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Abstract— Deep learning techniques like Convolutional 

Neural Network (CNN) are being used for processing of Inverse 

Synthetic Aperture (ISAR) images to enhance resolution for 

better imaging quality. Work is seldom done for classification of 

ships from ISAR images using deep learning techniques. 

Moreover, the technique requires a large database which is 

difficult to construct in a real-world scenario. In this work, the 

problem is addressed using Generative Adversarial Network 

(GAN), a framework connected by generator and discriminator 

networks. The combined loss is used to train the GAN which is 

composed of the adversarial loss and the absolute loss. With the 

help of absolute loss, the random noise is reconstructed to a 

meaningful ISAR image of a ship by a generator whereas the 

adversarial loss enhances weakly scattered points and amplitude 

by a discriminator which is trained to distinguish between model 

distribution and data distribution. The GAN is kept training till 

there is an equilibrium between the networks. For ship 

classification, a technique called transfer learning is used with 

Deep Convolutional Neural Network (DCNN) MobileNetV2 as a 

backbone consisting of linear bottlenecks and inverted residuals 

and achieve 90% accuracy as experimental results. Comparing 

this work with existing state- of-the-art methods, GAN used to 

generate ISAR images and DCNN for ship classification yields 

better results and more details of target. 

 

Keywords— Inverse Synthetic Aperture Radar (ISAR), Deep 

Convolutional Neural Network (DCNN), Generative Adversarial 

Network (GAN), Transfer Learning, Image Classification. 

I.  INTRODUCTION  

Inverse Synthetic Aperture Radar (ISAR) is widely used in 

remote sensing for the acquisition of radar images to detect and 

classify ship targets for military applications. Automatic 

recognition of ships using ISAR images is achieved in various 

ways such as feature matching between ISAR images and 3-D 

geometry projection to Image Projection Plane (IPP) [1] and 

probabilistic recognition of ship using deep learning technique 

such as combining Faster-Region based Convolutional Neural 

Network (Faster-RCNN) [2] and Bayesian fusion [3]. 

Basically, this is narrowed down to two main methods: 

classification using feature matching and neural network. 

The formation of ISAR images is achieved by having static 

imaging radar and motioned [4] ship along its axis. ISAR 

generates a series of range-Doppler image frames which is 

described in [5]. Imaging Radar is able to detect, track and 

image targets at long range with high accuracy in all weather 

conditions. Since simulation of ISAR images is tedious using 

mathematical solvers, this can be overcome by a well-known 

framework which can generate data similar to data distribution 

called Generative Adversarial Network (GAN) [6]. For image 

classification, the typical number of images in the dataset 

should be more than 500 per class (categories). Initial ISAR 

images of ships are generated using mathematical solvers and 

are increased with the help of GAN. This technique is well 

suited for generation and translation of images. This framework 

was introduced by Ian J. Goodfellow to generate similar data 

for the applications of artificial intelligence. In this framework, 

two models are trained namely, a generative model G and a 

discriminative model D. The functionality of these two models 

are, one measures the distribution of data and the other 

calculates the likelihood of how close the training data is to the 

output of the generator. When the model is in training mode, G 

is attempting to increase the likelihood that D would make an 

error. When both models are assigned with arbitrary functions, 

there exists a unique approach with G reconstructing the data 

distribution and D attaining the probability equal to 12 

everywhere. This is similar to a two-player game where one 

tries to win over the other. Similarly, GAN can also be used to 

improve the resolution of the ISAR images by considering 

ISAR images of high-resolution in the data distribution [7]. 

As for the classification of ships, in the conventional radars, 

ships are classified at a broader level based on features 

extracted such as Radar Cross Section (RCS) and speed of the 

ships. These features are not sufficient to classify ships for 

military applications. With imaging radars of high resolution, 

more features could be extracted for detailed level of 

classification. With advent of computer vision algorithms, 

extraction of features from inverse synthetic aperture radar 

(ISAR) images is of significance. But the autoencoder, neural 

network used to learn efficient data codings, extracts the 

maximum number of features from the ISAR images for 

classification. This is achieved by Deep Convolutional Neural 

Network [8]. It has been studied over the last decade as one of 

the most effective tools, which has become very popular in 

literature because it can handle a large amount of knowledge. 

