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Abstract: 
Software cost and effort estimation is the 

most critical task in handling software projects. Since 
it is very difficult to bridge the gap between 
estimated cost and actual cost, hence the accurate 
cost estimation is one of the challenging tasks in 
maintaining software projects. In software industry 
the most widely used model for effort estimation is 
Constructive Cost Model (COCOMO). In this paper, 
the author explores the use of perceptron learning 
rule to implement COCOMO II for effort estimation. 
This work proposes an estimation model that 
incorporates COCOMO II with perceptron learning 
rule to provide more accurate software estimates at 
early phase of software development, so that the 
estimated effort is more close to the actual effort. 
 
Keywords: COCOMO II, Neural Networks, 

Perceptron learning rule. 

 

1.Introduction 

 

Software cost and effort estimate is one of the most 

important activities in software project management 

[35]. It is the accuracy of cost and effort calculation 

that enable quality growth of software at a later stage 

[1, 9]. With an effective estimate of software cost and 

effort, software developers can efficiently decide 

what recourses are to be used frequently and how 

efficiently these resources can be utilized. For 

efficient software, accurate software development 

parameters are required, these include  effort 

estimation, development time estimation, cost 

estimation, team size estimation, risk analysis, etc.   

.Since the effort and cost estimation is done at an 

early stage of software development; hence a good 

model is required to calculate these parameters 

accurately [19]. 

In past few decades several researchers have worked 

in the field of software effort estimation, and many 

conventional models were designed to estimate 

software, size and effort [6]. The models developed 

were based on mathematical formula and software 

development factors. One of the most frequently used 

model to estimate software effort is COCOMO 

developed by Berry Boehm. These models require 

inputs which are difficult to obtain at early stages of 

software development. Moreover these models take  

 

 

Values of software development factors based on 

experience and approximation, with zero reasoning  

Capability [2, 3]. Due to few such limitations of 

conventional algorithmic models,non-

algorithmicmodels [21, 22, 23, 24] based on Soft 

Computing came into picture, which include Neural 

Network, Fuzzy logic and Genetic algorithms. 

The non-algorithm based algorithm [10,12,and 14] 

work with real life situations and a vast flexibility for 

software development factors was provided. In this 

paper a neural network technique using perceptron 

learning algorithm for software cost estimation which 

is based on COCOMO II model is proposed. 

Perceptron model is supervised model of neural 

network where weights are updated depending on the 

teacher’s response. Many researchers are working in 

implementing software effort and cost estimation in 

neural networks [4,5,and 13].  

The paper is organized in following sections: section 

1 describes introduction, sections 2 and 3 describes 

COCOMO II model and neural network using 

perceptron learning rule. Section 4 discusses the 

related work and proposed neural network model and 

its algorithm is described in section 5. Experimental 

results and evaluation criteria are shown in section 6. 

Section 7 ends the paper with a conclusion.  

 

2. COCOMO II Model 

 

There are many software cost estimation techniques 

[27] and models which are classified as algorithmic 

and non-algorithmic approach [14,25,and 

26].Software development efforts estimation is the 

process of predicting the most realistic use of effort 

required to develop or maintain software based on 

incomplete, uncertain and/or noisy input. Effort 

estimates may be used as input to project plans, 

iteration plans, budgets, and investment analyses, 

pricing processes and bidding rounds.The use of a 

repeatable, clearly defined and well 

understood software development process has, in 

recent years, shown itself to be the most effective 

method of gaining useful historical data that can be 

used for statistical estimation. In particular, the act of 

sampling more frequently, coupled with the 

loosening of constraints between parts of a project, 

has allowed more accurate estimation and more rapid 

development times. Estimating is defined as [35] 
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“The process of forecasting or approximating the 

time and cost of completing project deliverables.” Or 

“The task of balancing the expectations of 

stakeholders and the need for control while the 

project is implemented “ 

COCOMO (Constructive Cost Model) is a model that 

allows software project managers to estimate project 

cost and duration. It was developed initially 

(COCOMO ’81) by Berry Boehm in early eighties. 

The COCOMO II model is a COCOMO’81 update 

for software development during 1990’s and 2000’s. 

