

 

;                 (4) 

  i= 2, 3………n 

 

   

 i=2, 3……n                                                        (5)                                                                                              

Since |Vi|’s are specified Eq. (4) represents a set of linear 

algebraic equations in δi’s which are (n-1) in number as δi 

is specified at the slack bus. The n
th

 equation corresponding 

to slack bus (n=1) is redundant as the real power injected at 

this bus is now fully specified as  

 
Equation (2) can be solved explicitly for δ2, δ3… δn when 

substituted in Eq. (5) yields Qi’s, in the reactive power bus 

injections.  

IV. GAUSS SEIDEL (GS) LOAD FLOW 
The GS method [4] is an iterative algorithm for solving 

nonlinear algebraic equations. An initial solution vector is 

assumed, chosen from past experiences, statistical data or 

from practical considerations. At all subsequent iteration, 

the solution is updated till convergence is reached. 

Case (a): Systems with PQ buses only: 

Initially assume all buses to be PQ type buses, except the 

slack bus.  

 

              

This can be written as  

 

So that, 

 
                                                            

Whereas i = 2, 3,………..n                                  (6) 

Equation (6) is an implicit equation since the unknown 

variable, appears on both sides of the equation. Hence, it 

needs to be solved by an iterative technique. In Gauss 

Seidel method, the value of the updated voltages is used in 

the computation of subsequent voltages in the same 

iteration, thus speeding up convergence. Iterations are 

carried out till the magnitudes of all bus voltages do not 

change by more than the tolerance value.  

Algorithm for GS method 

Step1. Prepare data for the given system as required. 

Step2. Formulate the bus admittance matrix YBUS. This is 

generally done by the rule of inspection. 

Step3. Assume initial voltages for all buses =2, 3,… n. In 

practical power systems, the magnitude of the bus voltages 

is close to 1.0 p.u. Hence, the complex bus voltages at all 

(n-1) buses (except slack bus) are taken to be 1.0  .This 

is normally refersed as the flat start solution. 

Step4. Update the voltages. In any  iteration, from 

(6) the voltages are given by  

                                                                             (7) 

Here note that when computation is carried out for bus-i, 

updated values are already available for buses 2, 3….(i-1) 

in the current (r+1)
st
 iteration. Hence these values are used. 

For buses (i+1)…..n, values from previous, r
th

 iteration are 

used. 

Step5. Continue iterations till 

 

 
 i = 2, 3…n.                                                             (8) 

Where,  is the tolerance value. Generally, it is customary 

to use a value of 0.0001 p.u.  

Step6. Compute slack bus power after voltages have 

converged Using. 

 
[Assuming bus 1 is slack bus.] 

                        (9)    

Step7. Compute all line flows. 

 
 

 
 

Step8. The complex power loss in the line is given by Sik + 

Ski. The total loss in the system is calculated by summing 

the loss over all the lines. 

Case (b): Systems with PV buses also present: At PV 

buses, the magnitude of voltage and not the reactive power 

is specified. Hence it is needed to first make an estimate of 

Qi to be used in (7). From (0) we have  

 
Where, Im stands for the imaginary part. At any (r+1)

st
 

iteration, at the PV bus-i, 
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(10) 

The steps for i
th

 PV bus are as follows: 

1. Compute  Using (10). 

2. Calculate Vi Using (7) with Qi =  

3. Since  is specified at the PV bus, the magnitude of Vi 

obtained in step 2 has to be modified and set to the 

specified value  . Therefore, 

 

               (11) 

The voltage computation for PQ buses does not change. 

Case (c): Systems with PV buses with reactive power 

generation limits specified: In the previous algorithm if the 

Q limit at the voltage controlled bus is violated during any 

iteration, i.e. is computed Using (10) is either less 

than Qimin or greater than Qimax, it means that the voltage 

cannot be maintained at the specified value due to lack of 

reactive power support. This bus is then treated as a PQ bus 

in the (r+1)
th 

iteration and the voltage is calculated with the 

value of Qi set as follows: 

 

If Qi < Qi,min    Then Qi = Qi,min. 

If Qi > Qi,max    Then Qi = Qi,max. 

                                                                                     (12) 

If in the subsequent iteration, if Qi falls within the limits, 

then the bus can be switched back to PV status. 

Acceleration of convergence 

It is found that in GS method of load flow, the number of 

iterations increases with increase in the size of the system. 

The number of iterations required can be reduced if the 

correction in voltage at each bus is accelerated, by 

multiplying with a constant α, called the acceleration 

factor. In the (r+1)
th

 iteration we can let 

                                                         

                                                                                         (13) 

Where α is a real number. When α =1, the value of  

is the computed value. If 1 < α < 2, then the value 

computed is extrapolated. Generally α is taken between 1.2 

to 1.6, for GS load flow procedure.  

V. NEWTON RAPHSON (NR) LOAD FLOW 

Newton Raphson (NR) [7] method is used to solve a 

system of nonlinear algebraic equations of the form f(x) =0. 

