
COCOMO II Implementation Using Perceptron Learning Rule

Ridhika Sharma1 , Dr. R. Rama Kishore2

1M.Tech (IT) Scholar , 2Asstt. Prof.
Guru Gobind Singh Indraprastha University , New Delhi

Abstract:
Software cost and effort estimation is the

most critical task in handling software projects. Since
it is very difficult to bridge the gap between
estimated cost and actual cost, hence the accurate
cost estimation is one of the challenging tasks in
maintaining software projects. In software industry
the most widely used model for effort estimation is
Constructive Cost Model (COCOMO). In this paper,
the author explores the use of perceptron learning
rule to implement COCOMO II for effort estimation.
This work proposes an estimation model that
incorporates COCOMO II with perceptron learning
rule to provide more accurate software estimates at
early phase of software development, so that the
estimated effort is more close to the actual effort.

Keywords: COCOMO II, Neural Networks,

Perceptron learning rule.

1.Introduction

Software cost and effort estimate is one of the most

important activities in software project management

[35]. It is the accuracy of cost and effort calculation

that enable quality growth of software at a later stage

[1, 9]. With an effective estimate of software cost and

effort, software developers can efficiently decide

what recourses are to be used frequently and how

efficiently these resources can be utilized. For

efficient software, accurate software development

parameters are required, these include effort

estimation, development time estimation, cost

estimation, team size estimation, risk analysis, etc.

.Since the effort and cost estimation is done at an

early stage of software development; hence a good

model is required to calculate these parameters

accurately [19].

In past few decades several researchers have worked

in the field of software effort estimation, and many

conventional models were designed to estimate

software, size and effort [6]. The models developed

were based on mathematical formula and software

development factors. One of the most frequently used

model to estimate software effort is COCOMO

developed by Berry Boehm. These models require

inputs which are difficult to obtain at early stages of

software development. Moreover these models take

Values of software development factors based on

experience and approximation, with zero reasoning

Capability [2, 3]. Due to few such limitations of

conventional algorithmic models,non-

algorithmicmodels [21, 22, 23, 24] based on Soft

Computing came into picture, which include Neural

Network, Fuzzy logic and Genetic algorithms.

The non-algorithm based algorithm [10,12,and 14]

work with real life situations and a vast flexibility for

software development factors was provided. In this

paper a neural network technique using perceptron

learning algorithm for software cost estimation which

is based on COCOMO II model is proposed.

Perceptron model is supervised model of neural

network where weights are updated depending on the

teacher’s response. Many researchers are working in

implementing software effort and cost estimation in

neural networks [4,5,and 13].

The paper is organized in following sections: section

1 describes introduction, sections 2 and 3 describes

COCOMO II model and neural network using

perceptron learning rule. Section 4 discusses the

related work and proposed neural network model and

its algorithm is described in section 5. Experimental

results and evaluation criteria are shown in section 6.

Section 7 ends the paper with a conclusion.

2. COCOMO II Model

There are many software cost estimation techniques

[27] and models which are classified as algorithmic

and non-algorithmic approach [14,25,and

26].Software development efforts estimation is the

process of predicting the most realistic use of effort

required to develop or maintain software based on

incomplete, uncertain and/or noisy input. Effort

estimates may be used as input to project plans,

iteration plans, budgets, and investment analyses,

pricing processes and bidding rounds.The use of a

repeatable, clearly defined and well

understood software development process has, in

recent years, shown itself to be the most effective

method of gaining useful historical data that can be

used for statistical estimation. In particular, the act of

sampling more frequently, coupled with the

loosening of constraints between parts of a project,

has allowed more accurate estimation and more rapid

development times. Estimating is defined as [35]

3247

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

“The process of forecasting or approximating the

time and cost of completing project deliverables.” Or

“The task of balancing the expectations of

stakeholders and the need for control while the

project is implemented “

COCOMO (Constructive Cost Model) is a model that

allows software project managers to estimate project

cost and duration. It was developed initially

(COCOMO ’81) by Berry Boehm in early eighties.

The COCOMO II model is a COCOMO’81 update

for software development during 1990’s and 2000’s.

The COCOMO II Post Architectural Model [7, 8, and

11] predicts software development effort, Person

Month (PM) as shown in equation 1.