The COCOMO II Post Architectural Model [7, 8, and 

11] predicts software development effort, Person 

Month (PM) as shown in equation 1. 

PM = A. (Size)
 1.01

i. I ………….. (1) 

It has a set of 17 multiplicative cost drivers (EM)[31, 

32] and a set of 5 scaling cost drivers to determine 

the project’s scaling exponent (SF). These scaling 

cost drivers replace the development modes (Organic, 

semidetached, or Embedded) in the original 

COCOMO 81 model, and refine the four exponent-

scaling factors in Ada COCOMO. All of the cost 

drivers are described below. There are multiple 

factors that affect project cost. COCOMO II model 

defines 17 parameters called cost drivers that have a 

major influence on project cost. 

1. Personnel 

    a.ACAP (Analyst Capability) 

    b. APEX(Application Experience) 

    c. PCAP(ProgrammerCapability) 

    d. PLEX(Platform Experience) 

    e. LTEX (Language and Tool Experience) 

    f. PCON(PersonnelContinuity) 

2. Platform 

    a. TIME(Time Constraint) 

    b. STOR(Storage Constraint) 

    c. PVOL(Platform Volatility) 

3. Product 

    a. RELY(Required Software) 

    b. DATA(Database Size) 

    c. CPLX(ProductComplexity) 

    d. RUSE(Required Reusability) 

    e. DOCU(Documentation match to life cycle 

needs) 

4. Project  

    a. TOOL ((Use of Software Tools) 

    b. SCED (Required Development Schedule) 

    c. SITE(Multisite Development Schedule) 

 

Scale factors are new in COCOMO II. They modify 

second coefficient in formula 1 (coefficient b). The 

effect of scale factor is in 1.01 – 1.26 range.  

 

1.PREC (Precedence) 

2. PMAT(Process Maturity) 

3. TEAM(Team Cohesion) 

4. FLEX (Development Flexibility) 

5. RESL (Architectural and Risk Resolution) 

Each driver can accept one of the six possible ratings 

: Very Low(VL) , low(L) , Nominal (N), High(H) , 

Very High(VH) , and extra high (XH). Table 1 [11] 

shows the apriority values assigned to each rating 

before calibrating.  

 

Driver Sym VL L N H VH XH 

PREC SF1 0.05 0.04 0.03 0.02 0.01 0.0 

FLEX SF2 0.05 0.04 0.03 0.02 0.01 0.0 

RESL SF3 0.05 0.04 0.03 0.02 0.01 0.0 

TEAM SF4 0.05 0.04 0.03 0.02 0.01 0.0 

PMAT SF5 0.05 0.04 0.03 0.02 0.01 0.0 

RELY EM1 0.75 0.88 1.00 1.15 1.40  

DATA EM2  0.94 1.00 1.08 1.16  

CPLX EM3 0.75 0.88 1.00 1.15 1.30 1.65 

RUSE EM4  0.89 1.00 1.16 1.34 1.56 

DOCU EM5 0.85 0.93 1.00 1.08 1.17  

TOME EM6   1.00 1.11 1.30 1.66 

STOR EM7   1.00 1.06 1.21 1.56 

PVOL EM8  0.87 1.00 1.15 1.30  

ACAP EM9 1.5 1.22 1.00 0.83 0.67  

PCAP EM10 1.37 1.16 1.00 0.87 0.74  

PCON EM11 1.26 1.11 1.00 0.91 0.83  

AEXP EM12 1.23 1.10 1.00 0.88 0.80  

PEXP EM13 1.26 1.12 1.00 0.88 0.80  

LTEX EM14 1.24 1.11 1.00 0.9 0.82  

TOOL EM15 1.20 1.10 1.00 0.88 0.75  

SITE EM16 1.24 1.10 1.00 0.92 0.85 0.79 

SCED EM17 1.23 1.08 1.00 1.04 1.10  

Table 1. Apriori Model Values 

3. Neural Network 

 

A Neural Network (NN) is an artificial, 

computational model that simulates biological neural 

networks. 

Basically, a Neural Network consists of linked, 

artificial neurons which are typically grouped to 

input, hidden, and output layers. Depending on the 

network structure, different network types can be 

identified. In contrast to recurrent networks, Feed-

Forward Networks represent a directed acyclic graph. 

