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Abstract — This paper proposes a simple and elegant, patch-

based technique for image denoising using the     4-Band higher 

order singular value decomposition       (4-Band HOSVD). The 

technique decomposes the image into four bands. It groups 

together similar patches (with similarity defined by a statistically 

motivated criterion) in each band into a 4D stack, computes the 

HOSVD coefficients of this stack. Then manipulates these 

coefficients by hard thresholding, inverts the HOSVD transform 

and performs hypotheses averaging at each pixel to produce the 

denoised bands and finally combines it to produce the final 

filtered image. This technique chooses all required parameters in 

a principled way, relating them to the noise model. This paper 

experimentally demonstrate the excellent performance of the 

proposed technique on colour images producing state of the art 

results, outperforming other colour image denoising algorithms 

at moderately high noise levels.  

    Index Terms: - Image denoising, singular value 

decomposition (SVD), higher order singular value 

decomposition (HOSVD), coefficient thresholding, patch 

similarity. 

I. INTRODUCTION 

 
ISUAL information transmitted in the form of digital 

images is becoming a major method of communication 

in the modern age, but the image obtained after transmission 

is often corrupted with noise.  The received image needs 

processing before it can be used in applications.  Image noise 

may also be caused by different intrinsic (i.e., sensor) and 

extrinsic (i.e., environment) conditions which are often not 

possible to avoid in practical situations.  Therefore, image 

denoising plays an important role in a wide range of 

applications such as image restoration, visual tracking, image 

registration and image classification, where obtaining the 

original image content is crucial for strong performance. 

Image denoising involves the manipulation of the image data 

to produce a visually high quality image. The denoising 

techniques that have been developed so far are partial 

differential equations (PDEs), spatially varying convolution 

and regression, nonlocal techniques, transform based 

techniques, and techniques based on machine learning.  

    PDE-based methods diffuse a noisy image in an anisotropic 

manner that extracts and respects the edge geometry, allowing 

diffusion along but not across the image edges [1], [2]. Some 

PDEs are obtained from the Euler Lagrange equations 

corresponding to functionals that are based on a piecewise 

constant [3] or piecewise linear [4] model for natural images. 

A rich class of techniques for image filtering involves the so-

called spatially varying convolutions. In these methods, an 

image is convolved with a pointwise-varying local geometry-

driven mask [5]. A closely related idea is the local modeling 

of an image with a low-order polynomial function whose 

coefficients are computed by a weighted least squares 

regression, and these are then used to compute the value of 

the (filtered) image at a central point.  

    Transform-domain denoising approaches typically work at 

the level of small image patches. In these approaches, the 

image patch is projected onto an orthonormal basis, such as a 

wavelet [6] or discrete cosine transform (DCT) [7], to yield a 

set of coefficients which, for natural images, are known to be 

sparse and decorrelated [8].To perform denoising, the smaller 

coefficients are modified (typically by “hard thresholding” 

[9]), and the patch is reconstructed by inversion of the 

transform. This procedure is repeated for every patch. If the 

patches are chosen to be nonoverlapping, one can observe 

seam artifacts at the patch boundaries and ringing artifacts 

around image edges or salient features, which can be 

attenuated by performing the aforementioned three steps in a 

sliding window fashion and averaging the multiple 

hypotheses, yielding superior results [6], [7]. There exist 

several more sophisticated methods to manipulate wavelet 

coefficients, such as those that exploit dependencies in 

transform coefficients at the same spatial location but at 

different scales (e.g., in [10] or the BLS-GSM (Bayesian 

Least Squares  Gaussian Scale Mixtures)  method in [11] or at 

adjacent spatial locations [12].    

    Nonlocal techniques [13], [14] exploit the fact that natural 

images often contain patches in distant regions that are very 

similar to each other. NL-Means obtains a denoised image by 

minimizing a penalty term on the average weighted distance 

between an image patch and all other patches in the image, 

where the weights are decreasing functions of the squared 

difference between the intensity values in the patches. This 

yields an update rule that can be interpreted as a spatially 

varying convolution with nonlocally derived masks. NL-

Means can also be interpreted as a minimizer of the 

conditional entropy of a central pixel value given the intensity 

values in its neighbourhood [15], [16].  
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      A combination of nonlocal and transform-domain 

approaches has led to the development of the block matching 

in three dimensions (BM3D) method [17], which is 

considered the current state of the art in image denoising. This 

method operates at the patch level and for each reference 

patch in the image, it collects a group of similar patches (after 

a DCT-based prefiltering step), which are then stacked 

together to form a 3D array. The entire 3D array is projected 

onto a 3D transform basis (product of DCT/ biorthogonal and 

Haar bases) to yield a set of coefficients which are hard 

thresholded. The filtered patches are then reconstructed by 

inversion of the transform. This process is repeated over the 

entire image in a sliding window fashion with averaging of 

hypotheses to yield an intermediate image. This image is then 

smoothed (heuristically) with a nonlocal empirical Wiener 

filter to produce a final filtered image. The results using the 

BM3D method [17] are outstanding. However, the method is 

complex, with several tunable parameters such as choice of 

bases, patch-size, transform thresholds, similarity measures, 

etc. 

