
Cloud Application Programming Interface Based On REST Framework.

Vijay. G. R *, Dr. A. Rama Mohan Reddy**

*(PhD Scholar Department of Computer Science & Engg, JNTUA, Anantapur, A.P, India)

** (Professor, Dept. of CSE, SVU College of Engineering, Tirupati, A.P, India)

Abstract

A Cloud Application Programming Interface (Cloud

API) is a type of API that enables the development of

applications and services used for the provisioning of

cloud hardware, software, and platforms.

A cloud API serves as a gateway or interface that

provides direct and indirect cloud services to users.

In this paper we discussed about A cloud API is the

core component behind any public cloud solution and

is generally based primarily on the REST

(Representational State Transfer)and SOAP (Simple

Object Access Protocol) frameworks, as well as

cross-platform and vendor specific APIs.

A cloud API interacts with a cloud infrastructure to

allocate computing, storage, and network resources

for requested cloud applications or services.

Cloud APIs vary according to the provided service or

solution, as follows: Infrastructure as a Service

(IaaS): Infrastructure APIs provision raw computing

and storage. Software as a Service (SaaS): Software

or application APIs provision connectivity and

interaction with a software suite.

1. Introduction

We live in an application economy. Increasingly, the

primary digital mode of engagement between

businesses and their customers, partners, and even

employees is through apps. To deliver services via

apps, most businesses develop Application

Programming Interfaces (APIs) that support machine-

to-machine interactions over the Web.

Programmable Web has determined that there are

more than 5,000 APIs available on the Web today.

Cloud solutions are primarily integrated through

APIs. APIs as the glue of Software as a Service

(SaaS) and data gets into and out of the cloud, and

from enterprise to enterprise.

It’s only now that enterprises are learning best

practices for running and securing APIs. It’s not

enough to offer an API, it needs to be reliable,

scalable, and secure. Many enterprises don’t really

know how to offer APIs with the same security and

service level as their enterprise applications.

The vast majority of developers today are trained and

working in a lightweight, simple architectural style

called REST (Representational State Transfer), which

is ideal for the biggest sector of the app market,

mobile devices.

But many of the first-generation APIs were written

using SOAP (Simple Object Access Protocol) or

other variations on web services. Enterprises offering

APIs will need to speak REST to the outside world in

order to continue to grow.

2. Cloud Overview

A few years ago, Google capitalized on the idea of

using huge clusters of cheap computers and building

software with a high fault tolerance, so that when its

machines would go down, the overall system would

still function properly. Amazon used the same

approach, with a twist. The company's vast,

distributed architecture lent itself to a standardized

provisioning of computing resources. As the

provisioning process became more standardized, and

it became easier for Amazon to roll out new services,

the company started selling on-demand access to its

massive, distributed computing infrastructure.

For example, Go Grid, offers flexible server

specifications and interconnection options. An

organization provides an application infrastructure

with database, security, workflow, and other

capabilities already in place. Ning emphasizes

simplicity, giving its users the ability to roll their own

social networks without any programming

knowledge.

3. Application Programming Interfaces

An Application-Programming Interface is one of the

key technical facilitators of cloud computing. Besides

the obvious usage of an API to access services like

Simple Storage Service (S3), Third-Party

Applications that add graphical user interfaces to

cloud services such as Amazon Elastic Compute

Cloud (EC2) and Twitter also take advantage of APIs

to access the services.it's probably true, at least in the

current state of how we interface with cloud

2202

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60736

providers. Cloud computing is not simply another

type of Application Service Provider (ASP) offering.

The ASP and hosting providers of years gone by

offered a set of software services. These services

were tied to specific hardware and software

configurations.

In brief, cloud computing draws its strength from its

connections to the outside world, through APIs.

These APIs fall into three general categories:

a. Control APIs, which allow cloud infrastructure to

be added, reconfigured, or removed in real time,

either by human control or programmatically based

on traffic, outages, or other factors

b. Data APIs, which are the conduits through which

data flow in and out of the cloud.

c. Application Functionality APIs, which enable the

functionality that end users interact with, such as

shopping carts, wikis, and widgets.

4. REST Resources and Architecture

Representational State Transfer (REST) relies on a

stateless, client-server, cacheable communications

protocol and in virtually all cases, the HTTP protocol

is used.

For example, you can:

• Retrieve summary information about the API

versions available to you.

• Obtain detailed information about a object such as

an Account or a Custom object.

• Obtain detailed information about objects, such as

User or a custom object.

• Perform a query or search.

• Update or delete records.

Generally the simple REST services systems are

divided as following types.

 Resources - The resources of your system

which implement the HTTP methods POST,

GET, PUT, DELETE. For each request

received, it uses the modules of the utils

package and the communication provided

with dao, if necessary. The resources also

have the task of interpret the result , possible

failures and response to the client.

 Utils - The utility classes as also related to

Data Transformation.

