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Abstract

Based on a user’s query Web databases create 

query result pages. For many applications, such as 

data integration, which needs to cooperate with 

multiple web databases there, is a need to 

automatically extract the data from these query 

result pages .So we present a data extraction and 

alignment method called CTVS which combines 

both tag and value similarity. The data values from 

the same attribute are put into the similar column in 

which CTVS automatically extract data from query 

result pages by first identifying and segmenting the 

query result records (QRRs) in   query result pages 

and then align the segmented QRRs into a table. 

Specially, we advise new techniques to switch the 

case when the QRRs are not secure, which may be 

due to the presence of main information, such as a 

commentary, proposal or advert, and for handling 

any nested structure that may exist in the QRRs. By 

CTVS, we create novel record alignment 

algorithms that align the attributes in a record, in 

pair wise first and then holistically. Experimental l 

results show that CTVS achieves high precision 

and outperforms alive state-of-the-art data 

extraction methods. 

 Keywords — Automatic wrapper generation, 

data extraction, data record alignment, information 

integration, nested structure processing. 

 
 
 
 
 

1. INTRODUCTION 
 
ONLINE database, called web database, include 

pages in the deep web are dynamically generate in 

response to a user query submitted  through the 

query interface of a web database, which Compared 

with webpages in the surface web, that can be 

accessed by a unique URL. Upon receiving a user’s 

query, a web database returns the related data, 

either structured or semi structured, encoded in 

HTML pages. Many web applications need the data 

from multiple web databases, such as meta 

querying, data integration and comparison 

shopping. For these applications to further use the 

data embedded in HTML pages, automatic data 

extraction is necessary. Only when the data are 

extracted and organized in a structured way such as 

tables, they can be compared and aggregated. 

Hence, accurate data extraction is very important 

for these applications to perform correctly. 

 

This paper focuses on the problem of automatically 

extract data records that are encoded in the query 

result pages generate by web databases. The goal of 

web database data extraction is to eliminate any 

unrelated information from the query result page, 

extract the query result records (referred to as 

QRRs in this paper) from the page, and align the 

extracted QRRs into a table such that the data value  

belong to the same characteristic are placed into the 

same table column. 
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             The following two-step methods, called 

combine Tag and Value Similarity (CTVS), to 

extract the QRRs from a query result page p. 

 Record extraction: Identifies the QRRs in 

p and involve two substeps: data region 

identification and the actual segmentation. 

 Record alignment: Aligns the data values 

of the QRRs in p into a table so that values for the 

same attribute are aligned into the same table 

column. 

CTVS precisely extracts and aligns the QRRs in 

query result pages if there are at least two records 

in the page. Compared with existing data extraction 

methods, CTVS improve data pulling out precision 

in three ways. 

 New methods to imagine that the QRRs 

are existing contiguously in only one data region in 

a page. However, it is not best guess be true for 

many web databases where maintain in order 

separate the QRRs. We scan 10 websites to which 

the QRRs in the query result pages are non-

contiguous, but indicate that noncontiguous data 

regions are rather familiar. Furthermore, 10 out 4 of 

websites have noncontiguous QRRS with the same 

parent in the page HTML tag tree. This problem is 

concentrate on two methods according to the 

outline of the QRRs and the major in series in the 

result HTML tag trees (i.e., DOM trees). a. An off-

the-peg data region recognition method is likely to 

recognize the noncontiguous QRRs that have the 

similar parents according to their tag similarity. b. 

A combine method is proposed to join different 

data regions that contain the QRRs (with or without 

the same parent) into a single. 

 In this we proposed to align the data 

values in the recognized QRRs, first pairwise then 

holistically. Together tag structure similarity and 

data value comparison are used in the pairwise 

alignment procedure i.e, first to join tag structure 

and data value similarity to achieve the alignment.  

 A new nested-structure dealing out 

algorithm is future to handle any nested structure in 

the QRRs after the holistic alignment i.e, CTVS 

uses both tag and data value similarity in sequence 

to get better nested structure processing exactness.  
 

2. QRR EXTRACTIONS 
 

 
        Fig.1. QRR extraction framework. 

 

Fig.1 shows the framework for QRR extraction. In 

this aquery result page, the Tag Tree structure 

module first construct a tag tree for the page rooted 

in the <HTML>tag. Each node corresponds to a tag 

in the HTML page as well as its children are tags 

covered inside it. In every inner node n of the tag 

tree has a tag string tsn, which include the tags of n 

and all tags of n’s descendants, and a tag path tpn, 

which include the tags from the root to n. 