    The Higher Order Singular Value Decomposition based 

image denoising [18] achieves close to the state-of-the-art 

performance. It groups together similar patches from the noisy 

image and create a 3D stack for grayscale images. Then 

computes the HOSVD coefficients of this stack, manipulates 

these coefficients by hard thresholding and inverts the 

HOSVD transform to produce the final filtered image. On 

color images, this method creates a 4D stack and performs the 

HOSVD algorithm. The denoised image is filtered using 

Wiener filter to improve the image quality. But higher 

computational time is required for implementing this 

technique. 

     This paper proposes a 4-Band HOSVD based denoising 

technique which produces close to the state-of-the-art 

performance for color images which is comparatively simple 

and easy to implement. It also requires very less computation 

time when compared with the previous HOSVD based 

method. 

 

II. THE PROPOSED METHOD 
 

    The proposed method in this paper for color image 

denoising is a simple, patch-based technique using     4-Band 

higher order singular value decomposition. Assume a zero 

mean i.i.d (independent and identically distributed) Gaussian 

distribution of fixed, known standard deviation „σ„ (i.e. N (0, 

σ)) as the noise model. The only free parameter is the patch 

size.  

   This method process the noisy color image in RGB plane 

itself. The noisy image is first decomposed into four bands for 

each of the R, G and B planes.  Then groups similar patches 

together  into a 4D stack for each reference patch in all the 

four bands (using (1)) and HOSVD [18] denoising  is applied 

on each band. Finally all the denoised bands are combined 

and produces the final denoised image. The image quality of 

the denoised output can be further improved  by using a 

bicubic interpolation method. Since HOSVD is applied on 

each band separately rather than on the whole image, 

computation time can be reduced and produces state-of-the-art 

results. 

 

a. Selection of similar patches 

 

    Let Pref be the reference patch in each of the four bands of 

noisy image in RGB space, we can compute its K nearest 

neighbours from the image, but this requires a choice of K 

which may not be the same for every image patch. Hence, a 

distance threshold τd [18] is used and select all patches Pi such 

that  

                  ||Pref –Pi||
2
 < τd                                                (1) 

 

Assuming a fixed, known noise model - N(0,σ), if Pref and Pi 

were different noisy versions of the same underlying patch, 

the following random variable would have a χ(n
2
) distribution: 

𝑥 =  
 𝑃𝑟𝑒𝑓 ,𝑘−𝑃𝑖𝑘  

2

2𝜎2
𝑛2

𝑘=1    . The cumulative of a χ
2
(z) random 

variable is given by F(x; z) = γ( 
𝑥

2
,
𝑧

2
 , where γ(x, a) stands for 

the incomplete gamma function defined as γ 𝑥, 𝑎 =

 
1

Γ(a)
 e−tx

t=0
t(a−1)dt  with Γ a =   e−t∞

0
t(a−1)dt  being the 

Gamma function. It is observed that if   z ≥ 3, for any x ≥ 3z 

then          F(x; z) ≥ 0.99. Therefore, for a patch-size of n × n 

and under the given σ, we choose τd = 3*3σ
2
n

2
 

 

b. Implementation of 4-Band HOSVD for denoising 

 

    The HOSVD is a generalization of the matrix SVD to 

higher order matrices [18][19]. Some pioneering and 

successful applications of the HOSVD in computer vision 

have been proposed in [20]. In this paper, we demonstrate the 

aptness of the 4-Band  HOSVD as a transform basis for 

efficient and effective patch-based denoising. 

    Given a p × p reference patch Pref in each of the four bands 

of noisy image In, create a 4D stack of K-1 similar patches for 

each reference patch. Here, similarity is defined as in (1), and 

hence K varies from pixel to pixel. Let us denote the stack as 

Z ∈ 𝑅𝑝×𝑝×𝐾×𝐷; where D is the total number of image planes ( 

D = 3). The HOSVD of this 4D stack given as follows [18]: 

  

           Z = S ×1 U
(1)

 ×2 U
(2)

 ×3 U
(3)

 ×4 U
(4)

                (2) 

 

where U
(1)

 ∈ 𝑅𝑝×𝑝  , U
(2)

 ∈ 𝑅𝑝×𝑝 , U
(3)

 ∈ 𝑅𝐾×𝐾 ,  U(4)
 ∈ 𝑅𝐷×𝐷  

are orthonormal matrices, and S is a 4D coefficient array of 

size p ×p× K×D. Here, the symbol ×n stands for the nth mode 

tensor product defined in [19]. The orthonormal matrices  

U
(1)

,  U
(2)

, U
(3)

 , U
(4)

  are, in practice, computed from the SVD 

of the unfolding   Z(1) , Z(2) ,Z(3)  and Z(4) , respectively [19].  

