

Combine Tag and Value Similarity for Data Extraction and Alignment

D.Phani Sri Lakshmi D.N.S.B.Kavitha

 Student Assistant professor

 Dept. of CSE Dept. of CSE

 SVECW SVECW

 Bhimavaram, India Bhimavaram, India

Abstract

Based on a user’s query Web databases create

query result pages. For many applications, such as

data integration, which needs to cooperate with

multiple web databases there, is a need to

automatically extract the data from these query

result pages .So we present a data extraction and

alignment method called CTVS which combines

both tag and value similarity. The data values from

the same attribute are put into the similar column in

which CTVS automatically extract data from query

result pages by first identifying and segmenting the

query result records (QRRs) in query result pages

and then align the segmented QRRs into a table.

Specially, we advise new techniques to switch the

case when the QRRs are not secure, which may be

due to the presence of main information, such as a

commentary, proposal or advert, and for handling

any nested structure that may exist in the QRRs. By

CTVS, we create novel record alignment

algorithms that align the attributes in a record, in

pair wise first and then holistically. Experimental l

results show that CTVS achieves high precision

and outperforms alive state-of-the-art data

extraction methods.

 Keywords — Automatic wrapper generation,

data extraction, data record alignment, information

integration, nested structure processing.

1. INTRODUCTION

ONLINE database, called web database, include

pages in the deep web are dynamically generate in

response to a user query submitted through the

query interface of a web database, which Compared

with webpages in the surface web, that can be

accessed by a unique URL. Upon receiving a user’s

query, a web database returns the related data,

either structured or semi structured, encoded in

HTML pages. Many web applications need the data

from multiple web databases, such as meta

querying, data integration and comparison

shopping. For these applications to further use the

data embedded in HTML pages, automatic data

extraction is necessary. Only when the data are

extracted and organized in a structured way such as

tables, they can be compared and aggregated.

Hence, accurate data extraction is very important

for these applications to perform correctly.

This paper focuses on the problem of automatically

extract data records that are encoded in the query

result pages generate by web databases. The goal of

web database data extraction is to eliminate any

unrelated information from the query result page,

extract the query result records (referred to as

QRRs in this paper) from the page, and align the

extracted QRRs into a table such that the data value

belong to the same characteristic are placed into the

same table column.

2612

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80710

 The following two-step methods, called

combine Tag and Value Similarity (CTVS), to

extract the QRRs from a query result page p.

 Record extraction: Identifies the QRRs in

p and involve two substeps: data region

identification and the actual segmentation.

 Record alignment: Aligns the data values

of the QRRs in p into a table so that values for the

same attribute are aligned into the same table

column.

CTVS precisely extracts and aligns the QRRs in

query result pages if there are at least two records

in the page. Compared with existing data extraction

methods, CTVS improve data pulling out precision

in three ways.

 New methods to imagine that the QRRs

are existing contiguously in only one data region in

a page. However, it is not best guess be true for

many web databases where maintain in order

separate the QRRs. We scan 10 websites to which

the QRRs in the query result pages are non-

contiguous, but indicate that noncontiguous data

regions are rather familiar. Furthermore, 10 out 4 of

websites have noncontiguous QRRS with the same

parent in the page HTML tag tree. This problem is

concentrate on two methods according to the

outline of the QRRs and the major in series in the

result HTML tag trees (i.e., DOM trees). a. An off-

the-peg data region recognition method is likely to

recognize the noncontiguous QRRs that have the

similar parents according to their tag similarity. b.

A combine method is proposed to join different

data regions that contain the QRRs (with or without

the same parent) into a single.

 In this we proposed to align the data

values in the recognized QRRs, first pairwise then

holistically. Together tag structure similarity and

data value comparison are used in the pairwise

alignment procedure i.e, first to join tag structure

and data value similarity to achieve the alignment.

 A new nested-structure dealing out

algorithm is future to handle any nested structure in

the QRRs after the holistic alignment i.e, CTVS

uses both tag and data value similarity in sequence

to get better nested structure processing exactness.

2. QRR EXTRACTIONS

 Fig.1. QRR extraction framework.

Fig.1 shows the framework for QRR extraction. In

this aquery result page, the Tag Tree structure

module first construct a tag tree for the page rooted

in the <HTML>tag. Each node corresponds to a tag

in the HTML page as well as its children are tags

covered inside it. In every inner node n of the tag

tree has a tag string tsn, which include the tags of n

and all tags of n’s descendants, and a tag path tpn,

which include the tags from the root to n.

