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Abstract
Caching is used in computer applications to speed up Index Terms —MAMSs, D-Cache, index-free
the performance data retrieval. It is widely used in search, metric cache, similarity search

INTRODUCTION

Efficient data retrieval plays an important role in

database management systems where queries are
very frequent for reducing 1/0O cost. However, the

situation is dramatically different in modern complex
L . modern database management systems. In order to

databases consisting of snapshots of nature (i.e.,
. . . . . reduce /0O operations and thereby eliminate

images, sounds, or other signals), like multimedia
. . . . efficiency issues, caching is used in databases. Both

databases, bioinformatics databases, time series, etc.
o . caching and indexing strategies [1], [2] are widely

Here, people often adopt the similarity search within

) . used along with storage layouts [3]. These are
the content-based retrieval paradigm; (MAMs) are _ ] o
) o L . considered while designing database management
suitable in situations where the similarity measure is i
o . . systems. RDBMS has become a stable alternative for
a metric distance. In particular, metric access ) o ]
o ) storing and retrieving valuable business data
methods (MAMs), used for similarity search in o
. permanently. In such systems, caching is used to
complex unstructured data, have been designed to

L . . improve query performance. They also realize query
minimize rather the number of distance computations _ _ ] ] o
. . . . performance with various indexing strategies in
than 1/O cost while making indexing or

. place. End users need speed in query processing.
querying.Recently Skopal, Lokoc, and Hustos

. . Delay in processing causes more user wait time that
proposed D-cache with MAMs such as Pivot tables,

. . is not expected by end users. Users are too good to
M-tree and D-file to improve performance of query

. . . see the results as faster as possible. In this context
processing. In this paper we propose a combined

. . disk caching is highly efficient where queries are
approach that uses metric cache in front of D-cache

. very frequent with respect to user sessions. Disc
enhanced MAMs for boosting the performance of

L . . caching has been used for reducing 1/0 cost incurred
similarity search further. We built a prototype in

while making queries on relational databases.
Java platform to demonstrate the proof of concept.

. . However, in the real world there might be scenarios
The empirical results reveal that the hybrid approach

iolds bett ; to use databases containing multimedia content like

yields better performance. ) ) _ )
sounds, images, and other information. For instance
time series databases, bioinformatics databases and

multimedia databases have already overcome the
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problem of disk I/0 and they focused on distance
computations. In such databases similarity search is
often used and their needs improvement in processing
such queries. Indexing techniques have been used
traditionally in order to speed up query processing.
The strategies used for indexing are general or
domain specific. Whatever be the nature of indexing,
it is basically to improve the query processing.
Distributed indexing strategies [4] are also developed
for speeding up similarity queries made for
distributed databases. In is a fact that the data
retrieval performance is affected more by CPU cost
than 1/O cost. Therefore in case of similarity search
queries it is important to reduce CPU cost rather than
1/0 cost [5], [6]. In this context, it is minor issue with
I/0 cost incurred while performing similarity
searches. Here the computation cost is considered to
be the number of computations need for answering a
specific query. Metric Access Methods (MAMs) are
suitable candidates for accessing data based on
similarity searches that needs to use distance metrics.
The properties of metrics can help to have database
organized in memory in order to process queries
faster [7], [3], [1], [2]. Later on indexing is also used
to answer similarity queries faster. The queries might
be k-nearest neighbors (KNN) or other queries like
content based image retrieval queries which are
modeled after Query by Example (QBE) concept.
MAMs are extremely useful in processing such
queries as they eliminate unnecessary equivalence
classes from the process of search. Reduced
computation of query is achieved with MAMs as
explored in [8], [9], [5], and [6].

In [10] D-Cache is used along with enhanced MAMs
such as D-file, M-tree, and Pivot table in order to

improve query processing with respect to similarity

searches. In this paper we enhance the system further
by using metric cache along with D-cache. Our
contributions are as given below.

1. We propose metric cache that is placed in
front of D-cache for improving the similarity
search on metric data assets.

2. We propose an architecture which acts as a
framework for accommodating D-cache and
metric cache for processing similarity
searches.

3. We built a prototype application in Java
platform that demonstrates the proof of
concept. The application makes use of huge
amount of unstructured data to test the
efficiency of the proposed system.

The remainder of the paper is structured as follows.
Section Il reviews literature pertaining to caching, D-
cache, MAMs and other relevant topics. Section 11
provides information related to the proposed system.
Section 1V presents experimental results while

section V concludes the paper.

RELATED WORKS

MAMSs have been around for some time. However,
distance cache for general purpose MAMs is the first
time experimented in [10]. In this paper we improve
them further with combination of metric cache. There
has been caching concept in computer applications
which buffers the frequently used data so as to avoid
retrieving from hard disk or databases. This will
decrease 1/O cost dramatically. Caching in the
context of databases with various kinds of data is
explored in [11] and [12]. Cached distances are used
for range queries where M-tree is used as underlying
data structure as proposed by Kailing et al. [13].
When the distances are computed from route object

to the query, they are cached for future retrievals.
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This will improve performance of such queries. As
the performance gain is more the memory cost of this
is tolerable [13]. However, caching of unnecessary
distance measures is not done in order to optimize
performance further. Batch indexing and querying
was also used. Bulk loading f data is part of many
applications where good performance is required. To
deal with such data two algorithms were proposed in
[14]. They made use of index structures for boosting
search performance such as Slim-tree and R-tree. The
drawback is that the performance is degraded once
new objects are inserted into the tree. To overcome
this drawback M-tree was proposed which can
support parallel insertion of objects. In [15] another
approach was proposed to improve efficiency of
MAMSs. Instead of issuing multiple queries a batch of
queries can be used in order to reduce computational
andl/O cost. In [10] the D-cache technique proposed
reduced 1/O cost and also CPU cost through MAMSs
which have been enhanced to work with D-cache. K-
nearest neighbor graph concept is used in<[16]

forperforming KNN queries.