 DAO - The classes with the pattern

DAO (Data Access Object), responsible for

the database transactions

REST is a new architecture for web services that is

having a significant impact on the industry. Most of

the new public web services from large vendors

(Google, Yahoo, Amazon, and Microsoft) rely on

REST as the technology for sharing and merging

information from multiple sources. The motivation

behind REST web services is what drives the

progress of technology: to make complex things

simpler.

The first generation web services relied on

exchanging XML packets conforming to SOAP

(Simple Object Access Protocol) specification using

HTTP protocol. In fact web services specification

does not say that SOAP messages have to be

exchanged over HTTP.This decouples SOAP

messaging from the underlying communication

protocol allowing for TCP/IP and other ways of

exchanging SOAP

Supporters of REST architecture consider SOAP and

XML to be too heavy. HTTP itself has enough

capabilities for applications to communicate over the

network. In reality, HTTP is what powers the Web

and it has a very rich vocabulary in terms of verbs,

URIs, request and response headers and Internet

media types. It is also common in REST services to

use JSON (JavaScript Object Notation) as a

convenient, alternative to XML.

JSON being a subset of JavaScript, is an ideal data

format for building pure HTML clients running in

web browsers with embedded JavaScript logic and

accessing REST resources in an asynchronous

fashion using AJAX for highly responsive user

interfaces. On the web, data is moving faster than we

can browse it. Hence, there is a strong demand for

programs that can find, track and monitor

information coming from diverse sources including

sales data, financial information, online communities,

marketing campaign etc.

REST can also change the way how complex systems

are architected. Traditional Service Oriented

Architecture (SOA) is slowly moving towards Web

Oriented Architecture (WOA) where applications

gives a rich web of REST resources. Instead of a few

point SOA services, enterprise data will be exposed

through millions of granular REST resources, like the

web itself

4.1 Support for JSON and XML

JSON (JavaScript Object Notation) is the default.

You can use the HTTP ACCEPT header to select

either JSON or XML or append .json or.xml to the

URI (example,/Account/001D000000INjVe.json)

The JavaScript Object Notation (JSON) format is

supported with UTF-8. Date-time information is in

ISO8601 format. XML serialization is similar to

SOAP API. XML requests are supported in UTF-8

and UTF-16, and XML responses are provided in

UTF-8. Using REST, the developer must know well

the four main methods: POST, GET, PUT and

2203

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60736

DELETE and a little about the HEAD and

OPTIONS.

 Fig.1 REST Architecture for Web Services.

POST

All the methods of adding details to the server; all the

different interfaces and formats the server supports

for adding data to its database.

The data are included in the body of the request. For

instance, making a request

POST http://www.example.com/resources/user/

GET

All the methods of getting data from the server; the

formats and interfaces the server supports for

accessing the client details.

In practice, making a request GET

in http://www.example.com/resources/user/10 will

return as response the user whose the id is 10.

In the other hand if our request was to the

URL http://www.example.com/resources/user/,we

would have as response the list of all users.

PUT

All the methods for updating the data at the server;

different types of interfaces and formats the server

supports for adding data to the database.

The data must be sent in the body of the request.

Besides, if the URI of the request doesn't not point

out to a existing resource, it is allowed to create a

new resource with this URI. In our example, if we

wanted to update the password of the user with the

login "abcdefghij", we just need to make a PUT

http://www.example.com/resources/user/10.

DELETE

All the methods for deleting the data at the server;

different types of interfaces and formats the server

supports for deleting data in the database. Given the

ease of design and flexibility in coding provided by

REST, it has gradually become popular. Yahoo and

eBay were the first ones to use REST for designing

their Web services. They were later joined by popular

firms such as Amazon and Google.

It deletes a specified resource and doesn't have the

body. If we request the DELETE method to

URI http://www.example.com/resources/user/10 it

would mean to the serve that we want it to delete the

user with the id is equal to 10.

HEAD
Similar to the method GET, but without the body of

the response. This method can be used to obtain the

metadata of a entity target of the request, without

transfer all the data to the client.

OPTIONS
Return the HTTP methods that the server supports for

a specified URI. It can be used to check the features

available of a web service. Making a request

OPTIONS

to http://www.example.com/resources/user/ , we

would receive the attribute 'Allow' in the headers

with the fields OPTIONS and POST.

However making the request OPTIONS to

URI http://www.example.com/resources/user/*, we

would receive the response OPTIONS, GET, PUT,

DELETE and HEAD.

When you put the wildcat (*) it is expected some

response, but our method POST, using the good

practices, is not mapped to accept requests with the

URI finishing in 'user/*'. In other words, it doesn't

make sense to request a POST to 'user/10' , since the

id of the resource must be created by the server.

4.2 Response Time and All Four Functions

First, the client sent customer details in XML format

to the server. The server processed the XML,

connected to the database, and stored the information

(POST).

