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Abstract—Segmentation of pheochromocytomas in 

Contrast-Enhanced Computed Tomography (CECT) images 

is an ill-posed problem due to the presence of weak 

boundaries, intratumoral degeneration, and nearby structures 

and clutter. Additional information from different phases of 

CECT images needs to be imposed for better mass 

segmentations.A novel  co-segmentation method is proposed 

by incorporating a localized region-based level set model 

(LRLSM). The energy function is formulated with 

consideration of adaptive tradeoff between the 

complementary local information from image. Gradient 

direction and shape dissimilarity measure are integrated to 

guide the level set evolution. Automatic localization radius 

selection is added to further facilitate the segmentation. 
 
Index Terms—localized energy, contrast-enhanced computed 

tomography (CECT), co-segmentation, level set model, 

pheochromocytoma.  

 
I. INTRODUCTION 

Pheochromocytomas are tumors arising from 

chromaffin tissue of the adrenal medulla or extra-adrenal 

paraganglia. Although in general, the prevalence of 

pheochromocytomas in outpatient clinics is low the potent 

effects of secreted catecholamines lead to serious and 

potentially life-threatening cardiovascular complications . 

Accounting for about 10% of masses are malignant that 

need radical surgical removal of tumor tissue. Correct and 

noninvasive characterization of pheochromocytomas is of 

critical importance because any handling of these masses 

can precipitate a hypertensive crisis. Imaging techniques 

like Ultrasound, Computed Tomography (CT), Magnetic 

Resonance (MR) and Functional Imaging have been shown 

to be useful . Especially, CT is preeminent in adrenal 

imaging and most pheochromocytomas are detected during 

CT scanning with and without contrast .  
 Contrast-enhanced CT (CECT) is a primary imaging 
modality for its ability to differentiate two types of adrenal 
tumors: pheochromocytoma and drenal adenoma, which 
are difficult to be distinguished in an unenhanced CT 
image. Besides, small pheochromocytomas tend to be solid 
and large ones contain various forms of intratumoral 
degeneration, such as cystic changes, necrosis, hemorrhage 
and calcifications. CECT scans produce a better diagnosis 
by displaying distinct attenuation values to different types 
of degeneration. In clinical practice, a CECT usually has 
two phases, the arterial phase (AP) and the portal-venous 
phase (PP). PP images are typically acquired 30 seconds 
after AP. As a result of temporally varying proportions of 

contrast medium, pheochromocytomas and surrounding 
abdominal structures exhibit dissimilar density 
distributions between AP and PP images. To inspect 
pheochromocytomas, urologists commonly combine 
detailed and complementary anatomical image information 
at different phases 

 

II. LITERATURE SURVEY 

Mass characterization plays a significant role in the 

diagnosis, prognosis and treatment of pheochromocytomas. 

The characterization primarily relies on the assessment of 

attenuation values and density heterogeneity [4], [8]. 

Accurate tumor segmentation and precisely delineated 

contours are the prerequisite for quantitative 

measurements. In clinical applications, the contours of 

pheochromocytomas in CECT images at AP and PP are 

manually drawn by experts [5]-[7]. However, manual 

segmentation is time-consuming, subjective and highly 

dependent on the experts’ experience. When masses 

compress surrounding organs, blurred or missing 

boundaries may lead to manual errors. Moreover, various 

types of intratumoral degeneration and surrounding clutter 

give rise to complex foreground and background that 

complicate the delineation. Automated or semi-automated 

segmentation methods would have improvements in 

efficiency and accuracy. Computer-aided CT tumor 

segmentation has become an active field of research. 

Methods are mainly divided into three groups: graph-based, 

learning-based and deformable models. Graph cuts 

methods are employed for either initial liver segmentation 

or hepatic tumors using constraints such as shape and 

enhancement [9], [10]. However, the heterogeneity of large 

masses and the partial volume effect of CT imaging 

severely affect the performance of graph-based methods. 

Machine learning techniques are introduced to the 

classification of tumors and healthy tissues as well as 

different types of lesions [11], [12]. Learning-based 

methods allow the usage of high-dimensional features to 

achieve a better discriminatory power, whereas the spatial 

correlation between pixels is hardly considered. To 

complement the drawbacks, Keshani et al. combined an 

active contour model (ACM) for accurate segmentation of 

lung nodules [13]. Including ACM, deformable models are 

influential and successful in the CT tumor segmentation. 

