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Abstract— Deep learning techniques like Convolutional
Neural Network (CNN) are being used for processing of Inverse
Synthetic Aperture (ISAR) images to enhance resolution for
better imaging quality. Work is seldom done for classification of
ships from ISAR images using deep learning techniques.
Moreover, the technique requires a large database which is
difficult to construct in a real-world scenario. In this work, the
problem is addressed using Generative Adversarial Network
(GAN), a framework connected by generator and discriminator
networks. The combined loss is used to train the GAN which is
composed of the adversarial loss and the absolute loss. With the
help of absolute loss, the random noise is reconstructed to a
meaningful ISAR image of a ship by a generator whereas the
adversarial loss enhances weakly scattered points and amplitude
by a discriminator which is trained to distinguish between model
distribution and data distribution. The GAN is kept training till
there is an equilibrium between the networks. For ship
classification, a technique called transfer learning is used with
Deep Convolutional Neural Network (DCNN) MobileNetV2 as a
backbone consisting of linear bottlenecks and inverted residuals
and achieve 90% accuracy as experimental results. Comparing
this work with existing state- of-the-art methods, GAN used to
generate ISAR images and DCNN for ship classification yields
better results and more details of target.

Keywords— Inverse Synthetic Aperture Radar (ISAR), Deep
Convolutional Neural Network (DCNN), Generative Adversarial
Network (GAN), Transfer Learning, Image Classification.

. INTRODUCTION

Inverse Synthetic Aperture Radar (ISAR) is widely used in
remote sensing for the acquisition of radar images to detect and
classify ship targets for military applications. Automatic
recognition of ships using ISAR images is achieved in various
ways such as feature matching between ISAR images and 3-D
geometry projection to Image Projection Plane (IPP) [1] and
probabilistic recognition of ship using deep learning technique
such as combining Faster-Region based Convolutional Neural
Network (Faster-RCNN) [2] and Bayesian fusion [3].
Basically, this is narrowed down to two main methods:
classification using feature matching and neural network.

The formation of ISAR images is achieved by having static
imaging radar and motioned [4] ship along its axis. ISAR
generates a series of range-Doppler image frames which is
described in [5]. Imaging Radar is able to detect, track and
image targets at long range with high accuracy in all weather
conditions. Since simulation of ISAR images is tedious using
mathematical solvers, this can be overcome by a well-known
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framework which can generate data similar to data distribution
called Generative Adversarial Network (GAN) [6]. For image
classification, the typical number of images in the dataset
should be more than 500 per class (categories). Initial ISAR
images of ships are generated using mathematical solvers and
are increased with the help of GAN. This technique is well
suited for generation and translation of images. This framework
was introduced by lan J. Goodfellow to generate similar data
for the applications of artificial intelligence. In this framework,
two models are trained namely, a generative model G and a
discriminative model D. The functionality of these two models
are, one measures the distribution of data and the other
calculates the likelihood of how close the training data is to the
output of the generator. When the model is in training mode, G
is attempting to increase the likelihood that D would make an
error. When both models are assigned with arbitrary functions,
there exists a unique approach with G reconstructing the data
distribution and D attaining the probability equal to 12
everywhere. This is similar to a two-player game where one
tries to win over the other. Similarly, GAN can also be used to
improve the resolution of the ISAR images by considering
ISAR images of high-resolution in the data distribution [7].