Query result caching plays an important role in
speeding up similarity searches. This idea was
explored in [17] and [18]. History of similarity
queries and answers can be stored in metric cache for
performance improvement. In [10] D-cache is used
for performanceimprovement of similarity searches.
They also hint about the usage of high level metric
class in front of D-cache with enhanced MAMSs. In
this paper we implemented the combined cache
where metric cache is in front of D-cache to enhance

the query processing speed.

PROPOSED FRAMEWORK
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Before presenting our new framework for processing
similarity searches we would like to introduce D-
cache, enhanced MAMs briefly. However, more
information can be found in [10]. D-cache is a data
structure which resides in main memory which is
meant for storing the distances computed by MAMs.
The D-cache stores distance computations in the form
of triplets as shown below where the first two are
unique identifiers for objects while the third one is

the distance between the objects.
lid(0;),id(0;),6(0;, 0)],

The content of D-cache is made up of many such
triplets. However, it can also be visualized as a sparse
matrix as given below where rows and columns
represent objects and the cells and their values

indicate the distances between objects.
o 9 g

01 ( b12  O13
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The operations performed on D-cache include
distance retrieval and distance insertion. The
enhanced MAMs used by D-cache include D-file
which is best used for range query and kNN query,
pivot tables and M-tree. More details and algorithms
about the usage of D-cache with enhanced MAMSs
can be found in [10].The proposed framework
combines both Metric Cache and D-Cache in order to
improve performance of range queries and kNN
queries. The architectural overview of the proposed

approach is as shown in figure 1.
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object 260180 Computed distance: 776.0  Actual distance: 1.7696511 3869686386
object 250883 Computed distance: 788.0  Actual distance: 1.6073040827895297
object 217592 Computed distance: 7920 Actual distance: 1.56500964531851478
object 150415 Computed distance: 796.0  Actual distance: 1.5416327023011 0639
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KnNretrieve search Result
0
object 30 Computed distance: 0.0 Actual distance: 0.01
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Fig. 1 —Proposed architecture that combines D-Cache
and metric cache

As can be seen in figure 1, it is evident that two kinds
of caches are in place for better performance. The
metric cache is basically for storing history of
similarity queries. The details stored in metric cache
include descriptors and ids of database objects that
have been returned by queries. When a new queryis
encountered, the metric cache returns result if exact
value is found in metric cache. The metric cache
might give a single value or multiple values based on
the  queryrequirements.  Sometimes it may
giveapproximate answer by combining a near correct
value with other values. In such cases large retrieval
error is likely to occur and the metric cache forwards
that query to the retrieval system while updating
itself. The D-cache on the other hand stores database
objects, and their distances. They play a role to work

with enhanced MAMs.

PROTOTYPE IMPLEMENTATION

We built a prototype application in Java platform
with graphical user interface. The environment used
is a PC with 4GB RAM, core 2 dual processor

running Window

shown in figure 2.

Combining Metric-Cache And D-Cache enhanced MAMs For Maxmizing Efficiency of Similarity Search
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Fig. 5 —Result of KNN and range queries that use D-

cache and metric cache
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As shown in figure 2, horizontal axis represents D- v
Cache size while the vertical axis represents
construction real time.The results reveal that the
proposed shows higher performance than the existing

approach.

Database Size

Fig. 4 - NN queries on growing database

As shown in the above figure horizontal axis
represents database size while vertical axis represents
query real time.With respect to NN queries against
databases that grow over time, the proposedapproach
outperforms existing approaches.
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Fig. 5 - Negative results on the CoPhIR database

As shown in the above figure horizontal axis
represents number of dynamic pivots while vertical
axis represents query real time. The results of
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proposed system are negative in this case due to the
nature of database.
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Fig. 6 - Impact of the growing number of dynamic
pivots

As shown in the above figure horizontal axis
represents K while vertical axis represents query real
time.The results reveal that the proposed system
outperforms existing approaches.

CONCLUSION AND FUTURE WORK

In this paper we studied the similarity search and its
performance in the presence of D-Cache with
enhanced MAMs such Pivot table, M-tree and D-file
proposed by Skopal, Lokoc, and Hustos[10].. We
have envisaged that the performance of similarity
search can be improved further by using a metric
cache in front of D-cache. By using the reusable
content in both metric cache and D-cache, the
proposed system is capable of improving the
processing speed of similarity search. This is
achieved by using metric cache that works in tandem
with D-cache for higher performance. Our prototype
application  demonstrates the  usability and
performance of the hybrid approach we proposed in
this paper. Empirical results are encouraging and it
can be used in real world applications where
similarity searches are made for metric data. One
important future direction we have is to optimize the
combined approach further by improving underlying
MAMs. Cloud based solution is another future

direction we have.
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