Information is forwarded in one direction only, 

consecutively processed by the input, hidden, and 

output neurons. [15] 

Neural networks consist of layers of interconnected 

nodes, where each node produces a non-linear 

function of its input. The nodes in the network are 

divided into the ones from the input layer going 

through the network to the ones at the output layer 

through some nodes in a hidden layer. The NN 
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process starts by developing the structure of the 

network and establishing the technique used to train 

the network with using an existing data set. 

 

 

Therefore, there are three main entities:  

1. the neurons (nodes),  

2. the interconnection structure,  

3. the learning algorithm 

Artificial neural networks are the interconnection of 

the artificial neurons. They are used to solve the 

artificial intelligence problems without the need for 

creating a real biological model.  The neural network 

used in our approach is perceptron neural network 

[34].The perceptron is a network that learns concepts, 

i.e. it can learn to respond with true (1) or False (0) 

for inputs presented to it, by repeatedly studying 

examples provided to it. This network weights and 

biases could be trained to produce a correct target 

vector when presented with the corresponding input 

vector. The training technique used is called the 

perceptron learning rule. Perceptron Neural network 

is selected due to its ability to generalize from its 

training vectors and work with randomly distributed 

connections. Vectors from a training set are presented 

to the network one after another. If the network’s 

output is correct, no change is made. Otherwise, the 

weights and biases are updated using the perceptron 

learning rule. An entire pass through all of the input 

training vectors is called an epoch. When such an 

entire pass of training set has occurred without an 

error, training is complete. At this time any input 

training vector may be presented to the network, the 

network will tend to exhibit generalization by 

responding with an output similar to the target 

vectors close to the previously unseen input vectors. 

The activation function is one of the key components 

of the perceptron as in the most common neural 

network architectures. It determines based on the 

inputs, whether the perceptron activates or not. The 

perceptron takes all of the weighted input values and 

adds them together. If the sum is above or equal to 

some value (called the threshold) then the perceptron 

fires. Otherwise, the perceptron does not [19]. 

 

 
 

Figure 1.Neural Network Model 

 

4.Related Work 

 

Many researchers used their different non algorithmic 

models and different data sets to predict the software 

effort more correctly [28,29,and 32]. Most of the 

work in the application of neural network to estimate 

effort use backpropogation algorithm and cascade 

correlation network. [24]. ANN is a network of 

nonlinear computing elements called neurons which 

model the functionality of human brain. Anjana 

Bawa [24] proposed a general ANN architecture 

composed of 8 basic components. (i) Neurons, (ii) 

Activation function, (iii) Signal function, (iv) Pattern 

of connectivity, (v) Activity aggregation rule, (vi) 

Activation rule, (vii) Environment. The model 

implemented by Anupama Kaushik, et al. [19], is 

trained using perceptron learning algorithm. The test 

results from the trained neural network are compared 

with COCOMO model. Nasser Tadayon [17] 

explained the use of expert judgment and machine 

learning technique using neural network as well as 

referencing COCOMO II approach to predict the cost 

of software. Ch.Satyananda Reddy [20] adopted feed 

forward multilayer perceptron with linear activation 

function to avoid slow convergence problem that is a 

drawback of sigmoid activation function. 

 

5. Proposed Neural Network 

 

The main objective of the software cost and effort 

estimation using perceptron learning rule is to 

enhance the cost and effort estimation accuracy by 

introducing the concept of perceptron learning rule 

[33, 34] on COCOMO II model.  
The proposed structure of the neural network with 

perceptron learning is shown in figure 2.  

Neural networks consist of layers of interconnected 

nodes, where each node produces a non-linear 

function of its input. The neural network structure, 
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as shown in figure 4, used in our work consists of 

three layers namely: 

1.Input layer: The use of the neural network to 

estimate PM (person-month) requires twenty-four 

input nodes in the input layer in the proposed neural 

network that corresponds to all EM and SF as well 

as two bias values. 

2. Hidden layer: In order to structure the network to 

accomplish the COCOMO II post-architecture 

model, a specific hidden layer and a sigmoid 

activation function with some pre-processing of data 

for input layer is considered 

3. Output layer: there is only one neuron at the 

output layer that will output the effort calculated 

from the network in terms of PM (Person/month).  

