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Abstract —This paper presents Cepstral analysis of speech
signal using Discrete Hartley Transform. Hitherto, the cepstral
analysis of speech was carried out using in temporal domain and
in the frequency domain using Discrete Fourier Transform
(DFT) based approach. A new approach of finding the cepstral
coefficients in the frequency domain using DHT, rather than
using the DFT is proposed. DFT being a complex transform takes
more computation time for finding the cepstral coefficients of the
speech signal, but DHT being a real transform takes less
computation time to do the same with less memory requirement.
The relationship between DFT and DHT is made use of for
finding the cepstral coefficients, rather than using the DFT
directly. The usage of DHT method is found to be optimal than
using the direct DFT approach thereby saving implementation
cost substantially in the cepstral analysis of speech signals. The
analysis is done by comparing the usage of DFT directly on the
speech signal and then using DHT, there by seeing the
performance of these mathematical transforms based on
computation time which is used as a performance metric for
validating the veracity of the two discrete transforms used. This
work is implemented using MATLAB R2014a software.
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I INTRODUCTION

The Discrete Hartley Transform (DHT) is a variant of
the Discrete Fourier Transform (DFT) which is renowned and
is one of the largely used transforms in the Communication
Engineering and Signal Processing. Discrete Hartley
Transform (DHT) was developed by Ronald N. Bracewell, a
famous Australian physicist, engineer, and mathematician, in
the 1980s. DHT is a discretized version of the Continuous
Hartley Transform (CHT) invented by the U.S. electronics
researcher Ralph Vinton Lyon Hartley (1888 A.D. — 1970
A.D.) in 1942 [1]. Though it existed in the technical literature,
it remained in the oblivion for a number of years until
Bracewell invented and published a discretized version of it in
1983. Hartley also invented the Hartley Oscillator and also
contributed towards the development of Information Theory
during its stage of infancy. In this paper, Hartley Transform
and its discrete variant are reviewed followed by their
application to the cepstral analysis of speech signal [2].

II.  THE CONTINUOUS HARTLEY TRANSFORM

The Continuous Hartley Transform (CHT) is an
orthogonal integral transform. Originally, Hartley defined the
CHT of a continuous — time functionf (t) as

H(w) = % I” f(®).cas(wt) dt 1)
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Here, w is the angular frequency in rad/sec. Note that
cas(a) = cosa + sina = /2 sin (a + g) =+/2cos (a — g)

is the cosine-and-sine or Hartley kernel. In Signal Processing
terms, this transform takes a signal (function) from the time-
domain to the Hartley spectral domain (frequency domain).
Eq. (1) is called the Analysis Equation of the CHT [3]. The
Inverse Continuous Hartley Transform (ICHT) was again
defined by Hartley originally as

£t) = \/% I” H(w).cas(wt) dw )

Eq. (2) is called the Synthesis Equation of the CHT [4]. The
Hartley transform has the convenient property of being its own
inverse. Hence, it is an Involution Integral or Transform [5].

The properties of the cas[.] function follow directly
from Trigonometry and its definition as phase-shifted
trigonometric functions as given below.

casf, = \/2sin (92 + %) = /2 cos (92 - %)

It has angle-addition identity as given below.
cas(6, + 6,) = {cos 0,casb, + sinO,cas(—6,)}
Also,
cas(6, + 6,) = {cos B,casO; + sinB,cas (—0,)}
The first-order derivative of cas@,; w.rt. 6, is given by the
following expression [6],
cas'(6,) = a0 [casB,] = cos B, — sin6; = cas(—0,).
1
I1l.  RELATIONSHIP BETWEEN THE CONTINUOUS
HARTLEY TRANSFORM AND THE COMPLEX
FOURIER TRANSFORM

The CHT is closely related to the Continuous Time
Fourier Transform or Infinite Fourier Transform or the
Complex Fourier Transform. CHT differs from the classic
Fourier transform in the choice of the kernel. It is well-known
that the Continuous Time Fourier Transform is a complex
integral transform due to the use of the complex exponential,
e /@t or e7/27ft 35 its kernel. But the Continuous Hartley
Transform (CHT), unlike the Continuous Time Fourier
Transform, is a real transform because its kernel cas(6) =
cos 6 +sin @ is real. Even its backward or inverse transform
is also real [7].
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The Continuous — Time Fourier Transform (CTFT)
of a continuous — time function f(t) is defined as,

