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Abstract. The Navier-Stokes equations are a collection of partial
differential equations that describe fluid motion in liquids and
gases, and provide a mathematical framework for modeling fluid
behavior in various scenarios. Solving them correctly reveals
information about fluid behavior such as turbulence, laminar flow,
and vortex formation. In practical applications, numerical methods
such as finite difference, finite element, and computational fluid
dynamics (CFD) are frequently used to approximate Navier-Stokes
equation solutions. Solving the Navier-Stokes equations is a
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1 INTRODUCTION

The Navier-Stokes equation in fluid mechanics is a partial
differential equation that describes the flow of incompressible
fluids. The equation is a generalization of one developed by
Swiss mathematician Leonhard Euler in the 18th century to
describe the flow of incompressible and frictionless fluids. Fluid
dynamics is a critical field in physics and engineering
investigating the complex motions of liquids and gases. The
Navier-Stokes equations—a collection of intricate partial
differential equations that illuminate phenomena such as
turbulence, laminar flow, and vortex formation—are central to
understanding fluid behavior. The accurate solution of these
equations provides valuable insights into fluid motion dynamics,
but their nonlinear and

complex nature makes numerical approximation difficult.
In response to this challenge, researchers have developed
Physics-Informed Neural Networks (PINNs) [1]. PINNs
provide a promising way to address the computational
demands associated with solving the Navier-Stokes equations by
incorporating the governing equations of a physical system
into the training process of a neural network. This study
aims to investigate the potential of PINNs in fluid
dynamics, to perform computationally less expensive
calculations without sacrificing accuracy. We focus on the
application of the L-BFGS optimizer algorithm [2] to
improve computational efficiency, to make fluid dynamics
simulations more practical and accessible.DeepXDE is a
library intended for scientific machine learning and physics-
based learning. It is used to solve partial differential
equations (PDEs) and other similar problems. The library
improves the accuracy and efficiency of PDE solutions by
combining deep learning techniques and physics-based
constraints, this library can be used to solve PINNs more
effectivel

IJERTV131S070049

challenging task due to their nonlinearity and complexity, The
main idea behind PINNs is to incorporate a physical system's
governing equations into the neural network's training process. In
this study, the Navier-Stokes equation is solved using physics-
informed neural networks(PINN) to provide insight into the
potential of PINNs in fluid dynamics for computationally less
expensive calculations without compromising the accuracy using
L-BFGS optimizer algorithm for computationally less
expensive(CLE) calculations.
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Figl: PINN structure in dde library(DeepXDE)[4]
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The contributions to the paper are as follows, we first
explore the concept of navier stokes and its numerical
form, then move on to computational form and interpret it
as per the DeepXDE library norms.  The learning rate,
hyperparametrization, and other Neural network terms will
be discussed based on the PINN, Then we discuss the
optimizers and the reason behind choosing the L-
BFGS optimizer for this particular case. We move on to
the results and discussions and the proof of concept at the
very end.

2 LITERATURE REVIEW
Imbalanced datasets have long posed a challenge in
machine learning, making it difficult to train models that
accurately capture  minority classes or
underrepresented patterns. However, the introduction of
Physics-Informed Neural Networks (PINNs) has resulted
in a paradigm shift in the field of scientific machine
learning, providing a novel approach to solving partial
differential equations (PDEs) and other physical problems.
Notably, PINNs incorporate a
system's governing equations during training, reducing the
need for large labeled datasets and providing an elegant
solution to imbalanced data challenges.
The development of PINNs began with the seminal work of
Raissi et al. in 2017, who introduced the concept
of Physics-Informed Neural Networks [1]. This
groundbreaking approach seamlessly integrates physics-
based constraints into neural network training, allowing
complex PDEs to be solved without the need for large
amounts of labeled data. The key innovation is PINNs'
ability to learn from limited observational data while
adhering to the underlying physical laws that govern the
system. In subsequent years, researchers have
investigated and expanded the applications of PINNS.
Raissi et al. expanded the capabilities of PINNs to solve
inverse problems in 2018 [6]. This development
represents a significant step forward in using PINNs for
tasks other than direct PDE solutions, demonstrating
their versatility and potential in scientific machine-
learning applications.
The introduction of the L-BFGS optimizer algorithm in
2019 resulted in improvements in PINN efficiency [7].
This algorithm, incorporated into the PINN framework,

