
Cloud Automation with Configuration

Management using CHEF Tool

Ramandeep Singh, Dr. Ravindra Kumar Purwar

USICT, GGSIPU

Abstract:- Automated, efficient software deployment is

essential for today’s modern cloud hosting providers. With

advances in cloud technology, on demand cloud services

offered by public providers are becoming gradually powerful,

anchoring the ecosystem of cloud services. Moreover, the

DevOps teams are in much bigger focus now since they are

responsible for the automation and provisioning of the whole

environment along with the client application. This paper

focuses upon the automation of customer application right

from environment provisioning to application deployment.

According to a white paper by Vision Solutions, 59% of

Fortune 500 companies experienced a minimum of 1.6 hours of

downtime per week. This means that for a company who has

10,000 employees who on average make a salary of $30 per

hour, or $60,000 per year, this downtime can potentially create

a loss of $480,000 weekly or nearly 25 million dollars annually,

not including the cost of benefits, loss of sales, or negative

impact to the reputation of the provider from services being

unavailable. Therefore, it is of the utmost importance for a

company’s servers to have their services installed, configured,

and running as quickly as possible and as consistent as possible

to help reduce costs. This translates into automated

deployment and configuration.

Keywords:- Cloud computing, Cloud Service Models, Cloud

delivery models, Configuration Management, automation, Chef,

Puppet, Ansible.

1. INTRODUCTION (Cloud and Configuration

Management)

1.1 Overview

DevOps is a blend of two terms – development and

operations. It is considered to be the most effective way to

foster collaboration and eliminate the walls of confusion that

exist between software developers and operations teams, by

way of shared experiences and suggested solutions [2].

DevOps has been identified as a phenomenon whereby

stakeholders of a software development team work together

to deliver software continuously, allowing the business to

seize emerging and existing market opportunities while

reducing the

time required for inclusion of client feedback. However,

little has been done to develop adoption

strategies/frameworks for this phenomenon. The absence of

such strategies may result in DevOps not being adequately

communicated and its impact not fully comprehended in

both the practitioner and academic research communities.

This study investigates the factors that are hindering the

adoption of DevOps and proposes strategies to address them

using both literature study and interviews with practitioners

actively involved in the DevOps movement[2]. A proposed

conceptual framework has been developed both to strategize

the adoption of DevOps, and to contribute input for future

research.

DevOps is one of the most popular approaches for software

delivery nowadays. Even though there is no unified

definition of DevOps, there is wide consensus about the set

of practices that are part of it[1]. Two of those practices are

Infrastructure as Code and Continuous Delivery, which

bring new artifacts into the Software Development lifecycle.

These new artifacts have direct impact on Software

Configuration Management, which is a well-known practice

that has been around for decades in the Software

Engineering discipline. In particular, these new practices

have a direct impact on Version Control. This article

describes a Version Control Strategy to manage these new

artifacts introduced by DevOps initiatives. The proposed

strategy covers the identification of artifacts, versioning

tools,version naming conventions and traceability between

different artifacts versions. The strategy was validated in

three cases of real world projects where it was successfully

applied. Each case corresponds to a different kind of

organization and in each case a different set of tools where

used. Based on these cases, benefits and possible

improvements are identified.

Cloud computing is a model for enabling global, convenient,

on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned

and released with minimal management effort or service

provider interaction [7]. This cloud model is composed of

five essential characteristics, three service models, and four

deployment models.

1.2 What is Cloud Computing?

Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort

or service provider interaction [8]. This cloud model is

composed of five essential characteristics, three service

models, and four deployment models.

For a service to be considered a cloud service, it must have

the following “Essential features:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS040166
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 04, April-2019

140

www.ijert.org
www.ijert.org
www.ijert.org

On-demand self-service

Broad network access

Resource pooling

Rapid elasticity and Measured service

1.3 Introduction to Cloud Service Models

Fig 1: Types of Cloud Services Models [7]

1.4 Types of Cloud/ Introduction to cloud delivery models

Cloud delivery models refer to how a cloud solution is used

by an organization, where the data is located, and who

operates the cloud solution [2]. Cloud computing supports

multiple delivery models that can deliver the capabilities

needed in a cloud solution.