PM = A. (Size)
 1.01

i. I ………….. (1)

It has a set of 17 multiplicative cost drivers (EM)[31,

32] and a set of 5 scaling cost drivers to determine

the project’s scaling exponent (SF). These scaling

cost drivers replace the development modes (Organic,

semidetached, or Embedded) in the original

COCOMO 81 model, and refine the four exponent-

scaling factors in Ada COCOMO. All of the cost

drivers are described below. There are multiple

factors that affect project cost. COCOMO II model

defines 17 parameters called cost drivers that have a

major influence on project cost.

1. Personnel

 a.ACAP (Analyst Capability)

 b. APEX(Application Experience)

 c. PCAP(ProgrammerCapability)

 d. PLEX(Platform Experience)

 e. LTEX (Language and Tool Experience)

 f. PCON(PersonnelContinuity)

2. Platform

 a. TIME(Time Constraint)

 b. STOR(Storage Constraint)

 c. PVOL(Platform Volatility)

3. Product

 a. RELY(Required Software)

 b. DATA(Database Size)

 c. CPLX(ProductComplexity)

 d. RUSE(Required Reusability)

 e. DOCU(Documentation match to life cycle

needs)

4. Project

 a. TOOL ((Use of Software Tools)

 b. SCED (Required Development Schedule)

 c. SITE(Multisite Development Schedule)

Scale factors are new in COCOMO II. They modify

second coefficient in formula 1 (coefficient b). The

effect of scale factor is in 1.01 – 1.26 range.

1.PREC (Precedence)

2. PMAT(Process Maturity)

3. TEAM(Team Cohesion)

4. FLEX (Development Flexibility)

5. RESL (Architectural and Risk Resolution)

Each driver can accept one of the six possible ratings

: Very Low(VL) , low(L) , Nominal (N), High(H) ,

Very High(VH) , and extra high (XH). Table 1 [11]

shows the apriority values assigned to each rating

before calibrating.

Driver Sym VL L N H VH XH

PREC SF1 0.05 0.04 0.03 0.02 0.01 0.0

FLEX SF2 0.05 0.04 0.03 0.02 0.01 0.0

RESL SF3 0.05 0.04 0.03 0.02 0.01 0.0

TEAM SF4 0.05 0.04 0.03 0.02 0.01 0.0

PMAT SF5 0.05 0.04 0.03 0.02 0.01 0.0

RELY EM1 0.75 0.88 1.00 1.15 1.40

DATA EM2 0.94 1.00 1.08 1.16

CPLX EM3 0.75 0.88 1.00 1.15 1.30 1.65

RUSE EM4 0.89 1.00 1.16 1.34 1.56

DOCU EM5 0.85 0.93 1.00 1.08 1.17

TOME EM6 1.00 1.11 1.30 1.66

STOR EM7 1.00 1.06 1.21 1.56

PVOL EM8 0.87 1.00 1.15 1.30

ACAP EM9 1.5 1.22 1.00 0.83 0.67

PCAP EM10 1.37 1.16 1.00 0.87 0.74

PCON EM11 1.26 1.11 1.00 0.91 0.83

AEXP EM12 1.23 1.10 1.00 0.88 0.80

PEXP EM13 1.26 1.12 1.00 0.88 0.80

LTEX EM14 1.24 1.11 1.00 0.9 0.82

TOOL EM15 1.20 1.10 1.00 0.88 0.75

SITE EM16 1.24 1.10 1.00 0.92 0.85 0.79

SCED EM17 1.23 1.08 1.00 1.04 1.10

Table 1. Apriori Model Values

3. Neural Network

A Neural Network (NN) is an artificial,

computational model that simulates biological neural

networks.

Basically, a Neural Network consists of linked,

artificial neurons which are typically grouped to

input, hidden, and output layers. Depending on the

network structure, different network types can be

identified. In contrast to recurrent networks, Feed-

Forward Networks represent a directed acyclic graph.

Information is forwarded in one direction only,

consecutively processed by the input, hidden, and

output neurons. [15]

Neural networks consist of layers of interconnected

nodes, where each node produces a non-linear

function of its input. The nodes in the network are

divided into the ones from the input layer going

through the network to the ones at the output layer

through some nodes in a hidden layer. The NN

3248

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

process starts by developing the structure of the

network and establishing the technique used to train

the network with using an existing data set.