2.1 Data Region Identification

The Data Region Identification modules identify all

likely data region, which usually contain

dynamically generates data, top down starting from

the root node. We first suppose that some child

subtrees of the same parent node form alike data

records, which assemble a data region. Thus, we

propose a new process applied to more web

databases. The data region identification algorithm

is apply to a node n and recursively to its children

ni, i = 1 . . .m as follows:

a) Compute the similarity computation

method in the data region identification algorithm is

recursively apply to the children of ni only if it does

not have any alike siblings. Several data regions

may be recognized in this.

b) Section the data region into data records

using the record segmentation algorithm.

c) Suppose that the tag tree has n internal

nodes and a node has a maximum of m children and

a maximum tag string length of l. The time

complexity of the data region identification

algorithm is O(
nm2l2

).

2.2 Record Segmentation

The Record Segmentation module then segments

the identified data regions into data records

according to the tag patterns in data regions. If only

one tandem replicate is create in a data region, we

assume that each frequent instance in the tandem

replicate corresponds to a record. If many tandem

replicate are found in a data region, we need to

select one to indicate the record. The two heuristics

are used for the tandem replicate collection

a) If there is supplementary information,

which corresponds to nodes between record

instances, within a data region, the tandem replicate

that stops at the supplementary information is the

correct tandem replicate since information usually

is not inserted into the middle of a record.

b) The optical gap between two records in a

data region is usually larger than any optical gap

within a record. Hence, the tandem replicate that

satisfies this restriction is selected.

2613

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80710

c) If the earlier two heuristics cannot be

used, we select the tandem replicate that start the

data region.

2.3 Data Region Merge

Given the segmented data records, the Data Region

Merge module merges the data regions contain

similar records. If any two data regions, we treat

them as similar if the segmented records they

contain are similar. The similarity between any two

records from two data regions is measured by the

resemblance of their tag strings. The resemblance

between two data regions is calculated as the

average record similarity. Two data regions can be

merged into a merged data region if the records in

the two data regions have an average similarity

greater or equal to 0.6. Given, that two data regions

d1 and d2 with n1 and n2 records and most record

tag string length of l1 and l2, Respectively, the time

complexity of the data region merges algorithm is

O(n1n2l1l2).

2.4 Query Result Section Identification

The Query Result Section Identification module

select one of the merged data regions as the one

that contains the QRRs, there may still be multiple

data regions in a query result page. Three heuristics

are used to recognize this data region, called the

query result section.

a) The query result section generally

occupies a large space in the query result page. For

each data region d, an area weight, which is

calculated as d’s area divided by the largest area of

all identified data regions, is assigned for d.

b) The query result section is generally

located at the center of the query result page. For

each data region d, a center distance is considered

among its center and the center of the page, and a

center distance weight, which is calculated as the

smallest center distance among all identified

regions divided by d’s center distance, is assigned

for d. If a merged data region d contains multiple

regions d1,. ,dn to be found in dissimilar

parts of the page, then first find the region di that

has the largest space in the query result page in the

middle of d1,. . . , dn and assume that the center

distance weight of di is the center distance weight

of d.

c) Each QRR generally contains more raw

data strings than the raw data strings in other

sections. For each data region d, a value weight,

which is calculate as the average number of raw

data strings in the records of d divided by the

largest average number of data values in all

recognized regions, is assign for d. All the above

three weights are summed and the data region that

has the biggest summed weight is selected as the

query result section. Records in this data region are

supposed to be QRRs.

A restriction of this approach is that if a query

result page has more than one data region that

contains query result records and the records in the

different data regions, then we will choose only one

of the data regions and discard the others.

3. QRR ALIGNMENT

QRR alignment is performing by novel three-step

data alignment methods that combine tag and value

similarity.

3.1 Pairwise QRR Alignment

The pairwise QRR alignment aligns the data values

in a pair of QRRs to present the proof for how the

data values must be aligned among all QRRs. A

pairwise alignment of r1 and r2 is composed of a

set of data value alignments, each of which

assumes that the corresponding data values from r1

and r2 belong to the same attribute.

Every QRR includes two kinds of information: the

text string for the ith value and the tag path for the

ith value. Throughout the pairwise alignment, we

involve that the data value alignments must suit the

following three constraints:

a) Same record path constraint: The record

path of a data value f comprises the tag from the

root of the record to the node that contains f in the

tag tree of the query result page. Each pair of

corresponding values have the similar tag path.

Hence, if f1i has an altered tag path with f2j, then

sij is assigned a small negative value to prevent the

pair of values from being aligned.

b) Unique constraint: Each data value can be

aligned for the most part one data value from the

other QRR.

c) No cross alignment constraint: If f1i is

matched to f2j, then there should be no data value

alignment between f1k and f2l such that k < i and l

> j or k >i and l < j.