addressed  computational  expenses, allowing  for
computationally  less expensive (CLE) calculations
without sacrificing solution accuracy. The L-BFGS

optimizer helped to make PINNs more practical and
accessible, particularly in fluid dynamics and related
fields. Continuing the progress, recent studies have
focused on improving PINN training strategies,
investigating hybrid approaches that combine physics-
based constraints with data-driven insights [8]. These
efforts aim to improve the robustness and generalization
capabilities of PINNs across a wide range of scientific
applications. |
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believe that this research, which combines neural networks
and physics-based constraints, not only mitigates the
challenges associated with imbalanced datasets but also
opens up new avenues for discovering intricate patterns in
scientific domains.

3  METHODOLOGY

This research simulates fluid flow governed by the
incompressible ~ Navier-Stokes equations. Boundary
conditions that define the rectangular fluid domain
include zero pressure gradient at the outlet, an inlet
velocity, and no-slip conditions on the walls. The
incompressible Navier-Stokes equations describe the
motion of a fluid and are fundamental in fluid dynamics.

du dv

axt 7V
The velocity components in the x and y directions are
represented by the symbols u and v, respectively.
According to the equation, the total of the velocity
components' partial derivatives concerning their spatial
coordinates must equal zero. According to this equation,
incompressibility is indicated by the fact that the rate of
change of mass concerning time is zero.
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Accurately simulating incompressible flows requires
solving the Pressure Poisson Equation.
To keep the fluid incompressible throughout the

simulation, it aids in maintaining a divergence-free velocity
field. Realistic fluid flow scenarios can be simulated by
using numerical techniques in computational fluid
dynamics (CFD), which require an understanding of and
ability to solve the Pressure Poisson Equation. The
dde.geometry is used to define the fluid domain. Rectangle
class with L and D specified dimensions. Boundary wall,
Boundary inlet, and Boundary outlet are the three
different boundary functions that enforce the boundary
conditions. These features aid in locating the inlet, outlet,
and wall points, respectively. Using the dde.maps, the
neural network architecture is defined.class for feedforward
neural networks, or FNNs. The network is made up of five
hidden layers, each with 64 neurons, an input layer with
two neurons (representing x and y coordinates), and an
output layer with three neurons (representing u, v, and p).
Glorot uniform weight initialization and the hyperbolic
tangent activation function are used.
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Fig.2: Neural Network schematic for the PINN, contains 2
input neurons, 5 hidden layers, each with 64 neurons each,
and 1 output layer with 3 neurons. In the input layer, the
spatial coordinates x and y are represented as neurons, In
the next 5 hidden layers, each with 64 neurons are
responsible for capturing and learning the complex
relationships and features within the fluid flow data. In the
output layer, the velocity components in the x and y
directions are received along with the pressure.

The dde.DirichletBC class is used to impose Dirichlet
boundary conditions. In particular, the following
conditions are used: bc_outlet p and bc_outlet v for the
outlet, bc inlet u, and bc inlet v for the inlet, and
bc_wall u and bc wall v for the wall. The system of
partial differential equations (PDEs) that represents the
incompressible Navier-Stokes equations is defined by the
pde function. The dde.data.PDE class is employed to
generate training and testing data for the PINN. Random
points within the fluid domain are sampled, and the
corresponding solutions are obtained by solving the PDEs.
The generated data includes both domain and boundary
points.
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Fig.3: This visual representation illustrates the scattered
points strategically selected
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within the fluid domain for training the Physics-Informed
Neural Network (PINN). As the PINN is trained on these
scattered points, it adapts its neural network weights to
approximate the complex relationships inherent in the
Navier-Stokes equations. This training methodology
enables the PINN to simulate and predict fluid flow
behaviors with high accuracy and efficiency.