The proposed structure of neural network is 

customized to accommodate the COCOMO II post 

architectural model. There are 5 scale factors denoted 

by SF and 17 effort multipliers denoted by EM. 

These inputs enter the network as weighted inputs. 

The effort is calculated using equation (1). The 

weights are initialized as wi=1 for i=1 to 17 and vj=0 

for j=1 to 5. The values of bias1 is log (a) and 

bias2=1.01. All the inputs of Scale factors and effort 

multipliers are provided through the neurons of input 

layer as shown in figure 4 with bias.  

As the propogation network uses summation of the 

inputs but the COCOMO II model uses its 

multiplication, a log function is used to neutralize 

them. So, the equation obtained by Berry Boehm 

model of effort estimation is modified as: 

Log (Effort) = log (a*[size]
b
 * i=1 π

15
EMi) 

The output obtained by the above equation [20], is 

compared using the activation function and the output 

signal is sent forward. According to the output of the 

activation function, the weights applied on the inputs 

are modified. When the output of activation function 

is 1, the difference between the actual effort and the 

effort calculated is found to check if it is the 

permissible limit or not. If it is in the permissible 

limit, the output is accepted else weights are adjusted. 

This completes one epoch of the project. 

This work proposes an estimation model that 

incorporates Constructive Cost Model (COCOMO 

II) with perceptron learning rule to provide more 

accurate software estimates at the early phase of 

software development. There are several on-going 

researchers working on implementing COCOMO 

using neural networks [ 16 , 17 , 18], but in this 

research a neural network model is trained using 

Perceptron learning approach to implement 

COCOMO II post architectural model.  

This model uses the advantages of artificial neural 

networks such as learning ability and good 

interpretability, while maintaining the merits of the 

COCOMO II model. The aim of this study is to 

enhance the estimation accuracy of COCOMO 

model, so that the estimated effort is more close to 

actual effort. The proposed structure of neural 

network is customized to accommodate the 

COCOMO II post architectural model. There are 5 

scale factors denoted by SF and 17 effort multipliers 

denoted by EM. The use of neural All the inputs of 

Scale factors and effort multipliers are provided 

through the neurons of input layer as shown in 

figure 4 with bias. The net input of scale factors and 

effort multipliers is calculated at each node of 

hidden layer. 

 
Figure 2: architecture of neural network. 

Initialization: The weights associated with effort 

multipliers are initialized as wi = 1 for I = 1 to 17, 

learning rate α = 0.001 and bias1 =log (A). The 

inputs are received and multiply to the weights and 

provided to the network. The weights associated with 

scale factors vj = 0for j = 1 to 5 and bias 2 is 1.01. 

Abbreviations used:  

 PM    : Person per month 

 A       : 

SIZE: Line of Code in KLOC 

SF      : Scale factors 

EM     : Effort Multipliers 

  Q0        : Initial weight associated with scale 

factors 

 P0        : Initial weight associated with scale 

factors 

 

Step 1: Calculate PM according to COCOMO II 

model of Berry Boehm 

PMd = A. (Size)
 1.01  

i . i 

Step 2: Calculate output of hidden layer neuron as: 

Net input to hidden layer node 1 (for scale factors ( 

wi is the weights)) = N1 
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((q0 + log (size)) Bias1 + 

 = P 

F (net) i.e. output of hidden layer node 1 (for scale 

factors) = F (N1)  

F (N1) = 1/ 1 + exp (-N1) = S 

Net input to hidden layer node 2 (for effort multiplier 

( vj are the weights)) = N2 

(P0 Bias +   

F (net) i.e. output of hidden layer node 2 (for effort 

multiplier) = F (N2) 

F (N2) = 1/ 1 + exp (-N2) = T 

Step 3: Calculate Net input to output layer node as: 

PMa = SP + TQ  

Where P and Q are weights from hidden layer nodes 

to output layer node. 

 

P =1 And,  Q=1 

Step 4: Check if (PMa>=PMd) then output =1 and 

exit 

Else output =0 and go to step 5 

Step 5: weights are updated as. 

 

Wt (new) = wt (old) + (desired o/p – actual o/p) * 

input. 