Therefore, there are three main entities:

1. the neurons (nodes),

2. the interconnection structure,

3. the learning algorithm

Artificial neural networks are the interconnection of

the artificial neurons. They are used to solve the

artificial intelligence problems without the need for

creating a real biological model. The neural network

used in our approach is perceptron neural network

[34].The perceptron is a network that learns concepts,

i.e. it can learn to respond with true (1) or False (0)

for inputs presented to it, by repeatedly studying

examples provided to it. This network weights and

biases could be trained to produce a correct target

vector when presented with the corresponding input

vector. The training technique used is called the

perceptron learning rule. Perceptron Neural network

is selected due to its ability to generalize from its

training vectors and work with randomly distributed

connections. Vectors from a training set are presented

to the network one after another. If the network’s

output is correct, no change is made. Otherwise, the

weights and biases are updated using the perceptron

learning rule. An entire pass through all of the input

training vectors is called an epoch. When such an

entire pass of training set has occurred without an

error, training is complete. At this time any input

training vector may be presented to the network, the

network will tend to exhibit generalization by

responding with an output similar to the target

vectors close to the previously unseen input vectors.

The activation function is one of the key components

of the perceptron as in the most common neural

network architectures. It determines based on the

inputs, whether the perceptron activates or not. The

perceptron takes all of the weighted input values and

adds them together. If the sum is above or equal to

some value (called the threshold) then the perceptron

fires. Otherwise, the perceptron does not [19].

Figure 1.Neural Network Model

4.Related Work

Many researchers used their different non algorithmic

models and different data sets to predict the software

effort more correctly [28,29,and 32]. Most of the

work in the application of neural network to estimate

effort use backpropogation algorithm and cascade

correlation network. [24]. ANN is a network of

nonlinear computing elements called neurons which

model the functionality of human brain. Anjana

Bawa [24] proposed a general ANN architecture

composed of 8 basic components. (i) Neurons, (ii)

Activation function, (iii) Signal function, (iv) Pattern

of connectivity, (v) Activity aggregation rule, (vi)

Activation rule, (vii) Environment. The model

implemented by Anupama Kaushik, et al. [19], is

trained using perceptron learning algorithm. The test

results from the trained neural network are compared

with COCOMO model. Nasser Tadayon [17]

explained the use of expert judgment and machine

learning technique using neural network as well as

referencing COCOMO II approach to predict the cost

of software. Ch.Satyananda Reddy [20] adopted feed

forward multilayer perceptron with linear activation

function to avoid slow convergence problem that is a

drawback of sigmoid activation function.

5. Proposed Neural Network

The main objective of the software cost and effort

estimation using perceptron learning rule is to

enhance the cost and effort estimation accuracy by

introducing the concept of perceptron learning rule

[33, 34] on COCOMO II model.
The proposed structure of the neural network with

perceptron learning is shown in figure 2.

Neural networks consist of layers of interconnected

nodes, where each node produces a non-linear

function of its input. The neural network structure,

3249

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

as shown in figure 4, used in our work consists of

three layers namely:

1.Input layer: The use of the neural network to

estimate PM (person-month) requires twenty-four

input nodes in the input layer in the proposed neural

network that corresponds to all EM and SF as well

as two bias values.

2. Hidden layer: In order to structure the network to

accomplish the COCOMO II post-architecture

model, a specific hidden layer and a sigmoid

activation function with some pre-processing of data

for input layer is considered

3. Output layer: there is only one neuron at the

output layer that will output the effort calculated

from the network in terms of PM (Person/month).

The proposed structure of neural network is

customized to accommodate the COCOMO II post

architectural model. There are 5 scale factors denoted

by SF and 17 effort multipliers denoted by EM.

These inputs enter the network as weighted inputs.

The effort is calculated using equation (1). The

weights are initialized as wi=1 for i=1 to 17 and vj=0

for j=1 to 5. The values of bias1 is log (a) and

bias2=1.01. All the inputs of Scale factors and effort

multipliers are provided through the neurons of input

layer as shown in figure 4 with bias.

As the propogation network uses summation of the

inputs but the COCOMO II model uses its

multiplication, a log function is used to neutralize

them. So, the equation obtained by Berry Boehm

model of effort estimation is modified as:

Log (Effort) = log (a*[size]
b
 * i=1 π

15
EMi)

The output obtained by the above equation [20], is

compared using the activation function and the output

signal is sent forward. According to the output of the

activation function, the weights applied on the inputs

are modified. When the output of activation function

is 1, the difference between the actual effort and the

effort calculated is found to check if it is the

permissible limit or not. If it is in the permissible

limit, the output is accepted else weights are adjusted.

