β^* - Closed And β^* Open Maps In Topological Spaces

J. Antony Rex Rodgio And Jessie Theodore

Department of mathematics, V.O. Chidambaram College, Tuticorin-62800Tamil Nadu, INDIA

Ph.D. Scholar, *Department of mathematics*, *Sarah Tucker college*, *Tirunelveli-627007*, *Tamil Nadu*, *INDIA*.

Abstract

The aim of this paper is to introduce the notions of β^* -closed maps, β^* -open maps and semi- β^* closed maps .Their relationships with other closed maps are investigated..It is found that the concept of β^* closed maps-are stronger than the concept of gspclosed maps.However it is weaker than closed maps. It is shown that the composition of β^* closed maps need not be β^* closed .The applications of these maps in some topological spaces are also studied.Also ultra β^* regular space and ultra β^* -normal spaces are introduced.

1. INTRODUCTION

T.Noiri,H.Maki and J.Umehara [9] introduced the concept of gpclosed and pre gp-closed map using gp-closed sets.Lellis Thivagar [6] introduced the concept of quasi α -open and strongly α -open map mappings using α -open sets.Here we have introduced the concept of β^* -closed maps and semi β^* closed maps using β^* closed sets.Their respective open maps are also introduced

2.PRELIMINARIES

Throughout this paper spaces (X, τ) and (Y, σ) mean topological spaces and f: X \rightarrow Y represents a single valued map .The following definitions and Theorems are useful in the sequel.

Definitions 2.1

A subset A of a topological space (X, τ) is called

- (i) A semi-open set [7] if A⊂cl(int(A)) and a semi-closed set if int(cl(A))⊂A,
- (ii) An α -open set[6] if A \subset int(cl(int(A))) and an α -closed set if cl(int(cl(A))) \subset A,
- (iii) A semipre open set [2] (= β -open set [1]) if A \subset cl(int(cl(A))) and a semi-pre closed set(= β closed) if int(cl(int(A))) \subset A and

The intersection of all semi-closed subsets of (X, τ) containing A is called the semi-closure of A and is denoted by scl (A). Also the intersection of all α closed (resp. semi-pre closed) subsets of (X, τ) containing A is called the α closure (resp. semi-pre closure) of A and is denoted by α cl(A) (resp. spcl(A)).

Definition-2.2

A subset A of a topological space (X, τ) is called

- (i) A generalized closed set (briefly g-closed)[8] if $cl(A) \subset U$ whenever A $\subset U$ and U is open in (X, τ).
- (ii) A generalized semi-pre closed set (briefly gsp-closed) [5] if $spcl(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) .
- (iii) An ω -closed set [10] if cl(A) \subset U whenever A \subset U and U is semiopen in (X, τ)
- (iv) An $\hat{\eta}^*$ closed set [3] if spcl(A) \subset U whenever A \subset U and U is ω -open in (X, τ)

(v) A β^* -closed set [4] if spcl(A) \subset int(U) whenever A \subset U and U is ω -open

The complement of g-closed(resp-gsp-closed, ω -closed, $\hat{\eta}$ *closed, β *closed) set is said to be g open (resp. gsp-open, ω -open, $\hat{\eta}$ *-open, β *open).

Definition-1.1.4: A topological space(X, τ) is

(i) A T_{ω} – space [10] if every ω -closed subset of (X, τ) is closed (X, τ)

Definition 2.3

A map f: $X \rightarrow Y$ is said to be

- (i) g closed [8] (resp. g-open) if f(V) is g-closed (resp. g-open) in (Y, σ) for every closed (resp.open) set V (X, τ)
- (ii) ω -closed [10] (resp. ω -open) if f(V) is ω -closed in (Y, σ) for every set V of (X, τ)
- (iii) gsp-closed (resp.gsp-open)[5] if f(V) is gsp-closed in (Y, σ) for every closed set V of (X, τ)
- (iv) $\hat{\eta}^*$ -closed(resp. $\hat{\eta}^*$ -open) [3] if f(V) is $\hat{\eta}^*$ -closed in (Y, σ) for every closed set V of (X, τ)

Theorem 2.4[4]: (i) Every β *closed set is gsp closed(resp. $\hat{\eta}$ *-closed) set.