Recently, the concept of providing deeper hidden layers has 

begun to exceed the success of classical methods in major 

fields; mainly in pattern recognition. The parameters [9] which 

are learnt over the iterations are produced by convolutional and 

fully-connected layers and not by pooling and activation layer. 

With hardware accelerator devices (e.g. Graphics Processing 

Units or GPUs) available for computers, machine learning 

techniques are commonly used in many applications such as 
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image processing [10], natural language processing for speech 

recognition [11], speech separation [12], etc. In recent years, 

Automation Target Recognition (ATR) methods [13], [14] for 

ISAR images based on feature matching have been widely used 

and achieved very good results. Instead of using completely 

new neural networks, a new technique called transfer learning 

[15], [16], [17] is used in order to achieve the greater 

performance. It is the transfer of knowledge obtained by 

solving a kind of problem and using it to solve a different but 

same kind of problem. This technique is used where there is 

deficiency of the data in the dataset (less than the required). In 

[18], the recognition of sea targets is achieved from correlation 

between ISAR images and optical images. After processing 

them jointly, conditional GAN (cGAN) is used to translate the 

pix2pix information from ISAR images to corresponding 

optical images and CNN is trained for target recognition. 

In this work, the GAN framework is used to increase the 

images in the dataset and transfer learning for classifying the 

different categories of ship. To optimize the generator, a 

combined loss is applied which is composed of adversarial loss 

and absolute loss. The absolute loss helps to structure the ISAR 

images out of random noise. The adversarial loss helps the 

generator to gain all the data points scattered widely. Lastly, 

categorical loss helps to classify the ships according to their 

respective classes. 

In the next section, the detailed state-of-the-art solution is 

provided for GAN and transfer learning with the updating of 

weights and biases using forward and backpropagation. In 

section 3, the results obtained from this method are analysed 

and tools used to achieve the same. Additionally, the simulation 

of ISAR images of ships using ANSYS Electromagnetics is 

discussed. 

II. METHODOLOGY 

A. ISAR Image Pre-Processing 

The flowchart of target recognition for ISAR images based 

on GAN and DCNN using transfer learning is shown in Fig. 1. 

If the entire ISAR image is labelled as a target, the matching 

features accounting background characteristics will affect the 

results of the classification because the target ship only takes up 

a portion of the ISAR image, thus the accuracy of the 

classification algorithm is reduced. If the ISAR image consists 

of background noise such as sea clutters which is strong, this 

may lead to decrease in the accuracy of the classification. 

Therefore, the image segmentation technique must be used to 

extract the target area of interest (ship structure) in center by 

applying pre-processing technique to ISAR images, which 

results in an increase in the accuracy of the classification 

algorithm. 

First, the ISAR images are simulated using mathematical 

solvers, with resolution equal to 1m so that features like length 

and height are extracted precisely, from the available 3-D 

models. Using the radon transform [19], [20], the obtained 

angle at which ship structure is aligned in threshold ISAR 

images is used to orient the same ship structure to horizontal 

axis making the hull face at the bottom. The image is threshold 

by dynamic value to eliminate the sea clutters and speckle 

noise. Normalizing the ISAR images between -1 and 1 so that 

learning rate can be as low as possible. The number of samples 

in the range and cross-range depends on dimension along length 

and height of the ship i.e. shape of the ISAR images. Indirectly 

ISAR images of different categories have different shape such 

as cruise and warship. So, all the images are padded with 

redundant data symmetrically on both axes making it 256x256 

shape. This helps in training and generating the better images 

from the generator. 