This completes one epoch of the project.

This work proposes an estimation model that

incorporates Constructive Cost Model (COCOMO

II) with perceptron learning rule to provide more

accurate software estimates at the early phase of

software development. There are several on-going

researchers working on implementing COCOMO

using neural networks [16 , 17 , 18], but in this

research a neural network model is trained using

Perceptron learning approach to implement

COCOMO II post architectural model.

This model uses the advantages of artificial neural

networks such as learning ability and good

interpretability, while maintaining the merits of the

COCOMO II model. The aim of this study is to

enhance the estimation accuracy of COCOMO

model, so that the estimated effort is more close to

actual effort. The proposed structure of neural

network is customized to accommodate the

COCOMO II post architectural model. There are 5

scale factors denoted by SF and 17 effort multipliers

denoted by EM. The use of neural All the inputs of

Scale factors and effort multipliers are provided

through the neurons of input layer as shown in

figure 4 with bias. The net input of scale factors and

effort multipliers is calculated at each node of

hidden layer.

Figure 2: architecture of neural network.

Initialization: The weights associated with effort

multipliers are initialized as wi = 1 for I = 1 to 17,

learning rate α = 0.001 and bias1 =log (A). The

inputs are received and multiply to the weights and

provided to the network. The weights associated with

scale factors vj = 0for j = 1 to 5 and bias 2 is 1.01.

Abbreviations used:

 PM : Person per month

 A :

SIZE: Line of Code in KLOC

SF : Scale factors

EM : Effort Multipliers

 Q0 : Initial weight associated with scale

factors

 P0 : Initial weight associated with scale

factors

Step 1: Calculate PM according to COCOMO II

model of Berry Boehm

PMd = A. (Size)
 1.01

i . i

Step 2: Calculate output of hidden layer neuron as:

Net input to hidden layer node 1 (for scale factors (

wi is the weights)) = N1

3250

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

((q0 + log (size)) Bias1 +

 = P

F (net) i.e. output of hidden layer node 1 (for scale

factors) = F (N1)

F (N1) = 1/ 1 + exp (-N1) = S

Net input to hidden layer node 2 (for effort multiplier

(vj are the weights)) = N2

(P0 Bias +

F (net) i.e. output of hidden layer node 2 (for effort

multiplier) = F (N2)

F (N2) = 1/ 1 + exp (-N2) = T

Step 3: Calculate Net input to output layer node as:

PMa = SP + TQ

Where P and Q are weights from hidden layer nodes

to output layer node.

P =1 And, Q=1

Step 4: Check if (PMa>=PMd) then output =1 and

exit

Else output =0 and go to step 5

Step 5: weights are updated as.

Wt (new) = wt (old) + (desired o/p – actual o/p) *

input.

Go to step 2

For flowchart see Annexure 1.

6. Estimation Criteria and Results

The experiments are done with the proposed neural

network and are implemented in Visual Studio 2010.

In this thesis, a cost estimation model based on

artificial neural networks is constructed.

The evaluations consist of comparing the accuracy of

the estimated effort with the actual effort. There are

many evaluation criteria for software effort estimation

among them here MRE (Magnitude Of relative Error)

[36, 37] is used which is defined as:

MRE = *100

The MRE was calculated for each software project

based on the above equation. Table 5 [Annexure 2]

shows some of the experimental values which

weretested. These values are then compared with the

actual effort of the model. The comparison tells us

about the efficiency of our network. Each row of the

table corresponds to a project data which specifies the

size of the project, actual effort of the project, the cost

driver values and finally the effort calculated by our

project. The input values are entered in the project

through a GUI (Graphical User Interface). The model

is implemented in Visual Studio.

Table 6 [Annexure 3] shows the actual effort, the

estimated effort and the MRE value for the

experimented projects. Figure 4 is the graphical

representation of the actual and calculated effort of the

15 projects. Through this graph it can be observed that

the difference between the actual and the calculated

effort is quite less which shows that the proposed

algorithm is an accurate and precise algorithm.

Figure 4: Actual and Calculated Effort

7. Conclusion

Neural network architecture for multilayer perceptron

is used to implement COCOMO II model for

software effort estimation and the learning rule used

is Perceptron learning rule.

The architecture of the network is multilayer and

network is trained using Perceptron learning rule.