- (ii) β *closed set is independent of gclosed(resp. ω -closed) set.
- (iii) In a topological space X if the set of all β^* -open sets is closed under any union then $\beta^*cl(A)$ is a β^* -closed set for every subset A of X.

3. β^* -CLOSED MAPS:

Definition -3.1.1: A map f: $X \rightarrow Y$ is said to be β^* -closed, if the image of every closed set of X is β^* -closed in Y.

Definition -3.1.2: A map f: $X \rightarrow Y$ is said to be semi β^* closed if the image of every semi closed set of X is β^* -closed in Y.

Remark – **3.1.3** If f: X \rightarrow Y is closed (semi β *-closed), then f is β *-closed since every closed (resp,semi closed) sets are β *-closed .However the converses are not true. The following examples prove them.

Example-3.1.4: Let X=Y={a, b, c}, τ ={ ϕ , {a}, {b}, {a, b}, X} and σ ={ ϕ , {a}, {b, c}, Y}. The identity map f: (X, τ) \rightarrow (Y, σ) is β *-closed but not closed. Since {c} is closed in X but f({c})= {c} is not closed in Y.

Example – 3.1.5: Let X=Y={a, b, c}, τ ={ ϕ , {a}, {b}, {a, b}, X} and σ ={ ϕ , {a}, Y}. The identity map f: (X, τ) \rightarrow (Y, σ) is β *-closed but not semi β *-closed. Since {a} is semi closed in X but f({a})= {a} is not β * closed in Y.

Proposition – **3.1.6:** Every β^* -closed map f: $(X, \tau) \rightarrow (Y, \sigma)$ is a gsp closed (resp $\hat{\eta}^*$ closed) map.

Proof: Since every β^* -closed set is a gsp closed set (resp. $\hat{\eta}^*$ closed set) the proof follows by Theorem 2.4(i).

However the converses are not true. It can be seen through the following example.

Example -3.1.7 : Let X={a, b, c} = Y, τ ={ ϕ , {a}, {a, b},x} and σ ={ ϕ , {a}, {b, c}, Y}.Let f: (X, τ) \rightarrow (Y, σ) be the identity map. Then f is a $\hat{\eta}^*$ closed and a gsp closed map but f is not β^* -closed, since for the closed set {c}, f({c})={c} is not β^* -closed in Y.

Proposition – **3.1.8:** The concept of g closed map (resp. ω -closed map) and β^* -closed map are independent.

Proof: Follows from Theorm 2.4(ii) using the fact that β^* -closed sets are independent of g closed sets and ω -closed set.

Theorem – 3.1.9: A surjective map f: $X \rightarrow Y$ is β^* -closed if and only if for each subset S of Y and each open set U containing f⁻¹(S), there exists a β^* -open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof: Suppose f is β^* -closed. Let S be any subset of Y and U be an open set of X containing f⁻¹(S). If we let V=(f(U^c))^c then V is β^* open in Y containing S and f⁻¹(V) \subset U.Conversely let F be any closed set of X. Let B = (f(F))^c, then we have f⁻¹(B) \subset F^c and F^c is open in X. By hypothesis there exists a β^* -open set V of Y such that B \subset V and f⁻¹(V) \subset F^c and so F \subset (f⁻¹(V))^c = f⁻¹(V^c). Therefore, we obtain f(F) = V^c. Since V^c is β^* closed, f(F) is β^* -closed in Y. This gives f is β^* -closed.

Remark -3.1.10: The following example shows that composition of two β^* -closed maps is not β^* -closed.

Example -3.1.11: Let X=Y=Z= {a, b, c}, $\tau = \{\varphi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\varphi, \{a\}, \{b\}, \{a, b\}, Y\}$ and $\eta = \{\varphi, \{a\}, \{a, b\}, z\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\eta)$ be identity maps. Then f and g are β^* -closed maps but gof: $X \rightarrow Z$ is not β^* -closed. Since {a} is closed in X but gof $(\{a\}) = g(f(\{a\})) = g(\{a\}) = \{a\}$ is not β^* -closed in Z.

Proposition – **3.1.12:** If f: X \rightarrow Y and g: Y \rightarrow Z are β^* -closed maps with Y as a T_{β^*} space then gof: X \rightarrow Z is a β^* -closed map.