As for the classification of ships, in the conventional radars,
ships are classified at a broader level based on features
extracted such as Radar Cross Section (RCS) and speed of the
ships. These features are not sufficient to classify ships for
military applications. With imaging radars of high resolution,
more features could be extracted for detailed level of
classification. With advent of computer vision algorithms,
extraction of features from inverse synthetic aperture radar
(ISAR) images is of significance. But the autoencoder, neural
network used to learn efficient data codings, extracts the
maximum number of features from the ISAR images for
classification. This is achieved by Deep Convolutional Neural
Network [8]. It has been studied over the last decade as one of
the most effective tools, which has become very popular in
literature because it can handle a large amount of knowledge.
Recently, the concept of providing deeper hidden layers has
begun to exceed the success of classical methods in major
fields; mainly in pattern recognition. The parameters [9] which
are learnt over the iterations are produced by convolutional and
fully-connected layers and not by pooling and activation layer.
With hardware accelerator devices (e.g. Graphics Processing
Units or GPUs) available for computers, machine learning
techniques are commonly used in many applications such as
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image processing [10], natural language processing for speech
recognition [11], speech separation [12], etc. In recent years,
Automation Target Recognition (ATR) methods [13], [14] for
ISAR images based on feature matching have been widely used
and achieved very good results. Instead of using completely
new neural networks, a new technique called transfer learning
[15], [16], [17] is used in order to achieve the greater
performance. It is the transfer of knowledge obtained by
solving a kind of problem and using it to solve a different but
same kind of problem. This technique is used where there is
deficiency of the data in the dataset (less than the required). In
[18], the recognition of sea targets is achieved from correlation
between ISAR images and optical images. After processing
them jointly, conditional GAN (cGAN) is used to translate the
pix2pix information from ISAR images to corresponding
optical images and CNN is trained for target recognition.

In this work, the GAN framework is used to increase the
images in the dataset and transfer learning for classifying the
different categories of ship. To optimize the generator, a
combined loss is applied which is composed of adversarial loss
and absolute loss. The absolute loss helps to structure the ISAR
images out of random noise. The adversarial loss helps the
generator to gain all the data points scattered widely. Lastly,
categorical loss helps to classify the ships according to their
respective classes.

In the next section, the detailed state-of-the-art solution is
provided for GAN and transfer learning with the updating of
weights and biases using forward and backpropagation. In
section 3, the results obtained from this method are analysed
and tools used to achieve the same. Additionally, the simulation
of ISAR images of ships using ANSYS Electromagnetics is
discussed.

1. METHODOLOGY
A. ISAR Image Pre-Processing

Class 1

Class 2

a portion of the ISAR image, thus the accuracy of the
classification algorithm is reduced. If the ISAR image consists
of background noise such as sea clutters which is strong, this
may lead to decrease in the accuracy of the classification.
Therefore, the image segmentation technique must be used to
extract the target area of interest (ship structure) in center by
applying pre-processing technique to ISAR images, which
results in an increase in the accuracy of the classification
algorithm.

First, the ISAR images are simulated using mathematical
solvers, with resolution equal to 1m so that features like length
and height are extracted precisely, from the available 3-D
models. Using the radon transform [19], [20], the obtained
angle at which ship structure is aligned in threshold ISAR
images is used to orient the same ship structure to horizontal
axis making the hull face at the bottom. The image is threshold
by dynamic value to eliminate the sea clutters and speckle
noise. Normalizing the ISAR images between -1 and 1 so that
learning rate can be as low as possible. The number of samples
in the range and cross-range depends on dimension along length
and height of the ship i.e. shape of the ISAR images. Indirectly
ISAR images of different categories have different shape such
as cruise and warship. So, all the images are padded with
redundant data symmetrically on both axes making it 256x256
shape. This helps in training and generating the better images
from the generator.

B. GAN bases framework

The framework which is designed based on GAN is shown
in Fig. 2, including image generation and mapping between
generator and discriminator. The main objective of the GAN is
to translate the noise to corresponding ISAR image from the
data distribution (contains simulated ISAR images) using a
generator G, that is achieved by end-to-end mapping of model
distribution and data distribution with the help of DCNN. This
can be transformed into a problem of optimization which is
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Fig. 1: The flowchart of target recognition for ISAR image based in GAN and DCNN using transfer learning.

The flowchart of target recognition for ISAR images based
on GAN and DCNN using transfer learning is shown in Fig. 1.
If the entire ISAR image is labelled as a target, the matching
features accounting background characteristics will affect the
results of the classification because the target ship only takes up

expressed as:

0, = arg rréin%Z log(l - D(G(Z)),x) (D
i=1
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where z is random noise, 6, is parameters of generator and X is
real data (data distribution). From [4], discriminator D, can
also be converted to optimization problem which is expressed
as:

. 1<
O = argrréixazl:log(D(x)) 2)
i=

where @, is parameters of discriminator.