B. GAN bases framework 

The framework which is designed based on GAN is shown 

in Fig. 2, including image generation and mapping between 

generator and discriminator. The main objective of the GAN is 

to translate the noise to corresponding ISAR image from the 

data distribution (contains simulated ISAR images) using a 

generator 𝐺𝐺
 that is achieved by end-to-end mapping of model 

distribution and data distribution with the help of DCNN. This 

can be transformed into a problem of optimization which is 

expressed as: 

̂𝐺 = arg min
𝜃𝐺

1

𝑚
∑ log(1 − 𝐷(𝐺(𝑧)), 𝑥)

𝑚

𝑖=1

           (1) 

Fig. 1: The flowchart of target recognition for ISAR image based in GAN and DCNN using transfer learning. 
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where z is random noise, 𝐺 is parameters of generator and x is 

real data (data distribution). From [4], discriminator 𝐷𝐷
 can 

also be converted to optimization problem which is expressed 

as: 

̂𝐷 =  arg max
𝜃𝐷

1

𝑚
∑ log(𝐷(𝑥))

𝑚

𝑖=1

                   (2) 

where 𝐷 is parameters of discriminator.  

This design makes it possible to train the generator model 

G in order to bypass the differential discriminator D that is 

trained to distinguish the model distribution (generator output) 

from the data distribution (simulated ISAR images).It 

encourages the generator to construct an ISAR image from 

random noise and to recover all data points by introducing an 

adversarial loss. 

The data distribution contains simulated ISAR images with 

help of mathematical solvers and pre-processed for training. 

The design and construction of both elements of GAN is 

discussed in the next sub section. 

 

 

C. Design of GAN 

 The experiment carried out in [21] has shown that, in 

imaging equality, Complex Valued- CNN (CV-CNN) has no 

significant benefits over Real Valued-CNN with the exception 

of time consumption. Therefore, absolute values are used to 

learn the GAN and image classification [22]. The main features 

appear as bright spots (amplitude) in ISAR images, unlike 

optical images, which appear in different colour details and rich 

edges with differentiable backgrounds. To account for image 

contrast as the most important for the extraction of features that 

can be found in the Res-Net architecture [23], while preventing 

network degradation the image contrast is transmitted directly 

through skip connections. 

Inspired by Res-Net architecture, designing your own 

convolutional neural network to work on image contrast feature 

extraction is the most important. For this work, the dataflow 

layers stacked for generators, is shown in Fig. 3, in order to 

extract the maximum number of features belonging to different 

ships. In the beginning, the random noise is given to the 

generator and reshaped to desired shape and subsequently 

convolutional operations are used to extract the features. The 

group of 2D-Convolution, Batch Normalization, Rectified 

Linear Unit and Upsampling (conv2d-BN-ReLU-Upsampling) 

layers acts as residual blocks, where it helps to structure the 

noise into ship images and upsample the data at each residual 

block to obtain desired ISAR image size. 

 

 

Similarly, CNN is used to design discriminators with flow 

of data as shown in Fig. 4. It takes the batch of ISAR images 

from data distribution as input and corresponding output from 

generator (model distribution) to learn the parameters and 

improvise the generator to produce better images. The job of a 

discriminator is to classify the input image into fake or real with 

respect to data distribution. The seven convolutional layers are 

stacked in a sequence with an increasing number of feature 

maps, each layer being increased by a factor of 2 from 16 to 256 

except for last two layers as in the Visual Geometry Group 

Network (VGGNet) which is a very deep convolutional neural 

network [24]. In the ISAR images, each pixel is related to the 

cross-section of the target and the range of pixel values is broad, 

the data distribution images are more susceptible to 

normalization, which is already accomplished in the pre-

processing portion. The dropout layer is used in order to choose 

multiple independent paths to avoid overfitting of data. The 

PReLU layer is used to avoid sparse gradients instead of ReLU. 

