
Proceedings of International Conference “ICSEM’13”

Viji.M, S. Chitra
649

Cogeneration of fast motion estimation processor
and algorithms using loss less compression

VIJI.M1,
M.E (VLSI Design), Srinivasan Engineering College1.
 Perambalur, Tamilnadu.
vijimuthaiyan225@gmail.com 1.

S. CHITRA2 ,
Assistant Professor (ECE), Srinivasan Engineering College2.
 Perambalu2,Tamilnadu.
chitra_12341@yahoo.com

Abstract -- Flexible and scalable motion estimation processor for
the h.264 advanced video coding standard handling the processing
requirements for high-definition video and suitable for FPGA
implementation. The new motion estimation algorithm of kalman
filter used to reduce the computational complexity. The eight
custom instruction sets are used in the motion estimation. All
processor instances are remaining binary compatible so
recompilation process is not required. The motion estimation
algorithm to the hardware architecture leading to a very efficient
implementation.

Keyterms -- kalman filter, H.264, motion estimation, video
coding.

I. Introduction
 Motion estimation process is performed in the
video. The videos in the form of continuous picture frame.
The every picture frame is related to each other they have
only the small difference between them. In the each frame is
divided in to the sub macro blocks and the sum of absolute
difference is to be calculated between the sub macro blocks
using the motion vector.

 The inter frame and intra frame prediction is to be
done in the sub macro blocks. The motion estimation
process is done at using the block matching algorithms in
previous work. In proposed the new motion estimation
algorithm of kalman filter in the architecture had nine
different types of instruction set are used. The algorithm is
run in the instruction set. The SAD operation is performed
in parallel. The proposed work uses the six integer
processing unit, two half pixel processing unit and one
quarter pixel processing unit. Convert the sequence of each
8*8 sub partition of a macro block into parallel processing
without sacrifices the
video quality. Motion vectors are medium predicted by the
left, top and top right is replaced by the medium of the
motion vectors of the top left, top right and top macro block
for all kinds of sub block. 2D systolic array parallel adder
tree to generate the SAD of larger block sizes. Share the
overlapped search area of adjacent macro blocks and reduce
the memory transfer from external RAM. The concept was
briefly introduced in Yu- Wen Huang, Tu-ChihWang, Bing-
Yu Hsieh, and Liang-Gee Chen [6]

Ching-Yeh Chen, Shao-Yi Chien, Yu-Wen Huang,
Tung-Chien Chen, Tu-Chih Wang, and Liang-Gee Chen[3]
Two hardware architecture to support traditional fixed block
size motion estimation and variable block size motion
estimation. Broadcasting reference pixel rows propagating
partition SAD. The SAD tree is a 2D intra level architecture
and consists of a 2D processing element array and one 2D
adder tree with propagation register.

C-Y.kao and L. Youn-Long [8] the architecture had
a total of 256 process element. The pipelined architecture
delivered a throughput level. It completes a matching.
Comparator will relate the main SADs and the best motion
vectors and their output results. Data reuse the search ranges
of 2 consecutive current macroblocks overlap with each
other.

T. Dias, S. Momcilovic, N. Roma, and L. Sousa [5]
Proposes an application-specific instruction set processor
(ASIP) to implement data-adaptive motion estimation
algorithms that is characterized by a specialized datapath
and a minimum and optimized instruction set. ISA is based
on register-register architecture and provides only a reduced
number of different operations (eight) that focus on the most
widely executed instructions in ME algorithms. The register
file consists of 24 GPRs and eight special purpose registers
capable of storing one 16 bits word each.

II. Liquid Motion Instruction Set

Architecture (ISA)
 The instruction set express the inherent

parallelism available in the motion estimation algorithm in a
simple way to minimize the overheads for instruction fetch
and decode and to keep the execution units of the core as
busy as possible. The number of execution units available in
the proposed processor vary depending on the
implementation, so it is important that binary compatibility
between different hardware implementations is achieved,
meaning a program only needs to be compiled once to be
executable on any configuration.

The instruction set architecture consists of a total

of nine different instructions. The first two arithmetic
instructions for integer and fractional pattern searches, a

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

Viji.M, S. Chitra
650

total of six control instructions that change the program
flow and one mode instruction that sets the partition mode.