Go to step 2 

For flowchart see Annexure 1. 
 

6. Estimation Criteria and Results 

 

The experiments are done with the proposed neural 

network and are implemented in Visual Studio 2010. 

In this thesis, a cost estimation model based on 

artificial neural networks is constructed.  

The evaluations consist of comparing the accuracy of 

the estimated effort with the actual effort. There are 

many evaluation criteria for software effort estimation 

among them here MRE (Magnitude Of relative Error) 

[36, 37] is used which is defined as: 

MRE = *100 

The MRE was calculated for each software project 

based on the above equation. Table 5 [Annexure 2] 

shows some of the experimental values which 

weretested. These values are then compared with the 

actual effort of the model. The comparison tells us 

about the efficiency of our network. Each row of the 

table corresponds to a project data which specifies the 

size of the project, actual effort of the project, the cost 

driver values and finally the effort calculated by our 

project. The input values are entered in the project 

through a GUI (Graphical User Interface). The model 

is implemented in Visual Studio. 

Table 6 [Annexure 3] shows the actual effort, the 

estimated effort and the MRE value for the 

experimented projects. Figure 4 is the graphical 

representation of the actual and calculated effort of the 

15 projects. Through this graph it can be observed that 

the difference between the actual and the calculated 

effort is quite less which shows that the proposed 

algorithm is an accurate and precise algorithm.  

 
 

Figure 4: Actual and Calculated Effort 

 

 

7. Conclusion 

 

Neural network architecture for multilayer perceptron 

is used to implement COCOMO II model for 

software effort estimation and the learning rule used 

is Perceptron learning rule. 

The architecture of the network is multilayer and 

network is trained using Perceptron learning rule. 

Proposed algorithm takes inputs viz. Scale factors, 

Effort Multipliers and Size to calculate intermediate 

values of hidden layers and sigmoid activation 

function is applied to get the output of hidden 

neurons, and the output node produces 0 or 1 i.e. true 

or false based on the net input received at the output 

node. Final results are shown using Visual Studio 

2010 and mean error is calculated.  
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Thus, it is concluded that the use of artificial neural 

network algorithm to model the COCOMO II 

estimation algorithm is an efficient way to find the 

values of project estimates.  

 

8. Future Scope 

 

Here the most popular neural network approach viz. 

Perceptron learning rule is suggested to predict the 

software cost estimation. To get accurate results the 

proposed neural network depends on adjustment of 

weights from input to hidden layer of the perceptron 

model. The proposed network is validated using 10 

sample of different projects which is used to train and 

test the designed neural network and found that the 

Neural Network designed with perceptron learning 

rule performs better in terms of efficiency and 

estimation accuracy. This work can be extended by 

integrating with various supervised learning 

algorithms. 
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Annexure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Annexure 2. 

Output layerneuron 

End 

Input the value of 5 

Scale Factors 

Calculate net input for hidden 

layer neuron 1 

Input the value of 17 

Effort Multipliers 

Calculate the output of hidden 

layer neuron 1 I.e. F(net1) 

Calculate the output of hidden 

layer neuron 2 i.eF(net2) 

Start 

Q 
P 

InitializeWeig

hts of SF as 0 

Initialize  EM 

Weights for all 

17 neuron as 1 

 

Effort(PM)  PS +QT 

Initialize Weights 

from hidden to 

output layer 

neurons(S, T) as 1 

 

If Effort(NN)>= 

Effort (COCOMO II) 

Final effort 

is displayed 

All weights are 

updated 

Calculate net input for hidden 

layer neuron 2 

Initialization 

NO 

yes 
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PROJE
CT 

NO. 