The performance can be achieved at the highest level by 

deleting batch normalization (BN) layers, which reduces the 

computational complexity of the residual blocks. Since ISAR 

images are prone to image contrast and it is necessary to 

normalize the data in blocks, in this work, BN layers are used 

in the GAN architecture which is proven in [25]. 

 
 

D. Combined Loss 

For better performance out of the generator, a definition of 

a loss function is critical. Mean Squared Error (MSE) is widely 

used in many applications but cross-entropy helps loss to be 

calculated in log scale to prevent large range of numbers. 

Precisely, binary cross-entropy loss is used since it is the log 

loss it helps in training the network faster compared to others. 

The binary cross-entropy is defined as follows: 

𝑙𝑜𝑠𝑠 =  −[𝑦 log(𝑦̂) + (1 − 𝑦) log(1 − 𝑦̂)]           (3) 

where 𝑦 and 𝑦̂ represent actual class and predicted class, 

respectively. Because the significant target ship features only 

appear as bright spots in the ISAR images, if the loss function 

used for the generator is binary cross-entropy, due to log 

operation all the feature weights calculation will be relatively 

equal, resulting in minimal enhancement and loss of some weak 

point scatters. For discriminator, its job is to classify the 

generator output between fake or real i.e. binary classification, 

the loss function used is binary cross-entropy. 

Fig. 2: The framework based on GAN for ISAR image 

generation.  

 

Fig. 3: Stack of dataflow layers for Generator 

 

Fig. 4: Stack of dataflow layers for Discriminator 
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The adversarial loss [6] is defined over all training samples 

as follows: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺(𝑧))

=  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)]

+  𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧), 𝑥))]          (4) 

where 𝑥 and 𝑧 are data distribution and random noise, 

respectively. In addition to strong point scatters, after 

normalization, the pixel values (amplitude) of most point 

scatters in a single ISAR images are extremely close to 1, the 

regularization parameter is used to ensure that the adversarial 

loss is at least 10 times lesser than the absolute loss preventing 

the training process lead by the adversarial loss, this is 

identified over simulation results. 

E. Ship Image Classification 

For the ISAR images [26], an important feature is image 

contrast and weakly scattered data points. In order to account 

these into classification between different categories of ships, 

classifiers should be designed to have a lesser number of 

parameters and no redundant parameters. The classifier could 

be designed completely from scratch, but the number of images 

in the dataset for each class is less than what is required, 

resulting in the use of a new technique called transfer learning 

[15], [16]. This technique is popular with neural networks 

where there is a small amount of data. It is the transfer of 

knowledge obtained by solving a kind of problem and using it 

to solve a different but same kind of problem. There are a 

number of well-trained models for transfer learning to image 

classification such as MobileNetV2 [27], InceptionV2 [28]. For 

the work, the light-weight model is sufficient for the 

classification, so MobileNetV2 is considered and it is trained 

on ImageNet dataset with 1000 classes. It boosts the mobile 

model’s state- of-the-art efficiency on various benchmarks and 

tasks as well as across a number of different model sizes. This 

model is a reduced form of DeepLabV3 [29] designed to 

outperform semantic segmentation on mobile platforms, and 

this is achieved by having shortcut connections between thin 

bottleneck layers called inverted residual blocks. The bottle-

neck layers for strides 1 and 2 are shown in Fig. 5. 

 
  

  

This model extends the ideas of MobileNet [30], and the 

efficient building blocks of this network contain a depthwise 

separable convolution layer. However, MobileNetV2 is 

designed with two new blocks and connections in the 

architecture that are linear bottle-necks between the layers and 

shortcut connections between the bottle-necks. The sequence of 

layers stacked in the architecture with stride and number of 

feature maps (output channels or filters) is shown in Table 1 for 

the input image size of 224x224. It is used as an encoder and 

few fully connected layers are appended to it to act as a 

classifier. In general, the slope of curve with transfer learning 

is higher than without transfer learning in the graph of training 

versus performance. 