The cloud delivery models are as follows:

• Public cloud

• Private cloud

• Hybrid cloud

• Community cloud

Table 1: Types of Cloud Delivery Models [8]

(1.4.1) Public clouds

A public cloud is one in which the cloud infrastructure is

made available to the general public or a large industry

group over the Internet. The infrastructure is not owned by

the user, but by an organization that provides cloud services.

Services can be provided either at no cost, as a subscription,

or as a pay-as-you-go model.

Examples of public clouds include IBM SoftLayer, Amazon

Elastic Compute Cloud (EC2), Google AppEngine, and

Microsoft Azure App Service [8].

(1.4.2) Private clouds

A private cloud refers to a cloud solution where the

infrastructure is provisioned for the limited use of a single

organization. The organization often acts as a cloud service

provider to internal business units that obtain all the benefits

of a cloud without having to provision their own

infrastructure. By consolidating and centralizing services

into a cloud, the organization benefits from centralized

service management and economies of scale.

A private cloud provides an organization with some

advantages over a public cloud. The organization gains

greater control over the resources that make up the cloud. In

addition, private clouds are ideal when the type of work

being done is not practical for a public cloud because of

network latency, security, or regulatory concerns.

A private cloud can be owned, managed, and operated by the

organization, a third party, or a combination. The private

cloud infrastructure is usually provisioned on the

organization’s premises, but it can also be hosted in a data

centre that is owned by a third party.

(1.4.3) Community clouds

A community cloud shares the cloud infrastructure across

several organizations in support of a specific community

that has common concerns (for example, mission, security

requirements, policy, and compliance considerations). The

primary goal of a community cloud is to have participating

organizations realize the benefits of a public cloud, such as

shared infrastructure costs and a pay-as-you-go billing

structure, with the added level of privacy, security, and

policy compliance that is usually associated with a private

cloud [8].

(1.4.4) Hybrid clouds
A hybrid cloud is a combination of various cloud types

(public, private, and community). Each cloud in the hybrid

mix remains a unique entity, but is bound to the mix by

technology that enables data and application portability.

The hybrid approach allows a business to take advantage of

the scalability and cost-effectiveness of off-premise third-

party resources without revealing applications and data

beyond the corporate intranet [8]. A well-constructed hybrid

cloud can service secure, mission-critical processes, such as

receiving customer payments (a private cloud service), and

secondary processes such as employee payroll processing (a

public cloud service).

The challenge for a hybrid cloud is the difficulty in

effectively creating and governing such a solution. Services

from various sources must be obtained and provisioned as

though they originated from a single location, and

interactions between on-premises and off-premise

components make the employment even more complicated.

Table 2: Few Cloud Providers[9]

2. CLOUD AND CONFIGURATION MANAGEMENT

2.1 How cloud is related to Configuration Management?

Cloud and cloud services have become more popular in

recent years. In the cloud hosting industry, companies have

found that costs can be reduced by improving up-time in

servers and creating a scalable server based on load.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS040166
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 04, April-2019

141

www.ijert.org
www.ijert.org
www.ijert.org

According to a white paper by Vision Solutions, 59% of

Fortune 500 companies experienced a minimum of 1.6 hours

of downtime per week . This means that for a company who

has 10,000 employees who on average make a salary of $30

per hour , or $60,000 per year, this downtime can potentially

create a loss of $480,000 weekly or nearly 25 million dollars

annually, not including the cost of benefits, loss of sales, or

negative impact to the reputation of the provider from

services being unavailable. Consequently, it is of the utmost

importance for a company’s servers to have their services

installed, configured, and running as quickly as possible and

as consistent as possible to help reduce costs. This translates

into automated deployment and configuration.

2.2 What is Configuration Management?

Configuration management (CM) is a systems

engineering process for establishing and maintaining

consistency of a product's performance, efficient, and

physical attributes with its requirements, design, and

operational information throughout its life [2].

Configuration management can be used to maintain OS

configuration files.

Various tools for Configuration Management include

Ansible, Bcfg2, CFEngine, Chef, Otter, Puppet, SaltStack

etc [2].