This methodology guarantees a thorough comprehension of
fluid behavior and allows the network to generalize
significantly outside of the training dataset. The importance
of scattered point training in improving the robustness and
accuracy of PINNs for fluid dynamics simulations is
highlighted by seminal works like the Deep Galerkin
Method (DGM) introduced by Sirignano and Spiliopoulos
[8] and the framework for solving nonlinear PDEs
developed by Raissi et al. [1]. When taken as a whole,
these experiments show how important scattered points are
to improving PINNs' ability to forecast complex fluid flow
scenarios.

First, the Adam optimizer—which is known for its
effectiveness when dealing with  non-stationary  goals
and noise-affected gradients—is used (Kingma & Ba,
2014)[9]. By making this decision, the network may more
easily traverse the solution space and get closer to a logical
answer during the early phases of training. Following the
Adam optimizer, the training process undergoes refinement
using the L-BFGS optimizer (Byrd et al., 1995)[10]. L-
BFGS, a quasi-Newton method, is well-suited for scenarios
where the solution space exhibits intricacies such as
complexity and nonlinearity. The transition to L-BFGS
enables the network to fine-tune its weights more
efficiently,

contributing to improved convergence and computational
efficiency. This dual-optimizer strategy is complemented by
the judicious use of randomly sampled points within the
fluid domain. By adopting this comprehensive
approach, the PINN is trained to not only minimize
residual errors in the Navier-Stokes equations but also
adapt to the intricacies of fluid dynamics. The synergy of
deep learning techniques, sequential
optimizers, and spatial sampling exemplifies a robust
training methodology.

The training process took approximately 5354.1 seconds,
during which the model iteratively refined its weights to
minimize the difference between predicted and actual
values. The choice of a high number of epochs(10000)
indicates a comprehensive learning process, essential for
capturing complex relationships in the fluid dynamics
data. This duration reflects the computational -effort
invested in training the PINN for accurate simulation of the
Navier-Stokes ~ equations. Visualization  aids  in
understanding the simulated fluid flow patterns within the
rectangular domain. In summation, the presented
research encapsulates a robust methodology, seamlessly
amalgamating the prowess of PINNs with the elegance
inherent in the Navier-Stokes equations for simulating
fluid dynamics. This innovative approach, backed by
references

[8] and [11], imparts a data-driven and computationally
efficient solution, showcasing the capability to model
intricate  fluid flow phenomena with accuracy and
insight.
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4 RESULTS AND DISCUSSION

As a final step in this research, the trained Physics-
Informed Neural Network (PINN) is thoroughly assessed
on a collection of randomly selected points. The
visualized fluid domain formed through this
comprehensive methodology showcases the successful
fusion of PINNs with the elegance  encapsulated in
the Navier-Stokes equations.

—

=

Fig.4: Visual representation generated by the PINN for
the simulation of 2D Navier-stokes equation. The three
outputs comply with the network provided beforehand in
this research(fig.2), the velocity components u,v, and the
pressure p.

As you can see in the results, as the fluid flows into the

rectangular domain, the initial value being one, due to the
viscosity in the domain a boundary layer is formed
resulting in reducing the value from 1 in the u direction.
As the fluid flows through the rectangular domain, due to
the formation of the boundary layer, the flow is directed
towards the center axis of the domain, hence resulting in
a variation of the v component of the velocity, hence the
discrepancy in the v direction showed in the visualization
(fig.4) along with the pressure variations with the lowest
pressure at the end of the domain.

The synergy of these components not only accurately
captures the underlying physics of fluid dynamics but also
demonstrates a data-driven and computationally efficient
solution for modeling intricate fluid flow phenomena. The
amalgamation of PINNs and the Navier-Stokes equations
provides a robust framework that goes beyond traditional
numerical methods, offering a sophisticated yet efficient
approach to fluid flow modeling.
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