Especially, level set models (LSMs) embedding the 

dynamic curves and surfaces are advantageous to represent 

complex topology and handle topological changes [14].  
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III. PROPOSED MEHOD 

 

The proposed method is applied to the 

pheochromocytoma co-segmentation in CECT image pairs. 

Our method has three steps: initialization, co-segmentation 

level set formulation and energy function minimization. 

The details are described in the following sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.Block diagram of proposed mehod 

 

A.Initialization  

 

The input is a given image  Ik, k∈{0,1}, of the 

same pheochromocytoma at AP or PP. Because patients are 

informed with breath-holding requirements during image 

acquisition, the mass at different phases present slight 

differences. Compared to other organs, 

pheochromocytomas are much smaller and the difference 

often could be neglected. Either one in the AP or PP image 

can be the basic of the initialization. The user simply needs 

to place three points to define an ellipse which is regarded 

as the initial contour. One point is placed near the center of 

the mass and the other two points are placed to 

approximate the endpoints of the major and minor axes. 

 

B.Co-segmentation Level Set Formulation 

 

To incorporate the co-segmentation into the 

LRLSM framework, LSFs φk corresponding to Ik are 

generated from the same initial contour. Based on the 

initial contour, localization radius is automatically chosen 

to reduce the user interaction. In the co-segmentation 

process, each LSF is evolved based on the local statistics of 

the image  and the constraint of the other LSF. For image Ik 

of each image , a new energy function is proposed . 

E(φk)=λl
k.Length(φk)+λs

k.Shape(φk,φ1-k)+                                                  

∫Ωδφk(x)[λi
kƒL(Ik,φk,rk)+λ0

kƒL(I1-k,φk,r1-k)]dx                   (1) 

The novel f L(I1-k, φk, r1-k)represents local statistics 

inside and outside the evolving zero level set of LSF φk on 

the other image I1-k of the image pair. Hence, localized 

energies of each image pair Ik and  I1-k  are integrated to 

guide the evolution of φk. Moreover, the shape term 

Shape(φk, φ1-k) is introduced to penalize the dissimilarity 

between the two LSFs φk and φ1-k along the co-

segmentation process. Therefore, the complementary image 

information, such as boundary, location and shape, are 

utilized.  

Furthermore, unlike the global region-based flow 

of existing co-segmentation LSMs, the proposed energy 

function enforces the use of local image data in the 

pheochromocytoma segmentation. The LRLSM is 

integrated for not only its capability to keep the zero level 

set from boundary leakage in the cases with weak edges, 

but also its advantage in the cases with density 

inhomogeneity. To flexibly utilize the LRLSM, the sum of 

two localized region-based energies from the image pair is 

calculated under the adaptive weights λi
k and λo

k
 . In 

addition, the gradient direction is incorporated into the 

length term Length(φk) to evolve the zero level set to 

converge to the object boundaries.  

 

1)Length term and gradient direction  

Clinical studies shows that pheochromocytomas 

present inhomogeneous density levels. Intratumoral 

degeneration forms the hole and results in inner edges. 

Surrounding tissues and organs may close or even be 

compressed by masses, which leads to ambiguous 

boundaries. To avoid being attracted to undesired edges, 

we integrate the gradient direction into the level set 

framework. A general edge-detector with respect to the 

image gradient can be defined by a positive and decreasing 

function. The edge-detector function g has the low value 

close to zero at edges while indicates the high value close 

to 1 in homogeneous regions. 

 

2) Shape term 

Pheochromocytoma in each image pair has 

similarity with respect to the shape and the location. To 

penalize the difference between two zero LSFs, we exploit 

two Heaviside functions as a dissimilarity measure of two 

shape representations . The shape dissimilarity measure in 

is defined as 

Shape(φk, φ1-k)= ∫[Hφk(x)(1- Hφ1-k(x))+ 

                                             Hφ1-k(x)(Hφk(x))]dx             (2)                                               

where Shape(φk, φ1-k) denotes the disagreement between 

the classifications of the foreground and background in the 

image pair, the foreground and background in image Ik are 

labeled by Hφk and (1- Hφk ) respectively, and those of the 

other image I1-k are indicated by Hφ1-k and (1- Hφ1-k) 

respectively.In our method, the co-segmentation is done 

through a mutual procedure in which two LSFs are evolved 

and refined alternately. In other words, only the segmenting 

zero level set is evolved on each iteration, and the other 

LSF is employed as a dynamic shape prior.  