3. AUTOMATION TOOLS

3.1 Chef

This is a system and cloud infrastructure automation tool for

installing applications and software to bare metal, virtual

machine, and container-based clouds [1]. The configuration

is written in Ruby DSL, and it uses the concepts of

organizations, environments, cookbooks, recipes and

resources, all driven by supplied or derived attributes. The

tool has a set of control parts that work together to provide

its functionality. Chef Workstation is used to control the

deployment of configurations from the Chef Server to Chef

managed nodes. Nodes are bootstrapped with agents and

pull configurations from the server. The core is developed in

Erlang and is designed to provide scale to tens of thousands

of servers [1]. It is developed around an infrastructure-as-a-

code model with version control integral to the workstation.

Directives run top to bottom, and the cookbooks, does not

matter how many times are running, generate the same

result.

Fig 3: Architecture of Chef [1]

There are three main components:

• Chef Server is the most important part

because it stores the whole configuration data

for all nodes. It has also the role to

administrate the access rights.

• Chef Workstation is the place where the

cookbooks, recipes and all of the

configuration parts are created (to be

deployed to Chef Nodes through Chef

Server).

• Chef Nodes are the places were the

cookbooks, recipes and all of the

configuration parts are stored.

Advantages

• Large community of cookbooks and

development tools.

• Ability to handle physical, virtual, and

containers deployments.

• Provides hosted services.

• Excellent at managing operating system.

Disadvantages

• Complex to set up the entire stuff because it

requires good understanding of Ruby.

• Huge amount of documentation.

• It requires an agent to be installed and pulled

configuration

4. IMPLEMENTATION

4.1 Creating/Copying a file on multiple servers

A number of times, we have a requirement to copy the exact

same file on hundreds of servers. Its practical to create a file

on a couple of servers but creating a file with exact same

content on hundreds of servers is cumbersome and waste of

manpower. Hence, with tools like CHEF, we can create a

file using the defined resources and have the file deployed

on any number of servers.

In the figures below, we create a file by writing a small

script in the cookbook. Also, for user creation, use

the resource ”user” to add users, update existing users,

remove users, and to lock/unlock user passwords.

Moreover, Use the package resource to manage packages.

This resource is the base resource for several other

resources used for package management on specific

platforms. While it is possible to use each of these specific

resources, it is recommended to use the package resource as

often as possible. All we need to do is to upload the

cookbook to the server which is linked to the clients (on

which configuration changes have to be deployed).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS040166
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 04, April-2019

142

www.ijert.org
www.ijert.org
www.ijert.org

Fig 4: Creating and uploading a cookbook for file creation

Executing a cookbook on client and Display the data of

file

Fig 5: Executing a cookbook on client for file creation

4.2 Creating a User on multiple servers

Fig 6: Creating and uploading a cookbook for user creation

Fig 7: Executing a cookbook on client for user configuration

4.3 Installation of software packages on multiple servers

All of us have installed a number of software packages in

our daily life. In organizational servers, there are a few

packages which have to be present/install as basic packages

on almost all the servers. Such packages if installed

individually on each server would take a lot of time. Hence,

configuration tools like CHEF reduces the time and effort to

a considerable amount.

Let’s install nmap package which is used for port scanning

purpose.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS040166
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 04, April-2019

143

www.ijert.org
www.ijert.org
www.ijert.org

Fig 8: Installing a software package-nmap

Fig 9: Executing a cookbook to install nmap package

The package nmap is installed as we can see above. By using

the mentioned command, we can use nmap for port

scanning.

nmap -v 192.168.127.129 -p 22, where -v means verbose

and -p means port to be scanned.

Nmap can also provide further information on targets,

including reverse DNS names, operating system guesses,

device types, and MAC addresses.

Hence, this is the beauty of automation and configuration

tools like CHEF, they make our daily tasks much more

easier and less time consuming, reduces the manpower and

cost also.

4.4 Creating and configuring a web server/web page

Chef can be used to install/configure a web server/web page

also.You can host your own website using this.In this we are

configuring Apache web server. The primary Apache

configurationfile is /etc/httpd/conf/httpd.conf.