SIZE 
(LCOC) 

ACTUA
L 

EFFORT 
(PM) 

SCALE FACTORS EFFORT MULTIPLIERS CALCU
LATED    
EFFOR
T (PM) 

VERY 
LOW SF 

LOW SF 
NOMIN

AL SF 
HIGH 

SF 

VERY 
HIGH 

SF 

EXTRA 
HIGH 

SF 

VERY 
LOW 

LOW 
EM 

NOMIN
AL EM 

HIGH 
EM 

VERY 
HIGH 
EM 

P1 3 9 TEAM PMAT RESL FLEX PREC   

DATA  
PVOL    
SITE    

TOOL 

RELY 
RUSE 
TIME  

SCED, 
CPLX, 
STOR, 
PCAP 

LTEX , 
AEXP , 
PEXP , 

ACAP , 
PCOM 
, DOCU 

 11.76
5 

P2 6 10.03 PREC   FLEX PMAT RESL TEAM 
RELY 
RUSE 
TIME  

DATA  
PVOL  
,SITE,   
TOOL 

ACAP , 
PCOM , 
DOCU 

SCED, 
CPLX, 
STOR, 
PCAP 

LTEX , 
AEXP , 
PEXP , 

 11.38 

P3 12 12.97 PMAT REASL TEAM PREC   FLEX 

SCED, 
CPLX, 
STOR

, 
PCAP 

LTEX , 
AEXP , 
PEXP , 

DATA  ,  
PVOL  ,  
SITE ,   
TOOL 

ACAP , 
PCOM 
,DOCU 

RELY , 
RUSE, 
TIME , 

 12.97 

P4 7 10.908 RESL FLEX   TEAM PMAT PREC 
LTEX 
AEXP 
PEXP  

SCED, 
CPLX, 
STOR, 
PCAP 

ACAP , 
PCOM , 
DOCU 

RELY , 
RUSE, 
TIME , 

DATA  , 
PVOL  ,  

SITE,   
TOOL 

 19.40
6 

P5 10 12.554 FLEX PREC PMAT RESL TEAM   

ACAP 
PCO
M 

DOC
U 

LTEX , 
AEXP , 
PEXP , 

SCED, 
CPLX, 
STOR, 
PCAP 

DATA  , 
PVOL  ,  

SITE,   
TOOL 

RELY , 
RUSE, 
TIME , 

 22.98 

P6 9 11.89 TEAM REASL PREC   FLEX PMAT 

TOOL  
DATA
STOR 
, SITE 

SCED 
TIME 
RELY 
PCON 

RUSE , 
DOCU , 
PVOL , 
PCAP , 
LTEX 

ACAP , 
AEXP , 

CPLX , 
PEXP 

 12.79 

P7 8 11.44 PREC PMAT RESL RESL TEAM   

CPLX 
TIME 
TOOL 
,RELY 

SITE , 
PVOL , 
SCED , 
DOCU 

STOR , 
DATA , 
ACAP , 
PCOM 

LTEX , 
AEXP , 
PEXP , 

RUSE , 
PCAP 

 12.66 

P8 14 11.82   PMAT TEAM PREC FLEX RESL 

STOR 
,DAT
A,AC
AP , 
PLEX 

DOCU 
,RUSE, 
PCOM 
,APEX 

SCED , 
PVOL , 
PCAP , 
TOOL 

RELY , 
CPLX 

TIME , 
SITE , 
LTEX , 

 13.28 

P9 12 12.61 FLEX RESL   PMAT PREC TEAM 

TOOL 
DATA 
STOR 
, SITE 

ACAP 
,AEXP  

CPLX , 
PEXP 

SCED 
TIME 
RELY 
PCON 

RUSE 
,DOCU 
, PVOL 
, PCAP 
, LTEX 

 16.33 

P10 10 11.01   FLEX PMAT TEAM PREC RESL 

STOR  
DATA  
ACAP
PCO
M 

RUSE 
,PCAP 

LTEX , 
AEXP , 
PEXP , 

CPLX , 
TIME , 
TOOL , 
RELY 

SITE , 
PVOL , 
SCED , 
DOCU 

 12.27 

 

Table 1. Experimental Evaluation 
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Annexure 3. 

 

PROJECT NO. ACTUAL EFFORT (PM) 
CALCULATED    EFFORT 

(PM) 
MRE 

P1 9.00 11.76 30.66 

P2 10.03 11.38 13.45 

P3 12.97 12.927 0 

P4 10.90 19.406 78.03 

P5 12.55 22.98 83.10 

P6 11.89 12.79 7.56 

P7 11.44 12.66 10.66 

P8 11.82 13.28 12.35 

P9 12.61 16.33 29.50 

P10 11.01 12.27 11.44 
 

Table 2. Evaluation Criteria 

 

3256

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60721