 
2.1 Data Region Identification 

  
The Data Region Identification modules identify all 

likely data region, which usually contain 

dynamically generates data, top down starting from 

the root node. We first suppose that some child 

subtrees of the same parent node form alike data 

records, which assemble a data region.  Thus, we 

propose a new process applied to more web 

databases. The data region identification algorithm 

is apply to a node n and recursively to its children 

ni, i = 1 . . .m as follows: 

a) Compute the similarity computation 

method in the data region identification algorithm is 

recursively apply to the children of ni only if it does 

not have any alike siblings. Several data regions 

may be recognized in this. 

b) Section the data region into data records 

using the record segmentation algorithm.  

c) Suppose that the tag tree has n internal 

nodes and a node has a maximum of m children and 

a maximum tag string length of l. The time 

complexity of the data region identification 

algorithm is O(
nm2l2

). 

 

2.2 Record Segmentation 
  

The Record Segmentation module then segments 

the identified data regions into data records 

according to the tag patterns in data regions. If only 

one tandem replicate is create in a data region, we 

assume that each frequent instance in the tandem 

replicate corresponds to a record. If many tandem 

replicate are found in a data region, we need to 

select one to indicate the record. The two heuristics 

are used for the tandem replicate collection 

a) If there is supplementary information, 

which corresponds to nodes between record 

instances, within a data region, the tandem replicate 

that stops at the supplementary information is the 

correct tandem replicate since  information usually 

is not inserted into the middle of a record.  

b) The optical gap between two records in a 

data region is usually larger than any optical gap 

within a record. Hence, the tandem replicate that 

satisfies this restriction is selected. 
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c) If the earlier two heuristics cannot be 

used, we select the tandem replicate that start the 

data region. 

 

 

 

2.3 Data Region Merge 

 
Given the segmented data records, the Data Region 

Merge module merges the data regions contain 

similar records. If any two data regions, we treat 

them as similar if the segmented records they 

contain are similar. The similarity between any two 

records from two data regions is measured by the 

resemblance of their tag strings. The resemblance 

between two data regions is calculated as the 

average record similarity. Two data regions can be 

merged into a merged data region if the records in 

the two data regions have an average similarity 

greater or equal to 0.6. Given, that two data regions 

d1 and d2 with n1 and n2 records and most record 

tag string length of l1 and l2, Respectively, the time 

complexity of the data region merges algorithm is 

O(n1n2l1l2). 

 
2.4 Query Result Section Identification 

 
The Query Result Section Identification module 

select one of the merged data regions as the one 

that contains the QRRs, there may still be multiple 

data regions in a query result page. Three heuristics 

are used to recognize this data region, called the 

query result section. 

a) The query result section generally 

occupies a large space in the query result page. For 

each data region d, an area weight, which is 

calculated as d’s area divided by the largest area of 

all identified data regions, is assigned for d. 

b) The query result section is generally 

located at the center of the query result page. For 

each data region d, a center distance is considered 

among its center and the center of the page, and a 

center distance weight, which is calculated as the 

smallest center distance among all identified 

regions divided by d’s center distance, is assigned 

for d. If a merged data region d contains multiple 

regions d1,. . . . . . ,dn to be found in dissimilar 

parts of the page, then first find the region di that 

has the largest space in the query result page in the 

middle of d1,. . . , dn and assume that the center 

distance weight of di is the center distance weight 

of d. 

c) Each QRR generally contains more raw 

data strings than the raw data strings in other 

sections. For each data region d, a value weight, 

which is calculate as the average number of raw 

data strings in the records of d divided by the 

largest average number of data values in all 

recognized regions, is assign for d. All the above 

three weights are summed and the data region that 

has the biggest summed weight is selected as the 

query result section. Records in this data region are 

supposed to be QRRs. 

 

A restriction of this approach is that if a query 

result page has more than one data region that 

contains query result records and the records in the 

different data regions, then we will choose only one 

of the data regions and discard the others. 

3. QRR ALIGNMENT 

 
QRR alignment is performing by novel three-step 

data alignment methods that combine tag and value 

similarity. 