Fig 10: Installing/configure apache web Server

Create index.html file

The index.html file is the default file a web server will serve

up when you access the website. In

the /var/www/html directory, create a file with the

name index.html. Add the content. PFB thindex.html

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS040166
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 04, April-2019

144

www.ijert.org
www.ijert.org
www.ijert.org

Fig 11:Executing a cookbook to install/configure apache

Once mentioned below pre-requisites done, then check

apache service:

• Package httpd should be installed

• Index.html should be there in /var/www/html

• Apache service should be running

Fig 12: Checking apache service status

As apache is running we can see above, so lastly open any

browser, and hit the server’s ip then you can or able to see

your own customizable website/webpage.You can

customize your index.html as per your requirement and then

can automate this process by using CHEF tool.

This is how you can create your own customizable

website/webpage easily.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS040166
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 04, April-2019

145

www.ijert.org
www.ijert.org
www.ijert.org

Fig 13: Customizable website/webpage using CHEF TOOL

5. CONCLUSION

The manual installation, updation and configuration of

software packages requires a lot of manpower and time. We

have compared the manual installation with automation

tools in order to provide a accurate cloud deployment. The

solution can be easily scaled by cloning the cookbook/

playbook or module for the Compute node and by increment

assigning of IP addresses. The automation tools decrease the

time required to complete the tasks mentioned from a few

hours to few minutes.

Fig 14: Performance Evaluation of Automation tools v/s doing it manually

[1]

6.ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to my

mentor Dr. Ravindra Kumar Purwar, Associate Professor of

USICT, who gave me an opportunity to do a research and

review on the topic “Cloud Automation with Configuration

Management”, which helped me in doing my work and

prepared myself with the vast knowledge of the related area.

I am thankful to him.

7. REFERENCES
[1] Nicolás Paez, Versioning Strategy for DevOps Implementations,

Department of Science and Technology Universidad Nacional de

Tres de Febrero, IEEE 2018, pp. 1-6.
[2] Morgan B. Kamuto, Josef J. Langerman, Factors Inhibiting the

Adoption of DevOps in Large Organisations: South African

Context, 2017 2nd IEEE International Conference On Recent
Trends InElectronics Information & Communication Technology,

pp. 48-51

[3] Eduard Luchian, Cosmin Filip, Andrei Bogdan Rus, Iustin-
Alexandru Ivanciu, Virgil Dobrota, Automation of the

Infrastructure and Services for an OpenStack Deployment Using

Chef Tool, IEEE International Conference on Cloud Engineering
IC2E, 2017, pp. 295-302.

[4] James O. Benson, John J. Prevost, and Paul Rad, Survey of

Automated Software Deployment for Computational and
Engineering Research, IEEE Transactions, 2016.

[5] Dmitry Duplyakin and Robert Ricci, Introducing Configuration

Management Capabilities into CloudLab Experiments, IEEE
INFOCOM International Workshop on Computer and Networking

Experimental Research Using Testbeds, 2016, pp. 453-458

[6] M. Boschetti and P. Ruiu, A Cloud automation platform for
flexibility in applications and resources provisioning, 9th

International Conference on Complex, Intelligent, and Software

Intensive Systems, 2015, pp. 204-208
[7] Gregory Katsaros, Alexander Lenk, Michael Menzel, Jannis Rake,

Ryan Skipp, Jacob Eberhardt, Cloud application portability with

TOSCA, Chef and Openstack, IEEE International Conference on
Cloud Engineering, 2014, pp. 295-302.

[8] Nishant Kumar Singh, Sanjeev Thakur, Himanshu Chaurasiya and

Himanshu Nagdev, Automated Provisioning of Application in
IAAS Cloud using Ansible Configuration Management,1st

International Conference on Next Generation Computing

Technologies (NGCT-2015) Dehradun, India, 4-5 September
2015, pp. 81-85.

[9] Johannes Hintsch, Carsten G¨orling, and Klaus Turowski,

Modularization of Software as a Service Products: A Case Study
of the Configuration Management Tool Puppet, Third International

Conference on Enterprise Systems, 2015, pp. 184-191

[10] http://www.globaldots.com/cloud-computing-types-of-cloud/
[11] http://www.redbooks.ibm.com/redpapers/pdfs/redp4873.pdf

[12] https://CiscoDevNet/devnet-1008-private-public-or-hybrid-cloud-

which-cloud-should-i-choose

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS040166
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 04, April-2019

146

www.ijert.org
www.ijert.org
www.ijert.org