This design makes it possible to train the generator model
G in order to bypass the differential discriminator D that is
trained to distinguish the model distribution (generator output)
from the data distribution (simulated ISAR images).It
encourages the generator to construct an ISAR image from
random noise and to recover all data points by introducing an
adversarial loss.

The data distribution contains simulated ISAR images with
help of mathematical solvers and pre-processed for training.
The design and construction of both elements of GAN is
discussed in the next sub section.

Generator

Fig. 2: The framework based on GAN for ISAR image

Real Data

Discriminator Fake/Real

D(G(z)

C. Design of GAN

The experiment carried out in [21] has shown that, in
imaging equality, Complex Valued- CNN (CV-CNN) has no
significant benefits over Real Valued-CNN with the exception
of time consumption. Therefore, absolute values are used to
learn the GAN and image classification [22]. The main features
appear as bright spots (amplitude) in ISAR images, unlike
optical images, which appear in different colour details and rich
edges with differentiable backgrounds. To account for image
contrast as the most important for the extraction of features that
can be found in the Res-Net architecture [23], while preventing
network degradation the image contrast is transmitted directly
through skip connections.

Inspired by Res-Net architecture, designing your own
convolutional neural network to work on image contrast feature
extraction is the most important. For this work, the dataflow
layers stacked for generators, is shown in Fig. 3, in order to
extract the maximum number of features belonging to different
ships. In the beginning, the random noise is given to the
generator and reshaped to desired shape and subsequently
convolutional operations are used to extract the features. The
group of 2D-Convolution, Batch Normalization, Rectified
Linear Unit and Upsampling (conv2d-BN-ReLU-Upsampling)
layers acts as residual blocks, where it helps to structure the
noise into ship images and upsample the data at each residual
block to obtain desired ISAR image size.

Similarly, CNN is used to design discriminators with flow
of data as shown in Fig. 4. It takes the batch of ISAR images
from data distribution as input and corresponding output from
generator (model distribution) to learn the parameters and
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Fig. 3: Stack of dataflow layers for Generator

improvise the generator to produce better images. The job of a
discriminator is to classify the input image into fake or real with
respect to data distribution. The seven convolutional layers are
stacked in a sequence with an increasing number of feature
maps, each layer being increased by a factor of 2 from 16 to 256
except for last two layers as in the Visual Geometry Group
Network (VGGNet) which is a very deep convolutional neural
network [24]. In the ISAR images, each pixel is related to the
cross-section of the target and the range of pixel values is broad,
the data distribution images are more susceptible to
normalization, which is already accomplished in the pre-
processing portion. The dropout layer is used in order to choose
multiple independent paths to avoid overfitting of data. The
PReLU layer is used to avoid sparse gradients instead of ReLU.
The performance can be achieved at the highest level by
deleting batch normalization (BN) layers, which reduces the
computational complexity of the residual blocks. Since ISAR
images are prone to image contrast and it is necessary to
normalize the data in blocks, in this work, BN layers are used
in the GAN architecture which is proven in [25].
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Fig. 4: Stack of dataflow layers for Discriminator

D. Combined Loss

For better performance out of the generator, a definition of
a loss function is critical. Mean Squared Error (MSE) is widely
used in many applications but cross-entropy helps loss to be
calculated in log scale to prevent large range of numbers.
Precisely, binary cross-entropy loss is used since it is the log
loss it helps in training the network faster compared to others.
The binary cross-entropy is defined as follows:

loss = —[ylog(¥) + (1 — y) log(1 — )] 3)

where y and § represent actual class and predicted class,
respectively. Because the significant target ship features only
appear as bright spots in the ISAR images, if the loss function
used for the generator is binary cross-entropy, due to log
operation all the feature weights calculation will be relatively
equal, resulting in minimal enhancement and loss of some weak
point scatters. For discriminator, its job is to classify the
generator output between fake or real i.e. binary classification,
the loss function used is binary cross-entropy.
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The adversarial loss [6] is defined over all training samples
as follows:
mGin max V(D,G(2))