Second, the client issued a GET request for customer

details (GET). The GET request was followed by an

update. The client sent an update request to the server

for the data that had been added, using the POST

function. Later, the client sent a final request to the

server to delete the data that had been added and

updated before.

Following is the skeleton of the code for measuring

response time of the four functions in sequence:

2204

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60736

Fig.2 REST communication between Client and

Server.

Client Implementation Thread class

{

Thread run method

Public void run ()

{

POSTmethod (with correlation ID);

GETmethod (with correlation ID);

PUTmethod (with correlation ID);

DELETE method (with correlation ID);

}

POSTmethod ()

{

System time in milliseconds A, of a particular thread

X; (Timer started for the

thread based on correlation ID)

Code for POST Operation with customer ID;

}

GETmethod ()

{

Code for Get Operation with customer ID;

}

PUTmethod ()

{

Code for Put Operation with customer ID;

}

DELETEmethod ()

{

Code for Delete Operation with customer ID;

System time in milliseconds A, of a particular thread

X; (Timer end for the thread

based on correlation ID)

}

}

The skeleton code provides insight into the

functionality needed for testing and measuring

response time.

All the functions were coded with correlation IDs and

customer IDs. Every time a thread initialized, it took

an ID based on the correlation ID. Later, the

customer ID was based on the thread ID. First, a

thread was initialized and took an ID. It started

executing the POST function and sent customer

details to be added to the server (customer ID was

based on the thread ID).

Later, the thread executed the GET function and

retrieved the customer’s details with the customer ID.

This was followed by update (POST) and DELETE

functions, based on the customer ID. The cycle

involved adding customer data, getting the data

added, and deleting the data added.

The starting and ending times of a thread were

measured in the GET and DELETE functions (first

line of code in the GET function and last line of code

in the DELETE function). The difference between

the starting and ending times was the execution time

of the thread. Response times were taken with threads

ranging from 1 to 40 (each thread had customer data),

for both REST and SOAP.

5. Analysis

5.1 REST vs. SOAP Comparison Graphs

Figures 3 and 4 shows the comparison for REST vs.

SOAP Response times for all four functions in a

wired and then a wireless environment.

Fig.3: All Four Functions Wired SOAP vs. REST

In Figures 1 and 2, REST appears to have performed

comparatively better than SOAP, for all four

2205

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60736

functions. Among the four different functions, the

GET function constitutes the majority of the response

time, affecting the overall functionality and response

time, accounting for the major performance

difference.

Fig.4: All Four Functions Wireless SOAP vs.

REST

6. Conclusion
REST is quickly becoming the preferred technology

for building arbitrary applications that communicate

over the network. REST fully leverages protocols

and standards that power the World Wide Web and is

simpler than traditional SOAP-based web services.

With the emergence of cloud-computing and the

growing interest for web hosted applications, REST-

based technologies can help both in the development

of rich user interface clients calling into remote

servers; and in the development of actual servers for

manipulating data structures in a client application

written in any language or directly in the browser.

7. Reference

[1].Tekli,J.M.;Damiani,E.;Chbeir,R.;Gianini,G.

SOAP Processing Performance and Enhancement”

Services Computing, IEEE Transactions on

10.1109/TSC.2011.11 2012 Page(s): 387 – 403.

[2] Cesare Pautasso, Olaf Zimmermann, Frank

Leymann, “RESTful Web Services vs. “Big” Web

Services: Making the Right Architectural Decision”

WWW 2008, April 21–25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

 [3].Snehal Mumbaikar, Puja Padiya, “Web Services

Based On SOAP and REST Principles” International

Journal of Scientific and Research Publications

(IJSRP), Volume 3, Issue 5, May 2013, ISSN 2250-

3153.

[4].Kishor Wagh,Dr. Ravindra Thool “A

Comparative Study of SOAP Vs REST Web Services

Provisioning Techniques for Mobile Host” Journal of

Information Engineering and Applications (JIEA),

Vol 2, No.5, 2012, ISSN 2225-0506.

[5].http://aws.amazon.com/security/Amazon Web

Services: Overview of Security Processes, March

2013.

[6]. Davis John and Dr. Rajasree M. S. “RESTDoc:

Describe, Discover and Compose RESTful Semantic

Web Services using Annotated Documentations”

International Journal of Web & Semantic Technology

(IJWesT) Vol.4, No.1, January 2013.

[7].Crockford, “RFC 4627: The application/json

Media Type for JavaScript Object Notation (JSON)”,

Network Working Group, July 2006.

[8].Doug Tidwell, Cloud Computing Evangelist,

“Keeping Your Options Open, Even if the Cloud is

not” IBM Corporation. 2011.

[9].Brian Adler Professional Services Architect

“Designing Private and Hybrid Clouds: Architectural

Best Practices” 2012 Right Scale, Inc.

2206

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60736