Consider a set of n nonlinear algebraic equations given by 

 
                                                       (14) 

 

Let    be the initial guess of unknown 

variables and  be the respective 

corrections. Therefore, 

 

 

                                                                            

(15)

 

The above equation can be expanded Using Taylor’s series 

to give 

 

+Higher order terms = 0. 

Where i = 1, 2...... n                                            (16) 

 

Where,  are the partial 

derivatives of fi with respect to  

respectively, evaluated at  ). If the 

higher order terms are neglected, then (16) can be written 

in matrix form as 

 
       =   0                                                                       (17)  

 

In vector form (17) can be written as 

                      (18) 

 is known as the Jacobian matrix equation (18)   can be 

written as 

                           (19) 

Approximate values of corrections  can be obtained 

from equation (19).These being a set of linear algebraic 

equations can be solved efficiently by triangularisation and 

back substitution. Updated values of x are then    

 
Or in general, form the (r+1)

th
 iteration 

                    (20) 

Iterations are continued till equation (14) is satisfied to any 

desired accuracy i.e. 

 
Where i=1, 2…..n. 

NEWTON RAPHSON Algorithm 

First, assume that all buses are PQ buses. At any PQ bus 

the load flow solution must satisfy the following non-linear 

algebraic equations  

 
                                                                             (21a) 

  
                                                                             (21b) 

Where expressions for Pi and Qi are given in equations. 

For a trial set of variables the vector of residuals f 
O 

of equation (18) corresponds to 

 
                                                                           (22a)     
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                                                                             (22b) 

While the vector of corrections Δ  corresponds to 

Δ  Equation (18) for obtaining the approximate 

corrections vector can be written for the load flow case as 

=                          

  i
th

 bus        m
th

 bus       m
th

 bus 

                                                                              (23) 

 Whereas, 

,  ,  

It is to be observed that the jacobian elements 

corresponding to the i
th

 bus residuals and m
th

 bus 

corrections are 2*2 matrix enclosed in the box in equation 

(21a) where i and m are both PQ buses. Since at the slack 

bus P1 and Q1 are unspecified and |Vi| and δi are fixed. 

Consider now the presence of PV buses. If the i
th

 bus is a 

PV bus, Qi is unspecified so that there is no equation 

corresponding to equation (21b). Therefore the jacobian 

elements are 

 
                   i

th
 bus            m

th
 bus        m

th
 bus 

 

If the m
th

 bus is also a PV bus |Vm| becomes fixed so that 

Δ|Vm| = 0 and jacobian elements are 

 
                           i

th
 bus       m

th
 bus   m

th
 bus 

If the i
th

 bus is a PQ bus while m
th

 bus is a PV bus, then 

elements are  

 

 
                        i

th
 bus         m

th
 bus  m

th
 bus 

 

It is convenient for numerical solution to normalize the 

voltage corrections 

 
 

As a consequence of which, the corresponding jacobian 

elements become 

,  

VI.  FAST DECOUPLED LOAD FLOW 

If the coefficient matrices are constant, the need to update 

the Jacobian at every iteration is eliminated. This has 

resulted in development of Fast Decoupled Load Flow 

(FDLF) [7].Memory requirement of Newton-Raphson is 

reduced by this method. The property of weak coupling 

between P-δ and Q-V variables gave the necessary 

motivation in developing the fast decoupled load flow 

method. In which P-δ and Q-V problems are solved 

separately. The elements are to be neglected are 

submatrices [N] and [J] 

[ΔP] = [H][Δδ]                        (24) 

[ΔQ] = [L]                        (25) 

Here, certain assumptions, the entries of the [H] and [L] 

submatrices will become considerably simplified 

 

          for i  

 

                for i=j 

 

Matrices [H] and [L] are square matrices with dimension 

(nPQ + nPV) and nPQ respectively. Equations (24) and (25) 

can now be written as 

[ΔP] = [|Vi||Vj|Bʹij][Δδ]                        (26) 

 

[ΔQ]= [|Vi||Vj|Bʺij]                         (27) 

Where Bʹij, Bʺij are elements of [-B] matrix. 

Fast decoupled load flow algorithm 

Step1. Omitting from [Bʹ] the representation of those 

network elements that predominantly affect reactive power 

flows.  

Step2. Neglecting from [Bʺ] the angle shifting effects of 

phase shifters 

Step3.  Dividing each of the equation (26) and (27) by |Vi| 

and setting |Vj| = 1 p.u in the equations. 

Step4.  Ignoring series resistance in calculating the 

elements of [Bʹ] which then becomes the dc approximation 

power flow matrix. 

With above modifications, the resultant simplified FDLF 

equations become 

 

                      (28) 

 

                   (29) 

 

In Equation (28) and (29) both [Bʹ] and [Bʺ] are real, 

sparse and have the structures of [H] and [L] respectively. 