 
3.1 Pairwise QRR Alignment 

 
The pairwise QRR alignment aligns the data values 

in a pair of QRRs to present the proof for how the 

data values must be aligned among all QRRs. A 

pairwise alignment of r1 and r2 is composed of  a 

set of data value alignments, each of which 

assumes that the corresponding data values from r1 

and r2 belong to the same attribute. 

Every QRR includes two kinds of information: the 

text string for the ith value and the tag path for the 

ith value. Throughout the pairwise alignment, we 

involve that the data value alignments must suit the 

following three constraints: 

a) Same record path constraint: The record 

path of a data value f comprises the tag from the 

root of the record to the node that contains f in the 

tag tree of the query result page. Each pair of 

corresponding values have the similar tag path. 

Hence, if f1i has an altered tag path with f2j, then 

sij is assigned a small negative value to prevent the 

pair of values from being aligned. 

b) Unique constraint: Each data value can be 

aligned for the most part one data value from the 

other QRR. 

c) No cross alignment constraint: If f1i is 

matched to f2j, then there should be no data value 

alignment between f1k and f2l such that k < i and l 

> j or k >i and l < j. 

Based on these constraints, a dynamic 

programming algorithm aligns the two records. The 

similarity is 0 if one of the QRRs is empty or else, 

if f1i and f2j have the same tag path, then just one 

of the following three data value alignments is 

possible. 

1. The first (i - 1) values of r1 can be aligned with 

the first (j - 1) values of r2 plus the data value 

alignment between f1i and f2j, which has the 

summing similarity score L(i-1)(j-1) + sij. 
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2. f1i can be ignored and the first (i - 1) values of r1 

can be aligned with the first j values of r2, which 

has the summing similarity score L(i-1)j. 

3. f2j can be ignored and the first i values of r1 can 

be aligned with the first j - 1 values of r2, which 

has the summing similarity score Li(j-1). 

The alignment with the largest summing similarity 

score among these three alternatives is chosen. That 

is 

 

Lij =  max(L(i-1)(j-1) + sij, L(i-1)j, Li(j-1)                 

(1) 

 

With this dynamic programming method, the time 

complexity of the pairwise alignment algorithm is 

O(l1l2) where l1 and l2 are the number of data 

values in the two QRRs. Hence, given a data region 

with n records, the time complexity of the pairwise 

alignment algorithm is O(n2l2)in which l is the 

largest number of data values in a record. 

 

3.1.1 Data Value Similarity Calculation: 

Given two data values f1 and f2 from dissimilar 

QRRs, we need their similarity, s12, to be a real 

value in [0, 1]. The data value similarity is 

calculated according to the data type tree shown in 

Fig. 2.                                                                                              

 

                    

 

 

 

 

 

 

 

Fig. 2. Data type tree 

     

Each child node is a subset of its parent node. For 

example, the “string” type includes several children 

data types, which are frequent on the web such as 

“datetime,” “float,” and “price.” The highest depth 

of the data type tree is 4. We will transfer to a 

nonstring data type as a specific data type. 

Given two data values f1 and f2, we first moderator 

data types and then fit them as extremely as 

possible into the nodes n1 and n2 of the data type 

tree. For example, given a string “567,” we will put 

it in node “integer.” The similarity s12 between 

two data values f1 and f2 with data type nodes n1 

and n2 is defined as nonstring data type as a 

specific data type. 

 

          0:5                       n1 = p(n2) & n1 ≠ String 

OR 

s12 = {                            n2 = p(n1) & n2 ≠ String 

          1                          n1 = n2 ≠ String 

          cosine similarity   n1 = n2 = String 

          0                          otherwise, 

where p(ni) refers to the parent node of ni in the 

data type tree. The similarity between data values 

f1 and f2 is 

. 0.5, if they belong to different specific data types 

that have a common parent. 

. 1, if they belong to the same specific data type. 

. String cosine similarity of f1 and f2, if both f1 and 

f2 belong to the string data type. 

. 0 otherwise, which occurs when one of f1 and f2 

belongs to the string data type and the other one 

belongs to a specific data type, or f1 and f2 belong 

to different specific data types without any direct 

parent. 

As Table 1 shows, data values with the same data 

type usually have larger similarity. 