 In the proposed method, MobileNetV2 is used for 

transfer learning where the weights in each kernel is copied 

from a trained network. Here, the network was trained on 

ImageNet dataset with 1000 classes and over one million 

images. The copied weights is utilized to train ISAR images and 

thus minimizing the training time. If weights are initialized 

using initializers (like RandomUniform, GlorotNormal, etc.), 

this resulted in overfitting as there is limited number of images 

in dataset. As the trained network contains 1000 classes 

(connections in the last layer), all other connections except 3 

(number of ship categories considered in the proposed network) 

are frozen during training mode as well as testing mode. 

 
TABLE 1.  MobileNetV2: stacked layers 

Input Operator c n s 

224x224x3 conv2d 32 1 2 

112x112x32 bottle-neck 16 1 1 

112x112x16 bottle-neck 24 2 2 

52x52x24 bottle-neck 32 3 2 

28x28x32 bottle-neck 64 4 2 

14x14x64 bottle-neck 96 3 1 

14x14x96 bottle-neck 160 3 2 

7x7x160 bottle-neck 320 1 1 

7x7x320 conv2d 1x1 1280 1 1 

7x7x1280 avgpool 7x7 - 1 - 

1x1x1280 conv2d 1x1 k -  

 

where 𝑛 is number of repetition layers, 𝑐 is number of output 

channels and 𝑠 is stride size. In this work, the model takes input 

as 3 channels and ISAR images have only 1 channel, this allows 

duplicating the same ISAR data into all 3 channels. This works 

the same as a neural network with 1 channel as input. The loss 

of classifier is calculated as in Eq. 3 as categorical cross-

entropy which means it can be extended to N number of 

categories. 

F. Forward Propogation 

The convolution layer is a key to the extraction of features 

from images. This layer involves convolution operation 

between the output of the previous layer and the kernel to 

extract the features. When training the neural network, the 

kernel of the convolution layer is continuously modified by 

learning feature maps. When for each convolution operation 

specific convolutional kernels are used, more and more 

parameters need to be trained, as depth of network increases. 

The weight-sharing operation is adopted by CNN to decrease 

the number of the network’s training parameters. The 

convolution process in convolutional layer operation which 

includes convolution and activation is expressed as: 

𝑦𝑗
(𝑙)

=  ∑ 𝑓𝑖
(𝑙−1)(𝑥, 𝑦) ∗ 𝑤𝑖𝑗

(𝑙)(𝑥, 𝑦)

𝑖

+ 𝑏𝑗
(𝑙)

           (5) 

Fig. 5: Bottle-neck layers of MobileNetV2 [27] 
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where 𝑦𝑗
(𝑙)

 is the 𝑗𝑡ℎ output of the 𝑙𝑡ℎ layer, 𝑓𝑖
(𝑙)

(𝑥, 𝑦) is any 

pixel of an ISAR image on the 𝑖𝑡ℎ feature map (layer output) of 

the 𝑙𝑡ℎ layer, 𝑤𝑖𝑗
(𝑙)

 is the kernel matrix operating on 𝑖𝑡ℎ input 

feature map to get 𝑗𝑡ℎ output feature map on the 𝑙𝑡ℎ layer, 𝑏𝑗
(𝑙)

 

is the 𝑗𝑡ℎ bias of the 𝑙𝑡ℎ layer, and ∗ denotes the 2-D convolution 

operation. In order to maximize nonlinear characteristics and to 

have a stronger classification capability of the network, the 

nonlinear activation function layer must be connected to each 

convolution layer: 

𝑓𝑗
(𝑙)(𝑥, 𝑦) =  𝜎(𝑦𝑗

(𝑙)
)                              (6) 

where 𝜎 is the ReLU non-linear activation function. The final 

decision layer is a single dimensional array of the length of the 

number of ship categories when they are connected to a higher 

dimensional space. In this layer, convolutional kernel and bias 

are the trainable parameters. 