Proof: Obvious from the definitions.

3.2: β* - OPEN MAPS

Here β^* -open maps in topological spaces have been introduced and also obtained the characterizations of these maps.

Definition –3.2.1: A map f: $X \rightarrow Y$ is said to be β^* -open map if the image f(A) is β^* open in Y for every open set A in X.

Theorem -3.2.2: Every β^* -open map is a gsp open (resp. $\hat{\eta}^*$) map but not conversely.

Proof: Since every β^* -open sets is a gsp open set (resp. $\hat{\eta}^*$ open set) the proof follows.

Example-3.2.3:Let X=Y= {a,b,c}, $\tau = \{\phi, \{a\}, \{a,b\}, X\}$ and $\sigma = \{\phi, \{a,b\}, Y\}$. Let f:X \rightarrow Y be the identity map. Then f is β^* -open.

Theorem – 3.2.4: For any bijection f: $X \rightarrow Y$ the following statements are equivalent.

- 1. f⁻¹: Y \rightarrow X is β *-continuous
- 2. f is a β^* -open map and
- 3. f is a β^* -closed map.

Proof: 1 \Rightarrow 2: Let U be an open set of X. By assumption $(f^{-1})^{-1}(U) = f(U)$ is β^* -open in Y and so f is a β^* -open map.

2⇒3: Let V be a closed set of X. Then V^c is open in X. By assumption $f(V^c) = (f(v))^c$ is β^* -open in Y and therefore f(V) is β^* -closed in Y. Hence f is a β^* -closed map.

3⇒1: Let V be a closed set of X. By assumption f(V) is β^* -closed in Y. But $f(V)=(f^{-1})^{-1}(V)$ and therefore f^{-1} is β^* continuous.

Theorem – 3.2.5: Let f: X \rightarrow Y be a mapping. If f is a β^* -open mapping, then for each $x \in X$ and for each neighbourhood U of x in X, there exists a β^* neighbourhood W of f(x) in Y such that W \subset f(U).

Proof: Let $x \in X$ and U be an arbitrary neighbourhood of x. Then there exists an open set V in X such that $x \in V \subseteq U$. By assumption f(V) is a β^* -open set in Y. Further $f(x) \in f(V) \subseteq f(U)$. Clearly f(U) is a β^* -neighbourhood of f(x) in Y and so the theorem follows if we take W=f(V).

Theorem 3.2.6: A function f: $X \rightarrow Y$ is β^* -open if and only if for any subset B of Y and for any closed set S containing f⁻¹(B), there exists a β^* -closed set A of Y containing B such that $f^{-1}(A) \subseteq S$.

Proof: Similar to the proof of theorem-3.1.9

3.3. Ultra β^* -regular and ultra β^* -normal spaces.

Definition – **3.3.1** A space X is said to be ultra β^* -regular if for each closed set, F of X and each point $x \notin F$ there exist disjoint β^* -open sets U and V such that F \subset U and $x \in V$.

Theorem – 3.3.2: In a topological space X, assume that $\beta * o(\tau)$ is closed under any union. Then the following statements are equivalent.

- a) X is ultra β^* -regular.
- b) For every point x of X and every open set V containing x, there exists a β^* open set A such that $x \in A \subset \beta^* cl(A) \subset V$.

Proof:

a⇒b. Let x∈X and V be an open set containing x. Then V^c is closed and x∉V^c By (a) there exist disjoint β^* -open sets A and B such that x ∈ A and V^c⊂ B. that is B^c⊂ V. Since every open set is β^* -open, V is β^* -open. Since B is β^* -open, B^c is β^* -closed. Therefore $\beta^*cl(B^c)$ ⊂V. Also since A∩B = ϕ . A⊂B^c. Therefore x∈A ⊂ $\beta^*cl(A) ⊂ \beta^*cl(B^c) ⊂V$. Hence, x∈A⊂ $\beta^*cl(A) ⊂V$. b⇒a: Let F be a closed set and $x \notin F$. This implies that F^c is an open set containing x. By (b) there exists a β^* -open set A such that $x \in A \subset \beta^* cl(A) \subset F^c$. That is $F \subset (\beta^* cl(A))^c$. By Theorem 2.4(iii) $\beta^* cl(A)$ is β^* -closed. Hence $(\beta^* cl(A))^c$ is β^* -open. Therefore, A and $(\beta^* cl(A))^c$ are the required β^* - open sets.