 

                     TABLE 1 

      Example of  Data Value Similarity 

 

 
 

3.2 Holistic Alignment 

  
Holistic alignment align the data values in all the 

QRRs and this step of holistic alignment performs 

the alignment worldwide with all QRRs to create a 

table in which all data values of the same attribute 

are aligned in the same table column. Thus, holistic 

alignment problem is equal to that of finding 

connected components in an undirected graph. 

Each connected component of the graph represents 

a table column inside which the linked data values 

from different records are aligned vertically.  We 

need to consider two application constraints that 

are specific to our holistic alignment problem. 

a) Vertices from the same record are not 

allowed to be included in the same connected 

component as they are considered to come from 

two different attributes of the record. If two 

vertices from the same record breach this 

constraint, a path must exist between the two, 

which we call a breach path. 

b) Connected components are not allowed to 

intersect each other. If C1 and C2 are two 

connected components, then vertices in C1 should 

be either all on the left side of C2 or all on the right 

side of C2, and vice versa.  

So, we design a 3-step for the holistic 

alignment problem. First, we traverse the graph 

once by a depth-first search to discover the 

preliminary connected components in the graph 

(the Traverse and Visit functions). Throughout the 

traversal, a color array is use to indicate whether 

every vertex has been visited or not (WHITE for 
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unvisited, GRAY for under processing, and 

BLACK for processing finished). In the Visit 

function, when a new vertex is encounter, we add it 

into the current connected component. Second, at 

the same time we also mark those components 

containing breach paths. If a connected component 

is start containing breach paths, the 

BreakBreachPath function is called to break it by 

remove the edges with the smallest sum of pairwise 

similarity scores. Given two recognized nodes vi 

and vj from the same record, the problem of 

breaking a breach path is accurately the max-

flow/min-cut problem in which vi and vj are the 

source and sink nodes, respectively. 

Third, we traverse the components contain breach 

paths to eliminate some edges so as to break the 

breach paths (i.e., enforce the first constraint). 

Finally, we use a divide-and-conquer method to 

recognize and split up the intersecting components 

to inflict the second constraint. 

 

3.3 Nested Structure Processing 

 
This identifies the nested structures that exist in the 

QRRs.  If a QRR contains a nested structure such 

that an attribute has multiple values, then several of 

the values might not be aligned to any other values. 

Hence nested structure giving out identifies the 

data values of a QRR that are generated by nested 

structures. Relying only on HTML tags to 

recognize nested structures, as is done by 

approximately all existing methods, may 

incorrectly recognize a plain structure as a nested 

one. To overcome this problem, CTVS uses both 

the HTML tags and the data values to identify the 

nested structures. 

Given an aligned table, a nested column comprises 

at least two ordered sets signifying the data values 

that are generated by repetitive parts in the 

template. A nested column set C is comprised of a 

set of nested columns. For example, in the nested 

column set {{<1,2>,<3, 4>,<5, 6>},{<7>, <8>}}, 

two nested columns are identified. The first nested 

column denotes that the first to sixth columns of 

the table are generated from a repetitive part three 

time. The first, third, and fifth columns are 

generated from one attribute and the second, fourth, 

and sixth columns are generated from another 

attribute. Similarly, the seventh and eighth columns 

are generated by another repetitive part of the 

template. Considering the two QRRs in The nested 

column set C in this table is {{<3, 4, 5, 6,7>,<8, 9, 

10, 11, 12>}}.  

Given columns cp in a holistic alignment and a 

similarity threshold Snest as input, the procedure 

nested decides, using the similarities of the data 

values in cp, whether cp contains a repetitive tag 

pattern that is formed by a nested structure. We 

assume that two columns are generated by the same 

attribute if there is a large data value similarity 

between these two columns. Given a column c1, 

which contains m data values, we define the 

intracolumn similarity simintra to be the average 

data value similarity within each column in c1. 

 

Simintra =2  𝑠𝑖𝑗𝑚
𝑖=𝑗+1

𝑚_1
𝑗=1  /  m(m -1)               (2) 

 

In (2), sij is the data value similarity among the ith 

and jth data values of c1. For cp, its intracolumn 

similarity is the average of the intracolumn 

similarity of all columns in cp . 

For two columns c1 and c2, which have m and n 

data values, respectively, the intercolumn similarity 

siminter is defined to be the average data value 

similarity of every pair of data values in c1 and c2 . 