The pooling layers are used to decrease the number of 

trainable parameters and are realized after convolution layer by 

means of “compression” of information in computer vision 

applications. Pooling layer are of two types average and 

maximum. Here, the maximum pooling is expressed as: 

𝑓𝑗
(𝑙)(𝑥, 𝑦) =  max

𝑚,𝑛=0,...,𝑘−1
𝑓𝑗

(𝑙)(𝑥 + 𝑚, 𝑦 + 𝑛)          (7) 

where 𝑘 is the shape of pooling window. The features from 

ISAR images are extracted based on alternate convolutional 

and pooling layer. 

Usually, the last layer of the network is softmax activation 

function for multi-class classification which is defined as 

posterior probability of output of previous layer, expressed as: 

𝑝(𝑦𝑖|𝑓
(𝐿)) =  

𝑒
(𝑓𝑖

(𝐿)
)

∑ 𝑒
(𝑓𝑗

(𝐿)
)𝑘

𝑗=1

                           (8) 

where 𝑦𝑖  is the predicted class of the 𝑖𝑡ℎ class, 𝐿 is the number 

of layer, 𝑓𝑗
(𝐿)

 is the sum of the weight of the 𝑗𝑡ℎ node of the 

fully connected layer, 𝑘 is the number of class, and 𝑓(𝐿) is the 

input to last softmax activation layer. With the help of softmax 

activation, the probability vector is normalized and the 

predicted class is one with a label corresponding to the 

maximum posterior probability. 

After forward propagation [31], the trainable network 

parameters are updated by some rules. The commonly used loss 

functions are Mean Squared Error (MSE) and cross-entropy 

which defines the rules to the network. The cross-entropy loss 

or log-loss is better for classification which reflects similarity 

between data distribution and model distribution: 

𝐿𝑜𝑠𝑠(𝑊, 𝑏) =  − ∑ 𝑦(𝑖) log 𝑝(𝑦𝑖|𝑓(𝐿); 𝑊, 𝑏)

𝑘

𝑖=1

        (9) 

where 𝑊 and 𝑏 are weight and bias matrix of the all the layer 

in the network respectively, and 𝑦(𝑖) is the actual label of the 

𝑖𝑡ℎ class. When 𝑘 is 2, if probability of a class is 𝑝 then the 

probability of other class is (1 − 𝑝), expanding and substituting 

the probabilities in Eq. 9 results in Eq. 3. 

The problem of classification can be summed up as the 

problem of optimization, i.e. minimizing the loss function when 

the network is training on data distribution images. 

G. Backward Propogation 

The backpropagation is the building block of the neural 

network pointed out by Hinton in [32]. The probability vector 

from the output layer is the predicted class of the model. The 

error term can be evaluated by taking the difference between 

the actual label and the predicted label at the output layer:  

𝑑𝑓𝑖
(𝐿)

=  −[𝑦(𝑖) − 𝑝(𝑦𝑖|𝑓(𝐿); 𝑊, 𝑏)]              (10) 

 If the convolutional layer is present at (𝑙 + 1)𝑡ℎ layer, 

then the error term produced at 𝑖𝑡ℎ feature map (layer output) 

of the 𝑙𝑡ℎ layer is determined by (𝑙 + 1)𝑡ℎ layer’s error term, 

calculated as:  

𝑑𝑓𝑖
(𝑙)

=  𝜎′(𝑓𝑖
(𝑙)

) ⨀ ∑ 𝑑𝑓𝑗
(𝑙+1)

𝑤𝑖𝑗
(𝑙+1)

𝑗

         (11) 

where ⨀ denotes dot product, and 𝜎′(. ) is the first derivative 

of the defined activation function (here, ReLU and PReLU).  

If the pooling is present at (𝑙 + 1)𝑡ℎ layer, the error term 

produced at 𝑖𝑡ℎ feature map (layer output) of the 𝑙𝑡ℎ layer is 

calculated using:  

𝑑𝑓𝑖
(𝑙)

=  𝜎′(𝑓𝑖
(𝑙)

) ⨀ Up(𝑑𝑓𝑖
(𝑙+1)

)               (12) 

where Up(. ) is the upsampling function in the dataflow.  