Since they haves contained only admittances. Equations 

(28) and (29) are solved alternatively always employing 

the most recent voltage value. Single iteration implies one 

solution for [Δδ] to update [δ] and then one solution for 

[Δ|V|] to update [|V|] to be called 1-δ and 1-V iteration. 

Separate convergence tests are applied for the real and 

reactive power mismatches as follows:     max [ΔP] ≤ εP ; 

max [ΔQ] ≤ εQ. 

Where εP  and εQ  are the tolerances. 

VII. RESULTS AND DISCUSSION 

Above discussed load flow methods have been 

implemented by using MATLAB on sample test systems of 

IEEE 9-Bus System, 14- Bus System and 25- Bus power 

System. Performance of these methods have been studied 

in terms of number of iterations taken for a given accuracy, 

computational time, convergence obtained, requirement of 

computer storage memory etc. As discussed in the 

following sections.   
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Computational Time (in seconds) 

From Fig. 1 it is clear that the time per iteration in An 

Approximate, Gauss Seidel and Newton Raphson methods 

increases almost directly as the number of buses of the 

system while the elapsed time of the Fast Decoupled is less 

than the Newton Raphson method. But as accuracy increase 

from 0.01 to 0.000001 computational time of Newton  

Raphson method is quite less than other methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Comparison of the Computational time obtained from the 3-Test Bus Systems

 

 

Number of Iteration 

 

It is clear from Fig.

 

6 the Gauss Seidel method requires 

larger number of iterations to converge to given voltage 

mismatch tolerance, compare with other methods 

Approximate method is non-iterative and Fast decoupled 

methods takes more number of iterations to converge.

 

 

 

Fig. 2. 

 

Comparison of number of iterations obtained from the 3-Test Bus Systems

 
Memory (in Bytes)It is clear from Fig.

 

14

 

that Newton-

Raphson requires more memory than

 

Gauss Seidel, 

Approximate method, and Fast decoupled method.

 

APPROX. GS NR FDLF

9 BUS 0.019591 0.036654 0.071281 0.031335

14 BUS 0.028978 0.042215 0.06869 0.068463

25 BUS 0.041169 0.050388 0.095743 0.075743

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
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Fig. 3.  Comparison of the memory requirement obtained from the 3-Test Bus Systems 

Convergence Characteristics 

The convergence characteristic are described by plotting 

the bar graphs of change in voltage magnitudes during 

successive iterations as a function of required tolerances as 

shown in Figs. 10, 11 and 12. 

 

It is clear from below bar graphs that as accuracy increases 

absolute voltage mismatch of Newton Raphson method 

decreases i.e. this method is best to achieve the 

convergence.  

 

  

Fig. 4.  Comparison of the voltage mismatch obtained from the 3-Test Bus Systems 

Real Power Losses (in MW) 

As we seen from bar graphs, it is clear that real power loss 

obtained from Newton Raphson method are constant i.e. 

does not vary as accuracy increases, where as in other 

methods losses increases as accuracy level increase.

. 

2214

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041861

International Journal of Engineering Research & Technology (IJERT)



 

Fig. 5. Comparison of Real Power Losses as a function of accuracy obtained from 9 Bus System 

 
 

Fig. 6. Comparison of Real Power Losses as a function of accuracy obtained from 14 Bus System 

 

Fig. 7. Comparison of Real Power Losses as a function of accuracy obtained from 25 Bus System 

Reactive Power Losses (MVAR) 

As we seen from bar graphs, it is clear that reactive power 

loss obtained from Newton Raphson method are constant, 

where as in other methods losses increases as accuracy 

level increase. 
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Fig.  8.  Comparison of Reactive Power Losses as a function of accuracy obtained from 9 Bus System  

 

 
 

Fig. 9. Comparison of Reactive Power Losses as a function of accuracy obtained from 14 Bus System 

 

 
 

Fig. 10.  Comparison of Reactive Power Losses as a function of accuracy obtained from 25 Bus System 

VIII. CONCLUSION 

From above results it indicates that Newton Raphson 

method is more reliable because it converges faster and it 

takes least number of iterations when compared with the 

other methods, In general the Newton Raphson algorithm 

takes the least number of iteration to converge despite its 

longer computing time but as accuracy increases computing 

time of Newton Raphson is quite less than other methods. 

The number of iteration for the Gauss-Seidel increases 

directly as the number of the buses of the network, whereas 

the number of iterations for the Newton Raphson method 

remains practically constant, independent of the system 

size and approximate method is a non-iterative method. It 

2216

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041861

International Journal of Engineering Research & Technology (IJERT)



is based on approximations However, since the 

convergence characteristics of the Fast decouple method is 

geometric compare to the quadratic convergence of the 

Newton Raphson, thus it has more number of iteration. 

Therefore because of high accuracies obtained in only a 

few iterations, the Newton Raphson method is important 

for use and more reliable than any of the methods. 
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IEEE 14-BUS SYSTEM INPUT DATA 
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IEEE 25-BUS SYSTEM INPUT DATA 
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