The exact equations are of the form 

𝑍 𝑘 =  𝑈(𝑘). 𝑆 𝑘 .  𝑈
𝑚𝑜𝑑 (𝑘+1,3) ⊗  𝑈𝑚𝑜𝑑 (𝑘+2,3) 

𝑇
  ;   where 

1≤ k ≤ 4 (which are equivalent representations for the 

HOSVD). For computational speed, we impose the constraint 

that K ≤ 30.  

      The patches from Z are then projected onto the HOSVD 

transform. The parameter for thresholding the transform 

coefficients are picked to be 𝜎 2 log 𝑝2𝐾, again as per the 

rule from [21]. The stack Z is then reconstructed after 

inverting the transform, thereby filtering all the individual 

patches. The procedure is repeated over all pixels in sliding 
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window fashion with averaging of hypotheses. Then, the four 

denoised bands are combined to obtain the final filtered 

image. The denoised image quality can be further improved 

by using a bicubic interpolation step. 

   
III. RESULTS 

 
   In this section, MATLAB simulation results of the proposed 

method for denoising  images having size 256×256 which is 

corrupted by N(0,20) noise are presented  (Fig 1).    

 
(a)                                      (b) 

 
  
                           (c)                                                   (d) 

 
          (e)                                              (f) 

 

Fig 1. Noisy images and the corresponding denoised outputs of the images 
from Kodak gallery. 

    The computation time (in seconds) for obtaining the 

denoised images using the proposed method and the previous 

method is tabulated in Table I for 10 RGB images from the 

Kodak gallery. The input images taken are corrupted by noise 

N(0,20). 

 
TABLE I. 

COMPUTATION TIME (IN SECONDS) FOR OBTAINING THE DENOISED IMAGES USING 

EXISTING METHOD AND PROPOSED METHOD  FOR IMAGES CORRUPTED BY NOISE 

N(0,20). 

 

Image # HOSVD 
4-Band 

HOSVD 

1 1050.35586 298.2576 

2 1212.99998 351.1936 

3 1147.58710 317.4678 

4 1134.06057 321.1190 

5 974.15904 255.8190 

6 1282.15392 324.5241 

7 980.25967 295.8563 

8 923.932537 258.704329 

9 1100.34231 302.9413 

10 1190.7452 316.4176 

 

     From the table, it has been found that existing HOSVD 

denoising technique requires high computational time. The 

proposed method produces the denoised output with high 

computational speed compared to the existing method as 

HOSVD is applied here on each band separately. 

 

 
TABLE II 

PSNR AND SSIM VALUES OF THE DENOISED  IMAGES OBTAINED BY 

EXISTING METHOD AND PROPOSED METHOD FOR IMAGES CORRUPTED BY NOISE 

N(0,30) 

 

Image # HOSVD 4-Band HOSVD 

1 27.341, 0.771 27.3567, 0.7676 

2 30.827, 0.796 30.4594, 0.7771 

3 32.337, 0.878 30.8521, 0.8323 

4 31.068, 0.809 29.6454, 0.7848 

5 27.557, 0.834 25.1526, 0.7615 

6 28.378, 0.798 28.2994, 0.7402 

7 31.726, 0.911 27.9167, 0.8282 

8 28.028, 0.864 26.3160, 0.8457 

9 32.447, 0.883 30.3466, 0.8520 

10 32.005, 0.862 29.5832, 0.8121 

 
 

        The PSNR (Peak Signal to Noise Ratio) and SSIM value 

(Structured Similarity Index matrix ) of the denoised images 

obtained by using proposed  4-Band HOSVD method  and 

previous HOSVD method is tabulated in the Table II . The 10 

RGB images are taken from the Kodak gallery and are 

corrupted by noise N(0,30) . The proposed method produces 

denoised images having psnr and ssim values close to the 

existing denoising techniques such as HOSVD and BM3D 

with lesser computation time. 

 

IV. CONCLUSION 

    In this paper, an extremely simple algorithm for color 

image denoising is proposed. The proposed method of 

denoising image using 4-Band HOSVD has high 
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computational speed compared to the existing methods of 

denoising. It also achieves close to the state-of-the-art 

performance. As the parameters chosen for denoising are all 

tied to the noise model, this method can be elegantly and 

easily extended to handle some other non- Gaussian noise 

models. Extending this method to handle such varied noise 

models is one important avenue for future research. 
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