The gradients of the weight and the bias of 𝑙𝑡ℎ layer is 

dependent on the error term of 𝑙𝑡ℎ layer which is calculated as:  
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑗𝑖

(𝑙)
=  𝑓𝑖

(𝑙−1)
𝑑𝑓𝑗

(𝑙)
                                (13) 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑏𝑗

(𝑙)
=  ∑ 𝑑𝑓𝑗

(𝑙)
(𝑥, 𝑦)

𝑥,𝑦

                             (14) 

Applying gradient descent, the weight and bias matrix is 

updated for each layer in the network as: 

𝑤 ⟵  𝑤 −  𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
                                (15) 

where 𝜂 is the learning rate. 

 The optimized network parameters for classification is 

obtained with the help of forward [31] and backward [33], [34] 

propagation and also stable network. With the ISAR image 

classification, ISAR images of a ship are given as input to get 

their class attributes. 

III. PERFORMANCE ANALYSIS 

A. Neural Network Training Details and Parameters 

First, the ISAR images of ships are simulated using 

electromagnetic solvers with resolution equal to 1m on both 

range and cross-range axis. The pre-processing of ISAR images 

is done as discussed above. In the dataset, three categories of 

ship are considered for classification, BNSBangabandhu, 

Cruise and Monitor-36 [from grabcad.com]. For each category, 

6 ISAR images are simulated for training at different look 

angles where look angle varies from 20° to 70° with a difference 

of 10°. 

The input ISAR images are kept to their original dimensions 

during the training process. The GAN training process is 

completed on an NVIDIA Tesla T4, which is accessible from 

Google Colab based on TensorFlow and takes around 4 hours. 

For updating the weights, the optimization used is Adam, and 

the momentum is 0.5, the learning rate of the generator is 

0.0001, whereas the discriminator is 0.0002. The batch size for 

the hardware accelerator is 6, and 10 ISAR images for each 

category of ship are generated after training. Training lasts for 
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10000 epochs. The number of parameters for learning 

generators and discriminators is 1.23M and 1.64M. Similarly, 

for classifiers, Google Colab is used for training based on the 

same dataflow framework which took about 30 minutes on 

NVIDIA Tesla T4. RMSProp optimization is used for weight 

updating and the learning rate is 0.00001 with categorical cross-

entropy loss. The batch size is 16 and training lasts about 50 

epochs. The number of parameters which are learnable for 

classifiers is 41.95M where MobileNetV2 is non-trainable and 

the last layer has 3 neurons for categorical classification of 

ships. The visualization of classifier’s loss and accuracy during 

the training process is shown in Fig. 6. 

 
 

B. Simulation of ISAR Images 

Initially, the ISAR images are simulated using 

electromagnetic solvers to train the GAN for generating the 

duplicates. The simulated and generated images are used for 

classification. The mathematical solver used to simulate the 

ISAR images is ANSYS Electromagnetics SBR+ Solver with 

RADARPre and RADARPost as ACT extensions. The 

parameters used for simulation is shown in Table II. The 

simulated ISAR images in range and cross-range axis (in 

logarithmic scale) are shown in Fig. 7.  

The simulated ISAR images are obtained as following:  

• Create a HFSS project in ANSYS Electromagnetics 

SBR+ Solver and import the 3-D model of the ship in 

workspace.  

• Assign the material of the ship as ”pec” and change the 

units as meter. The orientation of ship along x-axis, y-

axis and z-axis should be ship length, height and width, 

respectively. Because the radar is placed in XY plane at 

an angle (look angle) w.r.t x-axis as per RADARPre.  

• Open RADARPre window, enter the radar requirements 

as shown in Table II and Generate Radar setup.  