Proposed algorithm takes inputs viz. Scale factors,

Effort Multipliers and Size to calculate intermediate

values of hidden layers and sigmoid activation

function is applied to get the output of hidden

neurons, and the output node produces 0 or 1 i.e. true

or false based on the net input received at the output

node. Final results are shown using Visual Studio

2010 and mean error is calculated.

3251

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

Thus, it is concluded that the use of artificial neural

network algorithm to model the COCOMO II

estimation algorithm is an efficient way to find the

values of project estimates.

8. Future Scope

Here the most popular neural network approach viz.

Perceptron learning rule is suggested to predict the

software cost estimation. To get accurate results the

proposed neural network depends on adjustment of

weights from input to hidden layer of the perceptron

model. The proposed network is validated using 10

sample of different projects which is used to train and

test the designed neural network and found that the

Neural Network designed with perceptron learning

rule performs better in terms of efficiency and

estimation accuracy. This work can be extended by

integrating with various supervised learning

algorithms.

References

1. Boehm, B.W., “Software Engineering Economics”,

IEEE Transactions on software Engineering, SE-10,

1, pp. 4-21, January 1984.

2. REVIC, Software Cost Estimating Model User's

Manual, ver. 9, 1991

3. Jones, Capers, "Software Cost Estimation in 2002",

Crosstalk, The Journal of Defence Software

Engineering, Vol. 15 No.6, June 2002

4. Stamelos,etal.”Estimating the development cost of

custom software, information and management”,

V.40 n.8, pp729-741.

5. R.W.Jensom, “ Extreme Software Cost Estimating”,

Crosstalk, The Journal of Defence Software

Engineering, Vol. 15 No.6, June 2004

6. A.Albreeht, “Measuring Application Development

Productivity”, in IBM Application Development

Symp.1979, pp83-92.

7. Pressman, Roger, Software Engineering A

Practitioner's Approach, McGraw Hill, Boston, MA,

2001

8. Boehm, Barry, and others Software Cost Estimation

With COCOMO II, Prentice Hall, Upper Saddle

River, NJ, 2000

9. Warburton, R. D. H. (1983). "Managing and

predicting the costs of real-time software."IEEE

Transactions on Software Engineering 9(5): 562-569.

10. Symons (1991), Software Sizing and Estimating –

Mark II FPA, Wiley, UK.A.R.Venkatachalam,

Software Cost Estimation Using Artificial Neural

Networks. Proceedings of 1993 International Joint

Conference on Neural Networks.

11. SunitaDevnani-Chulani, Bradford Clark, Barry

Boehm, “Calibrating the COCOMO II Post –

Architectural Model”.

12. B. Boehm., Cost Models for Future Life Cycle

Process: COCOMO2. Annals of Software

Engineering. 1995 [25] Pankaj jalote, ―An

Integrated Approach for Software Engineering.‖ ,

Third Edition. ISBN: 978-81-7319-702-4.

13. J.P. Lewis, “Large Limits to software estimation”,

Software Engineering Notes, Vol. 26, No. 4, July

2001Stamelos, et al. “Estimating The Development

cost of custom software”, Information and

Management, v.40 n.8, pp.729-741, 2003

14. Anthony Senyard et al., “Software Engineering

Methods for neural Networks.” IEEE Proceedings of

the tenth Asia Pacific Software Engineering

Conference, (APSEC’03), PAGES468-477, 2003.

15. Karunanithi, N., etal. “Using neural networks in

reliability prediction”, IEEESoftware, pp.53-59,

1992.

16. Ali Idri , Samir Mbarki , Alain Abran ,Validating and

Understanding Software Cost Estimation Models

based on Neural Networks

17. Nasser Tadayon, Neural Network Approach of

Software Cost Estimation. Proceedings of the

International Conference on Information Technology:

Coding and Computing (ITCC’05) 0-7695- -2315-

3/05

18. Iman Attarzadeh , Amin Mehranzadeh , Ali Barati ,

Proposing an Enhanced Artificial Neural Network

Prediction Model to Improve Accuracy in Software

Effort Estimation , 2012 Fourth International

Conference on Computational Intelligence,

Communication Systems and Networks

19. Anupama Kaushik , Ashish Chauhan , Deepak Mittal,

Sachin Gupta , COCOMO Estimates using Neural

Networks , I.J. Intelligent Systems and Applications,

2012, 9, 22-28 Published Online August 2012 in

MECS

20. Ch. Satyananda Reddy, KVSVN Raju,a Concise

Neural Network Model for Estimating Software

Effort,International Journal of Recent Trends in

Engineering, Issue. 1, Vol. 1, May 2009

3252

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

21. Xishi Huang, Luiz F. Capretz, Jing Ren, Danny Ho,

Neuro Fuzzy Model for Software Cost Estimation

Proceedings of the Third International Conference

On Quality Software (QSIC’03)