 

3) Automated selection of localization radius 

The localization radius r in the LRLSM is 

manually selected by the user based on the proximity of the 

scale of the object and the presence of the nearby clutter 

Input CECT image 

Diagnosis of tumor 

segmentation 

Weak 

bouondaries 

Complex 

foreground 

and 

background 

LRLSM result 
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.Herein, we introduce an automated way that makes use of 

the initial contour to approximate the size of the tumor and 

the presence of surrounding clutter. For image Ik , the value 

of localization radius is set as: 

         rk = round(√S /2(vk+1)                             (3)     

where rk is the localization radius, S denotes the area 

covered by the initial contour, vk corresponding to Ik 

depicts the local variation ratio, two constants 2 and 1 

guarantee rk  to be in a rational range, that is 5 to 15 pixels 

for most cases. The local variation ratio vk is defined as:  

 

             vk = mean((exp(var (yo)/mean(yo))2))                   (4)                                  

 

where x0 is the pixel on the initial contour C0, y0 is the 

pixel falling into the localization ball B0(x0, y0) centered at 

x0 of initial radius r0 = 10 pixels. 

The initial contour lies not far away from the 

pheochromocytoma boundaries. Hence, the value of S is 

able to approximate the mass size. The value of Vk reflects 

the homogeneity degree of local regions along the initial 

contour and estimates the presence of nearby clutter. It has 

small values in homogeneous regions and produces large 

values at edges or in the local regions corrupted by the 

clutter. Therefore, a large radius rk is defined in the case of 

a large mass with homogeneous boundaries whereas small 

radii are chosen in the cases of small masses having 

surrounding clutter.  

 
C. Energy Function Minimization 

The  co-segmentation  energy  function  is  

expressed  as :                                         

E(φk)=λl
k∫Ωgkδ(φk(x)) | ∇φ(x)|dx+λs

k.∫Ω[Hφk(x)(1-Hφ1-

k(x))+ Hφ1-k(x)(1- Hφk(x))]dx+ ∫Ωδφk(x)(1-

ωk)ƒL(Ik,φk,rk)+ωk                             ƒL(I1-k,φk,r1-k)]dx .                                                        

(5) 

By taking the first variation with respect to φk, we obtain 

the evolution equation represented as  

𝜕φ/ 𝜕t= δφk(x)[ λI divgk (∇φ(x)/|∇φ(x)|)+λs
k(2 Hφ1-k(x)-1) 

+(1- ωk) ∇ ƒL(Ik,φk,rk)+  ωk  ∇ƒL(I1-k,φk,r1-k)                   (6) 

 LSFs corresponding to the image pair  are evolved and 

refined alternately by minimizing the co-segmentation 

energy function.The evolution of  LSF is based on the data 

of the image pair. Besides, a new convergence test is 

introduced to stop the iteration process once the desired 

contours are obtained. 

 

IV. EXPERIMENTAL RESULTS 

 

Though patients are instructed to hold their breath 

during CT scanning, images may still exhibit slight 

difference at two phases. To verify that choosing the AP or 

PP image for initialization were both feasible, different 

forms of initial contour placement were conducted. 

The ground truth is initialized with complexed 

foreground and background image. The same initial 

contour for all test algorithms was depicted. Hence, 

proposed method performed consistenly well in the case 

with complex foreground and background. The efficiency 

and minimum operator interaction were highly valued in 

clinical practice. This method merely required the user to 

set  points to define an ellipse as the initial contour. The 

initialization method is simple and feasible and highly 

reduces the manual labor for physicians. Afterwards, there 

was no operator interaction for the co-segmentation in 

images.  
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V. CONCLUSION. 

 

A novel LRLSM-based method to the 

pheochromocytoma co-segmentation in CECT images. The 

energy function is formulated from the localized energies 

from images. Gradient direction, shape dissimilarity 

measure and automated localization radius selection are 

integrated to further facilitate the segmentation. Then,  

LSFs are evolved and refined alternately through a mutual 

procedure to achieve the energy function minimization.. By 

taking advantage of the local-region based complementary 

information from image pairs, the proposed method 

performed consistently well in the cases with weak 

boundaries and complex foreground and background.  

In clinical practice, accurate manual 

segmentation and measurements of pheochromocytomas 

rely on referencing of relevant image data from multiple 

phases and also adjacent slices. Improvements will be the 

use of information from image sequences or volumes, 

such as 3-D pheochromocytoma segmentation. Automatic 

detection and segmentation of pheochromocytomas will 

further elevate the efficiency. Based on the proposed co-

segmentation method, future work will be extension to 

applications of other tumors at different phases. 
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