• Set the Ray Density per Wavelength as 0.1 and check 

Edge Correction in Setup window.  

• The model and setup is simulated, using RADARPost, 

simulated results are imported and ISAR images are 

obtained as shown in Fig. 7 

 

 
 

 

 
TABLE 2.  Simulation parameters for ANSYS Electromagnetics 

Parameter Value 

Frequency 9.5 GHz 

Look Angle 20°-70° with 10° difference 

Range resolution 1 m 

Cross-range resolution 1 m 

Range Ship Length 

Cross-range Ship Height 

 

Fig. 6: Visualization of classifier’s loss and accuracy 

Fig. 7: ISAR Images in log scale 

(a) BNSBangabandhu ship with 20 look angle 

(b) Monitor-36 ship with 30 look angle 

(c) Cruise ship with 50 look angle 
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C. Laboratory Results 

In this work, GAN is utilized to generate ISAR images of 

ships which are similar to data distribution (real data). After 

training the GAN which is constructed using neural network, 

the results obtained for first category of ship 

(BNSBangabandhu) is shown in Fig. 8a. The second category 

of ship (Monitor-36) is shown in Fig. 8b. Similarly, for the last 

category of ship (Cruise) is shown in Fig. 8c. To identify the 

different categories of ship, the features extracted are ship 

silhouette, masts, length and area. For BNSBangabandhu, 

length and two masts acts as main features as well as silhouette 

gives the placement and height of masts, this is also the case for 

Monitor-36 but two masts are of different height and silhouette 

accounts for ship structure. As for Cruise, there are no masts 

but length, area and silhouette is enough to differentiate 

between other categories of ship. The images are scaled down 

to size of 180x128 for better visualization with x-axis and y-

axis as range and cross-range (in logarithmic scale), 

respectively. The output images of GAN are compared to data 

distribution images in terms of length, height, number of masts, 

mast position, and area occupied by the ship. These can be 

directly compared with 3-D geometry models or ANSYS 

simulated images since the resolution along range and cross- 

range is 1 meter. As part of GAN working, generator and 

discriminator achieved equilibrium (valued ½) with its 

objective function where generator tries to minimize and 

discriminator tries to maximize. With this, GAN results are 

satisfactory for further applications. As for the ISAR image 

classification, transfer learning technique is utilized to achieve 

the state-of-the-art solution. The model used is MobileNetV2 

which results an accuracy of 100% on training dataset and 90% 

accuracy on validation dataset. The results shown here are 

compared to the existing methods such as Multi-Feature ATR 

[1] where the author obtained an accuracy of 89.7% and 91.6% 

for single frame and two frame, respectively, with known 

aspect angle. The proposed method outperforms in terms of real 

time prediction and pre-processing towards the algorithm. 

IV. CONCLUSION 

A GAN-based framework is developed for generating ISAR 

images and a combined loss comprising of the adversarial loss 

and the absolute loss for structuring the noise into ISAR images 

of ships. This is designed such that image contrast is considered 

as feature and the weakly scattered points. Comparing this work 

to existing and recent state-of-the-art methods, the results show 

that this method is superior in structuring ISAR images from 

random noise, amplitude, position and considering very weak 

point scatters. The ISAR image classification also outperforms 

existing methods and uses a transfer learning technique for 

classification. In the future, the GAN framework and the 

classifier can be further studied on several other sides, assuming 

that all the required imaging parameters are known in real-

world scenarios. Instead of simple GAN, conditional GAN can 

be used to reduce the time consumption where condition is 

category of ship or InfoGAN can be used to gather maximum 

information from ISAR images using a variation of the Week-

Sleep algorithm. ISAR image dataset needs to be increased by 

simulation and GAN and considering multi image perspective 

of ship while simulating i.e. pain view and broadside profile. 

Fig. 8: ISAR images obtained from GAN for the three categories [scale, 1pix = 1m] 

(c) BNSBangabandhu 

(b) Monitor-36 

(a) Cruise 
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