= ]Ex~pdata(x)[10gD(x)]

+ IE:z~pz(z) [lOg(l - D(G(Z),X))] (4)
where x and z are data distribution and random noise,
respectively. In addition to strong point scatters, after
normalization, the pixel values (amplitude) of most point
scatters in a single ISAR images are extremely close to 1, the
regularization parameter is used to ensure that the adversarial
loss is at least 10 times lesser than the absolute loss preventing
the training process lead by the adversarial loss, this is
identified over simulation results.

E. Ship Image Classification

For the ISAR images [26], an important feature is image
contrast and weakly scattered data points. In order to account
these into classification between different categories of ships,
classifiers should be designed to have a lesser number of
parameters and no redundant parameters. The classifier could
be designed completely from scratch, but the number of images
in the dataset for each class is less than what is required,
resulting in the use of a new technique called transfer learning
[15], [16]. This technique is popular with neural networks
where there is a small amount of data. It is the transfer of
knowledge obtained by solving a kind of problem and using it
to solve a different but same kind of problem. There are a
number of well-trained models for transfer learning to image
classification such as MobileNetV2 [27], InceptionV2 [28]. For
the work, the light-weight model is sufficient for the
classification, so MobileNetV/2 is considered and it is trained
on ImageNet dataset with 1000 classes. It boosts the mobile
model’s state- of-the-art efficiency on various benchmarks and
tasks as well as across a number of different model sizes. This
model is a reduced form of DeeplLabV3 [29] designed to
outperform semantic segmentation on mobile platforms, and
this is achieved by having shortcut connections between thin
bottleneck layers called inverted residual blocks. The bottle-

neck layers for strides 1 and 2 are shown in Fig. 5.
Stride=1 (block) Stride=2 (block)

Input — Input
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Fig. 5: Bottle-neck layers of MobileNetV2 [27]

This model extends the ideas of MaobileNet [30], and the
efficient building blocks of this network contain a depthwise
separable convolution layer. However, MobileNetV2 is

designed with two new blocks and connections in the
architecture that are linear bottle-necks between the layers and
shortcut connections between the bottle-necks. The sequence of
layers stacked in the architecture with stride and number of
feature maps (output channels or filters) is shown in Table 1 for
the input image size of 224x224. It is used as an encoder and
few fully connected layers are appended to it to act as a
classifier. In general, the slope of curve with transfer learning
is higher than without transfer learning in the graph of training
versus performance.

In the proposed method, MobileNetV2 is used for
transfer learning where the weights in each kernel is copied
from a trained network. Here, the network was trained on
ImageNet dataset with 1000 classes and over one million
images. The copied weights is utilized to train ISAR images and
thus minimizing the training time. If weights are initialized
using initializers (like RandomUniform, GlorotNormal, etc.),
this resulted in overfitting as there is limited number of images
in dataset. As the trained network contains 1000 classes
(connections in the last layer), all other connections except 3
(number of ship categories considered in the proposed network)
are frozen during training mode as well as testing mode.

TABLE 1. MobileNetV2: stacked layers

Input Operator c nis
224x224x3 convad 32 112
112x112x32 | bottle-neck 16 1|1
112x112x16 | bottle-neck 24 212

52x52x24 bottle-neck 32 3|12
28x28x32 bottle-neck 64 4|2
14x14x64 bottle-neck 96 3|1
14x14x96 bottle-neck 160 | 3] 2
7X7x160 bottle-neck 320 {11
7X7x320 conv2d1x1 | 1280 | 1 | 1
7X7x1280 avgpool 7x7 - 1] -
1x1x1280 conv2d 1x1 k -

where n is number of repetition layers, ¢ is number of output
channels and s is stride size. In this work, the model takes input
as 3 channels and ISAR images have only 1 channel, this allows
duplicating the same ISAR data into all 3 channels. This works
the same as a neural network with 1 channel as input. The loss
of classifier is calculated as in Eq. 3 as categorical cross-
entropy which means it can be extended to N number of
categories.