 

Siminter =   sij𝑚
𝑖=1

𝑛
𝑗=1  / mn        ( 3) 

 

In (3), sij is the data value similarity among the ith 

data values of c1 and jth data values of c2 using the 

data value similarity calculation described in 

Section 3.1.1. 

After siminter and simintra are calculated for 

identified columns cp, if siminter=simintra > Snest, 

where Snest is a threshold that is set to 0.5, cp is 

assumed to be a nested column set, which means 

that the data values in it are generated from a 

nested structure. 

Given data columns cp and the nested column set C 

as input, the method add_nested_column adds the 

nested columns cp to C. Then ci in C is replaced 

with cp .Otherwise, cp is simply added as a new 

element into C . 

Given n records with a maximum of m data values 

and a maximum tag string length of l, the time 

complexity of the nested structure processing 

algorithm is O(nl2m2). For each record, at most 

O(l2) time is needed to identify repetitive tag 

patterns; if a pattern is found, at most O(m2) time 

is required to calculate the intra-/intercolumn 

similarity. 

Compare the nested structure processing methods 

in DeLa [29] and NET [20], the nested structure 

processing technique in CTVS has the following 

advantages. 

a) CTVS processes the nested structures after 

the data records are aligned rather than before as is 

the case in DeLa and NET. The nested structure 

before the records are aligned makes them weak to 

optional attributes that makes the tag structure 

irregular. This difficulty does not arise in CTVS. 

b) In CTVS the data value similarity 

information efficiently prevents a flat structure 

from being identified as a nested structure. It shares 

similar tag structures, a flat structure by several 

columns having the same tag structure, may be 

wrongly identified as a nested structure one can 

have serious consequences in DeLa and NET. 

DeLa condenses all the values into one parent value 

and then aligns them to other records, which makes 
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the alignment much more complex. If NET 

wrongly identifies a simple structure as a nested 

structure, it will create a new row in the table for 

each data value of the simple structure. 

 

4. Experimental Results 

 
The act of the data extraction methods is compare 

in three different ways. General data set evaluation 

present the act on the first three data sets, which 

display a variety of properties and have been used 

in earlier work by others. The other two evaluations 

focus on exact properties of the query result pages. 

Noncontiguous QRR evaluation compares the act 

for query result pages in which the QRRs are 

contiguous and noncontiguous. Nested-structure 

evaluations compare the performance for query 

result pages with and without a nested structure. 

 

5. Related Work 

 
In wrapper induction, extraction systems are copied 

based on inductive learning. This not scalable to a 

large number of web databases. Hence, the wrapper 

induction approach involves two additional 

difficult problems: monitoring changes in a page’s 

format and maintaining a wrapper when a page’s 

format changes. To conquer the problems of 

wrapper induction, some unsupervised learning 

methods, such as, IEPAD, ExAlg , DeLa , have 

been planned to repeatedly extract the data from the 

query result pages. To conquer these shortcomings, 

methods such as ViPER and ViNTs make use of 

extra information in the query result pages. 

All the works make use of only the information in 

the query result pages to execute the data 

extraction. There are works that make use of extra 

information, specifically ontologies, to aid in the 

data extraction. While these approaches can 

overcome some of the limitations of CTVS (e.g., 

that a query result page should contain at least two 

QRRs) and can get high accuracy, they need the 

availability of extra resources to construct an 

ontology as well as the additional step of actually 

constructing the ontology.  

 

6. CONCLUSIONS AND FUTURE 

DIRECTIONS 

 
We presented a new data extraction method, 

CTVS, to repeatedly extract QRRs from a query 

result page. CTVS employs two steps i.e. the first 

steps identify and segment the QRRs. These 

develop on alive technique by allowing the QRRs 

in a data region to be non-contiguous. The second 

step aligns the data values between the QRRs. A 

new alignment method is proposed in which the 

alignment is performing in three successive steps: 

pairwise alignment, holistic alignment, and nested 

structure processing.  

 

Although CTVS has been shown to be a correct 

data extraction method, it still suffers from some 

restrictions. First, it requires at least two QRRs in 

the query result page. Second, any optional 

attribute that appear as the start node in a data 

region will be treat as auxiliary information. Third, 

CTVS mostly depends on tag structures to find out 

data values. Therefore, CTVS does not hold the 

case where multiple data values from more than 

one attribute are clustered inside one leaf node of 

the tag tree, as well as the case where one data 

value of a single element spans multiple leaf nodes. 
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