Theorem – 3.2.3: Assume that $\beta^* o(\tau)$ is closed under any union. If f: X \rightarrow Y is a continuous open β^* -closed surjective map and X is a regular space, then Y is ultra β^* -regular.

Proof: Let $y \in Y$ and V be an open set containing y of Y. Let x be a point of X such that y=f(x). Since f is continuous, $f^{-1}(V)$ is open in X. Since X is regular there exists an open set U such that $x \in U \subset cl(U) \subset f^{-1}(V)$. Hence $y=f(x) \in f(U) \subset f(cl(U)) \subset V$. Since f is a β^* -closed map f(cl(U)) is a β^* -closed set contained in the open set V. Therefore $\beta^*cl(f(cl(U))) = f(cl(U)) \subset V$. This implies that $y \in f(U) \subset \beta^*cl(f(U)) \subset \beta^*cl(f(cl(U))) \subset V$. Since f is an open map and U is open in X, f(U) is open Y. Since every open set is β^* -open, f((U) is β^* -open in Y. Thus for every point y of Y and every open set V containing y, there exist a β^* -open set f(U) such that $y \in f(U) \subset \beta^*cl(f(U)) \subset \gamma^*cl(f(U)) \subset V$. Hence by theorem – 5.2.16 Y is ultra β^* -regular.

Definition-3.2.4: A space X is said to be ultra β^* -normal if for each pair of disjoint closed sets A and B of X there exist disjoint β^* -open sets U and V such that A \subset U and B \subset V.

Theorem -3.2.5: Assume that $\beta^*o(\tau)$ is closed under any union. If f: X \rightarrow Y is a continuous β^* -closed surjection and X is a normal space, then Y is ultra β^* -normal.

Proof: Let A and B be disjoint closed sets of Y. Since X is normal there exist disjoint open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By theorem 3.1.10, there exist β^* -open sets G and H such that $A \subset G$, $B \subset H$ and $f^{-1}(G) \subset U$ and $f^{-1}(H) \subset V$. Then we have $f^{-1}(G) \cap f^{-1}(H) = \varphi$ and hence $G \cap H = \varphi$. Since G is β^* -open, $A \subset G$ implies $A \subset \beta^*$ int (G) Similarly $B \subset \beta^*$ int (H). Therefore β^* int (G) $\cap \beta^*$ int (H) = φ . Thus Y is ultra β^* normal.

REFERENCES

- Abd EI-Monsef M.E,EI-Deeb S.N and Mahmoud R.A., β-open sets and β-continuous mappings, Bull.Fac.Sci.Assiut Univ., 12(1983), 77-90.
- 2. Andrijevic D., Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- 3. Antony Rex Rodrigo. J. Some Characterizations of η^{*} closed sets and η^{*}
 -continuous maps in Topological and bitopological spaces, Ph.D., Thesis,
 Alagappa university, Karaikudi(2007)
- Antony Rex Rodrigo J,Jessie Theodore and Hana selvi Jansi,β^{*}-Closed sets in topological spaces,International journal of mathematical Archive-3(3),2012,1065-1070
- Dontchev. J, On generalizing semi-preopen sets. Mem. Fac. Sci. Kochi Uni. Ser. A Math., (1995), 35-48.
- Lellis Thivagar M., Generalization of pairwise α-continuous function, pure and Applied Math. Sci. Vol. XXXIII, No. 1-2, March (1991), 55-63.
- Levine N., Semi-open sets and semi-continuity in topological spaces,
 Amer. Math. Monthly, 70(1963), 36-41.

8 Levine N., Generalized closed sets in topology, Rend. Circ. Mat.Palermo, 19 (1970), 89-96.

9.NoiriT, Maki.H and Umehara.J.,Generalized pre closed functions,Mem.

Fac.Sci. Kochi Univ.Ser A.Math., 19(1998), 13-20

10.Sheik John M., A Study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D., Thesis, Bharathiar University, Coimbatore(2002).