F. Forward Propogation

The convolution layer is a key to the extraction of features
from images. This layer involves convolution operation
between the output of the previous layer and the kernel to
extract the features. When training the neural network, the
kernel of the convolution layer is continuously modified by
learning feature maps. When for each convolution operation
specific convolutional kernels are used, more and more
parameters need to be trained, as depth of network increases.
The weight-sharing operation is adopted by CNN to decrease
the number of the network’s training parameters. The
convolution process in convolutional layer operation which
includes convolution and activation is expressed as:

0= Y ey swPen + b° (6

1
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o , O] ;
where y;” is the j™" output of the I*" layer, £, (x,y) is any
pixel of an ISAR image on the it" feature map (layer output) of

the [t" layer, w® is the kernel matrix operating on " input

)
feature map to get jt* output feature map on the I** layer, bj(l)
is the jt" bias of the [t" layer, and = denotes the 2-D convolution
operation. In order to maximize nonlinear characteristics and to
have a stronger classification capability of the network, the
nonlinear activation function layer must be connected to each
convolution layer:

Py = o(y") (6)
where o is the ReLU non-linear activation function. The final
decision layer is a single dimensional array of the length of the
number of ship categories when they are connected to a higher
dimensional space. In this layer, convolutional kernel and bias
are the trainable parameters.

The pooling layers are used to decrease the number of
trainable parameters and are realized after convolution layer by
means of “compression” of information in computer vision
applications. Pooling layer are of two types average and
maximum. Here, the maximum pooling is expressed as:

FPay = max fPa+my+n) (@)
m,n=0,..,k—1

where k is the shape of pooling window. The features from
ISAR images are extracted based on alternate convolutional
and pooling layer.

Usually, the last layer of the network is softmax activation
function for multi-class classification which is defined as
posterior probability of output of previous layer, expressed as:

w
e(fi ) (8)

¥k, ")

where y; is the predicted class of the it" class, L is the number

of layer, f].(L) is the sum of the weight of the j* node of the

fully connected layer, k is the number of class, and £ is the
input to last softmax activation layer. With the help of softmax
activation, the probability vector is normalized and the
predicted class is one with a label corresponding to the
maximum posterior probability.

After forward propagation [31], the trainable network
parameters are updated by some rules. The commonly used loss
functions are Mean Squared Error (MSE) and cross-entropy
which defines the rules to the network. The cross-entropy loss
or log-loss is better for classification which reflects similarity

between data distribution and model distribution:
k

Loss(W,b) = = > yOlogp(nlf®;w,b)  (9)
i=1

where W and b are weight and bias matrix of the all the layer
in the network respectively, and y® is the actual label of the
it" class. When k is 2, if probability of a class is p then the
probability of other class is (1 — p), expanding and substituting
the probabilities in Eg. 9 results in Eq. 3.

The problem of classification can be summed up as the
problem of optimization, i.e. minimizing the loss function when
the network is training on data distribution images.

pilf®) =

G. Backward Propogation
The backpropagation is the building block of the neural
network pointed out by Hinton in [32]. The probability vector
from the output layer is the predicted class of the model. The
error term can be evaluated by taking the difference between
the actual label and the predicted label at the output layer:
df® = —[y® —pGilf L5 W, b)] (10)
If the convolutional layer is present at (I + 1)*" layer,
then the error term produced at it" feature map (layer output)
of the I** layer is determined by (I + 1)*" layer’s error term,
calculated as:

afP = o' (F0) 0 Y afPwi a

]
where ® denotes dot product, and ¢'(.) is the first derivative
of the defined activation function (here, ReLU and PReLU).