Based on these constraints, a dynamic

programming algorithm aligns the two records. The

similarity is 0 if one of the QRRs is empty or else,

if f1i and f2j have the same tag path, then just one

of the following three data value alignments is

possible.

1. The first (i - 1) values of r1 can be aligned with

the first (j - 1) values of r2 plus the data value

alignment between f1i and f2j, which has the

summing similarity score L(i-1)(j-1) + sij.

2614

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80710

2. f1i can be ignored and the first (i - 1) values of r1

can be aligned with the first j values of r2, which

has the summing similarity score L(i-1)j.

3. f2j can be ignored and the first i values of r1 can

be aligned with the first j - 1 values of r2, which

has the summing similarity score Li(j-1).

The alignment with the largest summing similarity

score among these three alternatives is chosen. That

is

Lij = max(L(i-1)(j-1) + sij, L(i-1)j, Li(j-1)

(1)

With this dynamic programming method, the time

complexity of the pairwise alignment algorithm is

O(l1l2) where l1 and l2 are the number of data

values in the two QRRs. Hence, given a data region

with n records, the time complexity of the pairwise

alignment algorithm is O(n2l2)in which l is the

largest number of data values in a record.

3.1.1 Data Value Similarity Calculation:

Given two data values f1 and f2 from dissimilar

QRRs, we need their similarity, s12, to be a real

value in [0, 1]. The data value similarity is

calculated according to the data type tree shown in

Fig. 2.

Fig. 2. Data type tree

Each child node is a subset of its parent node. For

example, the “string” type includes several children

data types, which are frequent on the web such as

“datetime,” “float,” and “price.” The highest depth

of the data type tree is 4. We will transfer to a

nonstring data type as a specific data type.

Given two data values f1 and f2, we first moderator

data types and then fit them as extremely as

possible into the nodes n1 and n2 of the data type

tree. For example, given a string “567,” we will put

it in node “integer.” The similarity s12 between

two data values f1 and f2 with data type nodes n1

and n2 is defined as nonstring data type as a

specific data type.

 0:5 n1 = p(n2) & n1 ≠ String

OR

s12 = { n2 = p(n1) & n2 ≠ String

 1 n1 = n2 ≠ String

 cosine similarity n1 = n2 = String

 0 otherwise,

where p(ni) refers to the parent node of ni in the

data type tree. The similarity between data values

f1 and f2 is

. 0.5, if they belong to different specific data types

that have a common parent.

. 1, if they belong to the same specific data type.

. String cosine similarity of f1 and f2, if both f1 and

f2 belong to the string data type.

. 0 otherwise, which occurs when one of f1 and f2

belongs to the string data type and the other one

belongs to a specific data type, or f1 and f2 belong

to different specific data types without any direct

parent.

As Table 1 shows, data values with the same data

type usually have larger similarity.

 TABLE 1

 Example of Data Value Similarity

3.2 Holistic Alignment

Holistic alignment align the data values in all the

QRRs and this step of holistic alignment performs

the alignment worldwide with all QRRs to create a

table in which all data values of the same attribute

are aligned in the same table column. Thus, holistic

alignment problem is equal to that of finding

connected components in an undirected graph.

Each connected component of the graph represents

a table column inside which the linked data values

from different records are aligned vertically. We

need to consider two application constraints that

are specific to our holistic alignment problem.

a) Vertices from the same record are not

allowed to be included in the same connected

component as they are considered to come from

two different attributes of the record. If two

vertices from the same record breach this

constraint, a path must exist between the two,

which we call a breach path.

b) Connected components are not allowed to

intersect each other. If C1 and C2 are two

connected components, then vertices in C1 should

be either all on the left side of C2 or all on the right

side of C2, and vice versa.

So, we design a 3-step for the holistic

alignment problem. First, we traverse the graph

once by a depth-first search to discover the

preliminary connected components in the graph

(the Traverse and Visit functions). Throughout the

traversal, a color array is use to indicate whether

every vertex has been visited or not (WHITE for

2615

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80710

unvisited, GRAY for under processing, and

BLACK for processing finished). In the Visit

function, when a new vertex is encounter, we add it

into the current connected component. Second, at

the same time we also mark those components

containing breach paths. If a connected component

is start containing breach paths, the

BreakBreachPath function is called to break it by

remove the edges with the smallest sum of pairwise

similarity scores. Given two recognized nodes vi

and vj from the same record, the problem of

breaking a breach path is accurately the max-

flow/min-cut problem in which vi and vj are the

source and sink nodes, respectively.