22. Ali Idri , Alain Abran , Samir Mbarki ,An

Experiment on the Design of Radial Basis Function

Neural Networks For Software Cost Estimation

23. Harish Mittal , Pradeep Bhatia ,Optimization Criteria

for Effort Estimation using Fuzzy Technique , CLEI

ELECTRONIC JOURNAL, VOLUME 10,

NUMBER 1, PAPER 2, JUNE 2007.

24. Anjana Bawa , Mrs.Rama Chawala, Experimental

Analysis of Effort Estimation Using Artificial Neural

Network

25. Ali Bou Nassif , Luiz Fernando Capretz, Danny Ho

,Software Effort Estimation In Early Stages of the

Software life Cycle Using a Cascade Correlation

Neural Network Model , 2012 13th ACIS

International Conference on Software Engineering,

Artificial Intelligence, Networking and

Parallel/Distributed Computing

26. L.A. Zadeh, 2002, From Computing with numbers to

computing with words-from manipulation of

measurements to manipulation of perceptions, Int. J.

Appl. Math.Comut.Sci., 2002, Vol.12, No.3, 307-

324.

27. Vahid Khatibi, Dayang N. A. Jawawi , Software Cost

Estimation Methods: A Review , Journal of

Emerging Trends in Computing and Information

Sciences , Volume 2 No. 1, ISSN 2079-8407

28. Prasad Reddy P.V.G.D , Sudha K.R., Rama Shree P &

Ramesh S.N.S.V.S.C, Software Effort Estimation using

radial Basis and Generalized Regression Neural

Networks, Journal of Computing, Vol2, Issue5,

May2010’.

29. ZhiweiXu,TaghiM.Khoshgoftaar, Identification of

fuzzy models of software cost estimation, Fuzzy sets

and systems 145(2005) 141-163.

30. Mrinal Kanti Ghose, Roheet Bhatnagar and

VandanaBhattacharjee, “comparing Some Neural

Network Models for Software Development Effort

Prediction”, IEEE, 2011.

31. Ali Idri and Alan Abran, “COCOMO cost model using

fuzzy logic” Proceedings of 7
th

 International

Confrence on Fuzzy Theory and Technology, Atlantic

City, New Jersey, Feb27-Mar03,2000.

32. Boehm, B.W.,et al., “Cost models for future life cycle

processes: COCOMO 2.0” Annals of Software

Engineering on Software Process and Product

Measurement, Amsterdam, 1995.

33. Stephen Marsland,Jonathan Shapiro and Ulrich

Nehmzow. “Aself-organizing network that grows

when required”, Journal Neural Networks Vol15

Issue (8-9):1041-1058, 2002.

34. S.N.Sivanandam,S.N.Deepa, Principles of Soft

Computing,Wiley, India (2007).

35. YogeshSingh,K.K.Aggarwal, Software Engineering

and Estimation.

36. B.A.Kitchenham, L.M.Pickard, S.G.MacDonell and M.J

Shepperd, “What Accuracy Statistics Really

Measure.” IEEE Proc. – Software, vol.148, no.3, pp.

81-85, June, 2001.

37. Braind L.C., Emam K.E. Surmann D. and Wieczorek I.,

“An assessment and comparison of common

software cost estimation modelling techniques”,

ISERN – 1998-27.

3253

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

Annexure 1.

Annexure 2.

Output layerneuron

End

Input the value of 5

Scale Factors

Calculate net input for hidden

layer neuron 1

Input the value of 17

Effort Multipliers

Calculate the output of hidden

layer neuron 1 I.e. F(net1)

Calculate the output of hidden

layer neuron 2 i.eF(net2)

Start

Q
P

InitializeWeig

hts of SF as 0

Initialize EM

Weights for all

17 neuron as 1

Effort(PM) PS +QT

Initialize Weights

from hidden to

output layer

neurons(S, T) as 1

If Effort(NN)>=

Effort (COCOMO II)

Final effort

is displayed

All weights are

updated

Calculate net input for hidden

layer neuron 2

Initialization

NO

yes

3254

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

PROJE
CT

NO.