If the pooling is present at (I + 1)¢" layer, the error term
produced at i" feature map (layer output) of the It" layer is
calculated using:

df” = o' (") © Up(af ") (12)
where Up(.) is the upsampling function in the dataflow.

The gradients of the weight and the bias of I layer is
dependent on the error term of [ layer which is calculated as:

dLoss _
o = L (13)
Bwji
dLoss Z df(l)( ) (149)
—_— . x, y
© j
ab]. =

Applying gradient descént, the weight and bias matrix is
updated for each layer in the network as:

dLoss
wWe— w—r1 F (15)

where 7 is the learning rate.

The optimized network parameters for classification is
obtained with the help of forward [31] and backward [33], [34]
propagation and also stable network. With the ISAR image
classification, ISAR images of a ship are given as input to get
their class attributes.

I1l.  PERFORMANCE ANALYSIS

A. Neural Network Training Details and Parameters

First, the ISAR images of ships are simulated using
electromagnetic solvers with resolution equal to 1m on both
range and cross-range axis. The pre-processing of ISAR images
is done as discussed above. In the dataset, three categories of
ship are considered for classification, BNSBangabandhu,
Cruise and Monitor-36 [from grabcad.com]. For each category,
6 ISAR images are simulated for training at different look
angles where look angle varies from 20” to 70° with a difference
of 10°.

The input ISAR images are kept to their original dimensions
during the training process. The GAN training process is
completed on an NVIDIA Tesla T4, which is accessible from
Google Colab based on TensorFlow and takes around 4 hours.
For updating the weights, the optimization used is Adam, and
the momentum is 0.5, the learning rate of the generator is
0.0001, whereas the discriminator is 0.0002. The batch size for
the hardware accelerator is 6, and 10 ISAR images for each
category of ship are generated after training. Training lasts for
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10000 epochs. The number of parameters for learning
generators and discriminators is 1.23M and 1.64M. Similarly,
for classifiers, Google Colab is used for training based on the
same dataflow framework which took about 30 minutes on
NVIDIA Tesla T4. RMSProp optimization is used for weight
updating and the learning rate is 0.00001 with categorical cross-
entropy loss. The batch size is 16 and training lasts about 50
epochs. The number of parameters which are learnable for
classifiers is 41.95M where MobileNetV2 is non-trainable and
the last layer has 3 neurons for categorical classification of
ships. The visualization of classifier’s loss and accuracy during

the training process is shown in Fig. 6.
Training and Validation Loss

e The model and setup is simulated, using RADARPOst,
simulated results are imported and ISAR images are
obtained as shown in Fig. 7

ISAR_contour

10
—— Taining Loss
—— Validation Loss
08
= Voo-80,00 60!00 40!00 720!00 0,"!0 20,'00 40.‘00 " 50,'00 80.00
g 06 Tb(Range) [meter]
£ (a) BNSBangabandhu ship with 20° look angle
% 04 ISAR_contour
J 12576 — R
02 100.00 |
003 o » ) P %
epoch ;f
10 Training and Validation Accuracy % i}
g
09 -
-50.00 -
08
g o7 100.00 —
2 06
< i 0.00 50.00
0s Tb(Range) [meter]
- (b) Monitor-36 ship with 30° look angle
o — hmm’g Accuracy ISAR_contour
03 ——— Walidation Accuracy 2000
0 10 20 0 a0 50
60.00
Fig. 6: Visualization of classifier’s loss and accuracy
40.00
B. Simulation of ISAR Images
Initially, the ISAR images are simulated using ZTZ‘"“”
electromagnetic solvers to train the GAN for generating the go.oo—
duplicates. The simulated and generated images are used for %]
classification. The mathematical solver used to simulate the L p————
ISAR images is ANSYS Electromagnetics SBR+ Solver with 4000
RADARPre and RADARPost as ACT extensions. The —
parameters used for simulation is shown in Table Il. The ,
simulated ISAR images in range and cross-range axis (in e e w2 'mlal‘""’?. m' who | wbo | eobo | obo
- - - - .ange) [meter
logarithmic scale) are shown in Fig. 7. _ (c) Cruise ship with 50° look angle
The simulated ISAR images are obtained as following: A .
. . . Fig. 7: ISAR Images in log scale
e Create a HFSS project in ANSYS Electromagnetics
SBR+ Solver and import the 3-D model of the ship in TABLE 2. Simulation parameters for ANSYS Electromagnetics
workspace. Parameter Value
¢ Assign the material of the ship as ”pec” and change the Frequency ____95GHz
units as meter. The orientation of ship along x-axis, y- = Look A"IQ'E;‘ 20-70 W'thllo difference
axis and z-axis should be ship length, height and width, ange resolution m
. X > Cross-range resolution 1m
respectively. Because the radar is placed in XY plane at Range Ship Length
an angle (look angle) w.r.t x-axis as per RADARPre. Cross-range Ship Height
e Open RADARPre window, enter the radar requirements
as shown in Table Il and Generate Radar setup.
e Set the Ray Density per Wavelength as 0.1 and check
Edge Correction in Setup window.
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C. Laboratory Results