Third, we traverse the components contain breach

paths to eliminate some edges so as to break the

breach paths (i.e., enforce the first constraint).

Finally, we use a divide-and-conquer method to

recognize and split up the intersecting components

to inflict the second constraint.

3.3 Nested Structure Processing

This identifies the nested structures that exist in the

QRRs. If a QRR contains a nested structure such

that an attribute has multiple values, then several of

the values might not be aligned to any other values.

Hence nested structure giving out identifies the

data values of a QRR that are generated by nested

structures. Relying only on HTML tags to

recognize nested structures, as is done by

approximately all existing methods, may

incorrectly recognize a plain structure as a nested

one. To overcome this problem, CTVS uses both

the HTML tags and the data values to identify the

nested structures.

Given an aligned table, a nested column comprises

at least two ordered sets signifying the data values

that are generated by repetitive parts in the

template. A nested column set C is comprised of a

set of nested columns. For example, in the nested

column set {{<1,2>,<3, 4>,<5, 6>},{<7>, <8>}},

two nested columns are identified. The first nested

column denotes that the first to sixth columns of

the table are generated from a repetitive part three

time. The first, third, and fifth columns are

generated from one attribute and the second, fourth,

and sixth columns are generated from another

attribute. Similarly, the seventh and eighth columns

are generated by another repetitive part of the

template. Considering the two QRRs in The nested

column set C in this table is {{<3, 4, 5, 6,7>,<8, 9,

10, 11, 12>}}.

Given columns cp in a holistic alignment and a

similarity threshold Snest as input, the procedure

nested decides, using the similarities of the data

values in cp, whether cp contains a repetitive tag

pattern that is formed by a nested structure. We

assume that two columns are generated by the same

attribute if there is a large data value similarity

between these two columns. Given a column c1,

which contains m data values, we define the

intracolumn similarity simintra to be the average

data value similarity within each column in c1.

Simintra =2 𝑠𝑖𝑗𝑚
𝑖=𝑗+1

𝑚_1
𝑗=1 / m(m -1) (2)

In (2), sij is the data value similarity among the ith

and jth data values of c1. For cp, its intracolumn

similarity is the average of the intracolumn

similarity of all columns in cp .

For two columns c1 and c2, which have m and n

data values, respectively, the intercolumn similarity

siminter is defined to be the average data value

similarity of every pair of data values in c1 and c2 .

Siminter = sij𝑚
𝑖=1

𝑛
𝑗=1 / mn (3)

In (3), sij is the data value similarity among the ith

data values of c1 and jth data values of c2 using the

data value similarity calculation described in

Section 3.1.1.

After siminter and simintra are calculated for

identified columns cp, if siminter=simintra > Snest,

where Snest is a threshold that is set to 0.5, cp is

assumed to be a nested column set, which means

that the data values in it are generated from a

nested structure.

Given data columns cp and the nested column set C

as input, the method add_nested_column adds the

nested columns cp to C. Then ci in C is replaced

with cp .Otherwise, cp is simply added as a new

element into C .

Given n records with a maximum of m data values

and a maximum tag string length of l, the time

complexity of the nested structure processing

algorithm is O(nl2m2). For each record, at most

O(l2) time is needed to identify repetitive tag

patterns; if a pattern is found, at most O(m2) time

is required to calculate the intra-/intercolumn

similarity.

Compare the nested structure processing methods

in DeLa [29] and NET [20], the nested structure

processing technique in CTVS has the following

advantages.

a) CTVS processes the nested structures after

the data records are aligned rather than before as is

the case in DeLa and NET. The nested structure

before the records are aligned makes them weak to

optional attributes that makes the tag structure

irregular. This difficulty does not arise in CTVS.

b) In CTVS the data value similarity

information efficiently prevents a flat structure

from being identified as a nested structure. It shares

similar tag structures, a flat structure by several

columns having the same tag structure, may be

wrongly identified as a nested structure one can

have serious consequences in DeLa and NET.

DeLa condenses all the values into one parent value

and then aligns them to other records, which makes

2616

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80710

the alignment much more complex. If NET

wrongly identifies a simple structure as a nested

structure, it will create a new row in the table for

each data value of the simple structure.

4. Experimental Results

The act of the data extraction methods is compare

in three different ways. General data set evaluation

present the act on the first three data sets, which

display a variety of properties and have been used

in earlier work by others. The other two evaluations

focus on exact properties of the query result pages.

Noncontiguous QRR evaluation compares the act

for query result pages in which the QRRs are

contiguous and noncontiguous. Nested-structure

evaluations compare the performance for query

result pages with and without a nested structure.