The arithmetic instructions express the parallelism
with two fields that identify the number of points to be used
by the pattern and the position in the point memory where
the offsets for that pattern are defined. The control unit can
then execute the instruction with a parallelism level that
ranges from issuing each of these points to a different
execution unit in a fully parallel hardware configuration,
partition mode and reference frame of the core and
configures the internal control logic to operate with different
address boundaries and data sources.

Fig 1. Liquid motion ISA

A. Programming Model
 The processor offers a simple programming model
so that a motion estimation algorithm programmer can
access the functionality of the hardware without detailed
knowledge of the microarchitecture. The algorithm designer
use these constructs to create the arbitrary block matching
algorithm ranging from classical full search to advanced
algorithm.

B. Kalman filter
In the proposed work uses the kalman filter. It

predict the motion vector of the current frame using the

using the motion vector of the previous frame. The filter
predicts the value and computing weighted average for the
predicted value. The weights are calculated from the
covariance, a measure of the estimated uncertainty of the
prediction. This process is repeated. The method aim at
producing values closer to the truth value of measurements
and their associated values calculated by using the noisy
observed values.

The algorithm had the two phases predict phase

and the update phase. The algorithm needs the initial input
matrix of the system to correctly predict the system next
state. So we have to use the UMH algorithm to initialize it.
The first frame is inter coded and the second and third frame
is predicted using the UMH algorithm. The prediction value
is stored in the P-frame. The algorithm take the initial value
from the P-frame and it predict the values calculated by the
kalman filter start from the fourth frame.

The basic equations of the kalman filter are,

 xk = Ak * xk-1 + Bk * uk + wk (1)

 zk = Hk * xk + vk (2)

 The motion vectors for each macroblock in the
frame are stored in a matrix. By using the motion vector we
easily calculate the affine transform for each block. The
affine transform is a 3*3 matrix. Xk represent the parameter
to affine transform, as with each frame is going to predicted
and updated.

Prediction for state vector and covariance:

 xk|k-1 = Ak * xk-1|k-1 + Bk * uk (3)

 Pk|k-1 = Ak * Pk-1|k-1 + Ak * Qk (4)

Compute kalman gain factor:

 Kk = Pk-1|k-1 * Hk

T * inv (Hk * Pk-1|k-1 * Hk
T + Rk)

 (5)

Correction based on observation or update phase:

 xk|k = xk-1|k-1 + Kk * (zk - Hk * xk-1|k-1) (6)

 Pk|k = Pk|k-1 - Kk * Hk * Pk|k-1 (7)

zk = calculated affine transform
uk = input control is zero
Ak = state transition matrix
Bk = input matrix is zero

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

Viji.M, S. Chitra
651

Pk = covariance of the state vector estimate
Q = process noise covariance is same factor of identify
matrix.
R = measurement noise covariance is same factor of identify
matrix.
Hk = observation matrix is identity matrix.

C. Early Termination
Early termination is a very important feature used

to speedup execution in fast motion estimation algorithms.
If the pattern fails to improve the SAD of the previous
iteration, the algorithm terminates the current search loop.
To implement this technique, each completing check pattern
instruction sets a best_eu register indicating which search
point has improved upon the current cost. This register is set
to zero before each instruction starts, so the value of the
best_eu register at the end of execution indicates if the
instruction has improved the cost value (best_eu no longer
zero) and if so which search point has achieved this
improvement. The conditional jump instruction checks this
register and changes the execution flow as required. The
same hardware can be used to support a technique to avoid
searching duplicate points by coding optimized subpatterns
in memory.

III. System Architecture
A. Fractional pixel execution unit

 Motion estimation process can be divided into two
steps. The integer pixel motion estimation and fractional
pixel motion estimation. The search range of fractional pel
motion estimation in h.264 reference software is fixed to +3
for quarter pel accuracy case.
 Full fractional search it require 49 points.
Hierarchical fractional search reference software at ¼ pel
accuracy needs to check 17 search points. The fractional
pipeline is as fast as the integer pipeline, requiring the same
number of cycles to compute each search position.