In this work, GAN is utilized to generate ISAR images of
ships which are similar to data distribution (real data). After
training the GAN which is constructed using neural network,
the results obtained for first category of ship
(BNSBangabandhu) is shown in Fig. 8a. The second category
of ship (Monitor-36) is shown in Fig. 8b. Similarly, for the last
category of ship (Cruise) is shown in Fig. 8c. To identify the
different categories of ship, the features extracted are ship
silhouette, masts, length and area. For BNSBangabandhu,
length and two masts acts as main features as well as silhouette
gives the placement and height of masts, this is also the case for
Monitor-36 but two masts are of different height and silhouette
accounts for ship structure. As for Cruise, there are no masts
but length, area and silhouette is enough to differentiate
between other categories of ship. The images are scaled down
to size of 180x128 for better visualization with x-axis and y-
axis as range and cross-range (in logarithmic scale),
respectively. The output images of GAN are compared to data
distribution images in terms of length, height, number of masts,

(c) BNSBangabandhu

(b)

(®)
Fig. 8: ISAR images obtained from GAN for the three categories [scale, 1pix = 1m]

mast position, and area occupied by the ship. These can be
directly compared with 3-D geometry models or ANSYS
simulated images since the resolution along range and cross-
range is 1 meter. As part of GAN working, generator and
discriminator achieved equilibrium (valued %) with its
objective function where generator tries to minimize and
discriminator tries to maximize. With this, GAN results are
satisfactory for further applications. As for the ISAR image
classification, transfer learning technique is utilized to achieve
the state-of-the-art solution. The model used is MobileNetV2

which results an accuracy of 100% on training dataset and 90%
accuracy on validation dataset. The results shown here are
compared to the existing methods such as Multi-Feature ATR
[1] where the author obtained an accuracy of 89.7% and 91.6%
for single frame and two frame, respectively, with known
aspect angle. The proposed method outperforms in terms of real
time prediction and pre-processing towards the algorithm.

IV. CONCLUSION

A GAN-based framework is developed for generating ISAR
images and a combined loss comprising of the adversarial loss
and the absolute loss for structuring the noise into ISAR images
of ships. This is designed such that image contrast is considered
as feature and the weakly scattered points. Comparing this work
to existing and recent state-of-the-art methods, the results show
that this method is superior in structuring ISAR images from
random noise, amplitude, position and considering very weak
point scatters. The ISAR image classification also outperforms
existing methods and uses a transfer learning technique for
classification. In the future, the GAN framework and the

Monitor-36

Cruise

classifier can be further studied on several other sides, assuming
that all the required imaging parameters are known in real-
world scenarios. Instead of simple GAN, conditional GAN can
be used to reduce the time consumption where condition is
category of ship or InfoGAN can be used to gather maximum
information from ISAR images using a variation of the Week-
Sleep algorithm. ISAR image dataset needs to be increased by
simulation and GAN and considering multi image perspective
of ship while simulating i.e. pain view and broadside profile.
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