5. Related Work

In wrapper induction, extraction systems are copied

based on inductive learning. This not scalable to a

large number of web databases. Hence, the wrapper

induction approach involves two additional

difficult problems: monitoring changes in a page’s

format and maintaining a wrapper when a page’s

format changes. To conquer the problems of

wrapper induction, some unsupervised learning

methods, such as, IEPAD, ExAlg , DeLa , have

been planned to repeatedly extract the data from the

query result pages. To conquer these shortcomings,

methods such as ViPER and ViNTs make use of

extra information in the query result pages.

All the works make use of only the information in

the query result pages to execute the data

extraction. There are works that make use of extra

information, specifically ontologies, to aid in the

data extraction. While these approaches can

overcome some of the limitations of CTVS (e.g.,

that a query result page should contain at least two

QRRs) and can get high accuracy, they need the

availability of extra resources to construct an

ontology as well as the additional step of actually

constructing the ontology.

6. CONCLUSIONS AND FUTURE

DIRECTIONS

We presented a new data extraction method,

CTVS, to repeatedly extract QRRs from a query

result page. CTVS employs two steps i.e. the first

steps identify and segment the QRRs. These

develop on alive technique by allowing the QRRs

in a data region to be non-contiguous. The second

step aligns the data values between the QRRs. A

new alignment method is proposed in which the

alignment is performing in three successive steps:

pairwise alignment, holistic alignment, and nested

structure processing.

Although CTVS has been shown to be a correct

data extraction method, it still suffers from some

restrictions. First, it requires at least two QRRs in

the query result page. Second, any optional

attribute that appear as the start node in a data

region will be treat as auxiliary information. Third,

CTVS mostly depends on tag structures to find out

data values. Therefore, CTVS does not hold the

case where multiple data values from more than

one attribute are clustered inside one leaf node of

the tag tree, as well as the case where one data

value of a single element spans multiple leaf nodes.

REFERENCES

[1] B. Liu and Y. Zhai, “NET - A System for

ExtractingWeb Data from Flat and Nested Data

Records,” Proc. Sixth Int’l Conf. Web Information

Systems Eng., pp. 487-495, 2005.

[2] J. Wang and F.H. Lochovsky, “Data Extraction and

Label Assignment for Web Databases,” Proc. 12th World

Wide Web Conf., pp. 187-196, 2003.

[3] K. Simon and G. Lausen, “ViPER: Augmenting

Automatic Information Extraction with Visual

Perceptions,” Proc. 14th ACM Int’l Conf. Information

and Knowledge Management, pp. 381-388, 2005.

[4] Y. Zhai and B. Liu, “Structured Data Extraction from

the Web Based on Partial Tree Alignment,” IEEE Trans.

Knowledge and Data Eng., vol. 18, no. 12, pp. 1614-

1628, Dec. 2006.

[5] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu,

“Fully Automatic Wrapper Generation for Search

Engines,” Proc. 14th World Wide Web Conf., pp. 66-75,

2005.

[6] M.K. Bergman, “The Deep Web: Surfacing Hidden

Value,” White Paper, BrightPlanet Corporation,

http://www.brightplanet. com/

resources/details/deepweb.html, 2001.

[7] K.C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang,

“Structured Databases on the Web: Observations and

Implications,” SIGMOD Record, vol. 33, no. 3, pp. 61-

70, 2004.

[8] C.H. Chang and S.C. Lui, “IEPAD: Information

Extraction Based on Pattern Discovery,” Proc. 10th

World Wide Web Conf., pp. 681- 688, 2001.

[9] A. Arasu and H. Garcia-Molina, “Extracting

Structured Data from Web Pages,” Proc. ACM SIGMOD

Int’l Conf. Management of Data, pp. 337-348, 2003.

[10] H. Snoussi, L. Magnin, and J.-Y. Nie,

“Heterogeneous Web Data Extraction Using Ontologies,”

Proc. Fifth Int’l Conf. Agent-Oriented Information

Systems, pp. 99-110, 2001.

[11] W. Su, J. Wang, and F.H. Lochovsky, “ODE:

Ontology-Assisted Data Extraction,” ACM Trans.

Database Systems, vol. 34, no. 2, article 12, p. 35, 2009.

[12] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W.

Liddle, D.W. Lonsdale, Y.-K. Ng, and R.D. Smith,

“Conceptual-Model-Based Data Extraction from

Multiple-Record Web Pages,” Data and Knowledge

Eng., vol. 31, no. 3, pp. 227-251, 1999.

2617

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80710