B. Interpolation execution unit
 The engine supports both half and quarter-pel
motion estimation. The interpolation hardware is cycled
three times to first calculate the horizontal pixels, then the
vertical pixels, and finally the diagonal pixels.
The IEU calculates these half-pels using a six-tap filter as
defined in the H.264 standard. The IEU has a total of eight
systolic1-D interpolation processors, each with six
processing elements.
Which can broken into two steps,

In case of ½ pixel, 6 tap FIR filter is to be used
along with the weight (1/32, -5/32, 5/8, 5/8, -5/32, 1/32). 1
to ½ pixels tap indicates the number of pixels. 6 tap means 6
pixel in vertical or horizontal direction.

¼ pixel interpolations is to be made using ½ pixel
and original pixel that are calculated in step1 bilinear
interpolation is used for ¼ pixel basically using ½ pixel.

C. Integer execution unit
Integer pel motion estimation takes most of the

computational cost of the whole motion estimation. Each
functional unit is pipelined at 64 bit word. All the access to
reference and macro block memory is done through 64 bit
wide data buses and the SAD engine also operates in 64 bit
data in parallel. The memory is organized in 64 bit words
and typically access is unaligned.

Fig 2.Architecture with single execution unit.

IV. Conclusion
The presented processors are the support of

arbitrary fast motion estimation algorithms, integration of
fractional and integer-pel support, the availability of a
software toolset to ease the development of new motion
estimation algorithms and processors. The configurable
architecture with the more number of execution units. The
architecture have 4 integer pel execution unit 2 fractional
pel execution unit and 1 interpolation execution unit. The
integer is always pipelined. The partitions are calculated
sequentially but SAD cannot reuse. The large searches
ranges linear increase in hardware resources and
consequently increase in power consumption.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

Viji.M, S. Chitra
652

References
[1] D. Alfonso, F. Rovati, D. Pau, and L. Celetto, “An innovative,

programmable architecture for ultralow power motion estimation
in reduced memory MPEG-4 encoder,” in Dig. Tech. Papers Int.
Conf. Consumer Electron., 2002, pp. 344–345.

[2] K. Babionitakis, G. Doumenis, G. Georgakarakos, G. Lentaris, K.
Nakos, D. Reisis, I. Sifnaios, and N. Vlassopoulos, “A real-time
motion estimation FPGA architecture,” J. Real-Time Image Process.,
vol. 3, no. 1–2, pp. 3–20, Mar. 2008.

[3] C.-Y. Chen, S.-Y.Chien, Y.-W.Huang, T.-C.Chen, T.-C. Wang, and
L.-G. Chen, “Analysis and architecture design of variable block-size
motion estimation for H.264/AVC,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 53, no. 3, pp. 578–593, Mar. 2006.[Online].
Available: http://sharpeye.borelspace.com/.

[4] T. Dias, S. Momcilovic, N. Roma, and L. Sousa, “Adaptive motion
estimation processor for autonomous video devices,” EURASIP J.
Embedded Syst., vol. 2007, no. 1, p. 41-41, 2007.

[5] Y.-W. Huang, T.-C.Wang, B.-Y.Hsieh, and L.-G. Chen, “Hardware
architecture design for variable block size motion estimation in
MPEG-4 AVC/JVT/ITU-T H.264,” in Proc. ISCAS, May 2003, vol.
2, pp. 796–799.

[6] Y.-W. Huang, C.-Y.Chen, C.-H.Tsai, C.-F.Shen, and L.-G. Chen,
“Survey on block matching motion estimation algorithms and
architectures with new results,” J. VLSI Signal Process. Syst., vol. 42,
no. 3, pp. 297–320, 2006.

[7] C. Kalaycioglu, O. Ulusel, and I. Hamzaoglu, “Low power techniques
for motion estimation hardware,” in Proc. Int. Conf. Field
Programmable Logic Applic., Sep. 2009, pp. 180–185.

[8] C.-Y. Kao and L. Youn-Long, “AnAMBA-compliant motion
estimator for H.264 advanced video coding,” in Proc. IEEE Int. SoC
Design Conf., Seoul, Korea, Oct. 2004, pp. 200–206.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