SIZE
(LCOC)

ACTUA
L

EFFORT
(PM)

SCALE FACTORS EFFORT MULTIPLIERS CALCU
LATED
EFFOR
T (PM)

VERY
LOW SF

LOW SF
NOMIN

AL SF
HIGH

SF

VERY
HIGH

SF

EXTRA
HIGH

SF

VERY
LOW

LOW
EM

NOMIN
AL EM

HIGH
EM

VERY
HIGH
EM

P1 3 9 TEAM PMAT RESL FLEX PREC

DATA
PVOL
SITE

TOOL

RELY
RUSE
TIME

SCED,
CPLX,
STOR,
PCAP

LTEX ,
AEXP ,
PEXP ,

ACAP ,
PCOM
, DOCU

 11.76
5

P2 6 10.03 PREC FLEX PMAT RESL TEAM
RELY
RUSE
TIME

DATA
PVOL
,SITE,
TOOL

ACAP ,
PCOM ,
DOCU

SCED,
CPLX,
STOR,
PCAP

LTEX ,
AEXP ,
PEXP ,

 11.38

P3 12 12.97 PMAT REASL TEAM PREC FLEX

SCED,
CPLX,
STOR

,
PCAP

LTEX ,
AEXP ,
PEXP ,

DATA ,
PVOL ,
SITE ,
TOOL

ACAP ,
PCOM
,DOCU

RELY ,
RUSE,
TIME ,

 12.97

P4 7 10.908 RESL FLEX TEAM PMAT PREC
LTEX
AEXP
PEXP

SCED,
CPLX,
STOR,
PCAP

ACAP ,
PCOM ,
DOCU

RELY ,
RUSE,
TIME ,

DATA ,
PVOL ,

SITE,
TOOL

 19.40
6

P5 10 12.554 FLEX PREC PMAT RESL TEAM

ACAP
PCO
M

DOC
U

LTEX ,
AEXP ,
PEXP ,

SCED,
CPLX,
STOR,
PCAP

DATA ,
PVOL ,

SITE,
TOOL

RELY ,
RUSE,
TIME ,

 22.98

P6 9 11.89 TEAM REASL PREC FLEX PMAT

TOOL
DATA
STOR
, SITE

SCED
TIME
RELY
PCON

RUSE ,
DOCU ,
PVOL ,
PCAP ,
LTEX

ACAP ,
AEXP ,

CPLX ,
PEXP

 12.79

P7 8 11.44 PREC PMAT RESL RESL TEAM

CPLX
TIME
TOOL
,RELY

SITE ,
PVOL ,
SCED ,
DOCU

STOR ,
DATA ,
ACAP ,
PCOM

LTEX ,
AEXP ,
PEXP ,

RUSE ,
PCAP

 12.66

P8 14 11.82 PMAT TEAM PREC FLEX RESL

STOR
,DAT
A,AC
AP ,
PLEX

DOCU
,RUSE,
PCOM
,APEX

SCED ,
PVOL ,
PCAP ,
TOOL

RELY ,
CPLX

TIME ,
SITE ,
LTEX ,

 13.28

P9 12 12.61 FLEX RESL PMAT PREC TEAM

TOOL
DATA
STOR
, SITE

ACAP
,AEXP

CPLX ,
PEXP

SCED
TIME
RELY
PCON

RUSE
,DOCU
, PVOL
, PCAP
, LTEX

 16.33

P10 10 11.01 FLEX PMAT TEAM PREC RESL

STOR
DATA
ACAP
PCO
M

RUSE
,PCAP

LTEX ,
AEXP ,
PEXP ,

CPLX ,
TIME ,
TOOL ,
RELY

SITE ,
PVOL ,
SCED ,
DOCU

 12.27

Table 1. Experimental Evaluation

3255

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

Annexure 3.

PROJECT NO. ACTUAL EFFORT (PM)
CALCULATED EFFORT

(PM)
MRE

P1 9.00 11.76 30.66

P2 10.03 11.38 13.45

P3 12.97 12.927 0

P4 10.90 19.406 78.03

P5 12.55 22.98 83.10

P6 11.89 12.79 7.56

P7 11.44 12.66 10.66

P8 11.82 13.28 12.35

P9 12.61 16.33 29.50

P10 11.01 12.27 11.44

Table 2. Evaluation Criteria

3256

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721