Fw) = 2= [, f(®e /" dt ©)
The Inverse Fourier Transform of F(w) is defined by
the following equation,

f® ==/, F@e do (4)

The CTFT can be directly obtained by CHT by the
following expression,

1 1
F() = 5[H(@) + H(-w)] = j 5 [H(©) = H(-w)]
()

That is, the real and imaginary parts of the Fourier
transform are simply given by the even and odd parts of the
Hartley transform, respectively.Conversely, for a real-valued
function f(t), the Hartley transform is given from the
Continuous — Time Fourier transform's real and imaginary
parts [8] as
H(w) = Fp(@) — F; (@) = Re[F{f (t(1 + }))}] (6)
Here, F is the Fourier Transform operator, and Re][.] depicts
the real part of the entity. It is easy to extend the definition of
Continuous Hartley Transform (CWT) and its inverse to
N —dimensions.

IV. THE DISCRETE HARTLEY TRANSFORM (DHT)

The Discrete Hartley Transform (DHT) of a discrete
— time signal, x(n), is defined as [9]

Xy (k) = DHT[x(n)] = ¥NZ3 x(n) cas (Z?n) Q)

Vo<nk<N-1.
where, cas (%) = cos (%) + sin (%)
—sin (%) (8)

2mkn 2mkn
Also, note that cas (— " ) = cos (T)
The Inverse Discrete Hartley Transform (IDHT) of
Xy (k) is defined as,

x(n) = IDHT[XH(k)] = ZII¥=_01XH(k) cas (21:\;(”) (9)
Vo<nk<N-1

Egs. (7) and (9) are respectively called the Analysis and
Synthesis Equations of DHT. Note that cas (?) is the

kernel of DHT [10]. It is a real term due to which the DHT is a
real transform. The same kernel is made use of in the
computation of the IDHT. Thus, unlike in the DFT, where
there is a change of sign in the kernel in the synthesis
equation, in the case of the DHT, there is no such thing which
means that a single algorithm can be used to compute both the
forward and backward transforms of DHT, which is a major
advantage over the conventional DFT. This is the equivalent
to the case encountered in Continuous Hartley Transform.
Hence, the DHT also is its own inverse. Thus, the DHT
involves only real operations and hence, the computational
load and memory requirement are considerably reduced by
50%, which stands out as a good merit over the conventional
DFT. Efficient algorithms called the Fast Hartley Transforms
(FHT) have been developed for computing the DHT and have
been in use in many DSP applications [11].

V. RELATIONSHIPS BETWEEN DHT AND DFT

A. Relationship between the Analysis Equations of DFT and
DHT

The DFT of a discrete — time sequence x(n) is
defined as

X(k) =DFT[x(n)] =
VOo<nk<N-1.

2mkn
nsox(m)e” N (10)

Using Euler’s Theorem, etV = cis(+y) = cos(y) +
jsin(y), we get,

X(k) = B3z x(m) [eos (277) = jsin (7)) (1)

Due to the absence of the j term in X, (k), DHT is
purely real.Next, consider the following expression,

e/% = cis(a) = cos(a) + jsin(a).

eltye—ia ja_e—ja

We know that cos a = and sina = 2

2j

> casa = cosa + sin @ = 22" (1+j;e_1“ (12)
Consider the following assumptions

x=el% k = casa, §=¥, 5=1%j (13)
Then, we have the quadratic equation,

Ex2—kx+6=0 (14)
Solving for y, we get,

:X=2%i%j(cosa—sina) (15)
Considering only the negative sign and simplifying, we get,

x=el*= 1%jcasaz + 1%jcas(—af) (16)
Also, y™1 = i =e /% = 1%jcas(—oc) + 1%jcas(oc) 17
Now, the DFT ofx(n) is given by the well known equation

X() = DFT[x()] = Bzt x(my e ®° (18)

Making use of Eq. (17) in the above equation, we get,

Xt =~ w0 + 2 x,m

1 1
- X (k) = 5 DX G + Xy (KO + 5 X (—K) = Xy ()]

Since X (k) is complex, we can write the above equation as,

X(k) = Xg(k) + jX; (k) (19)
Thus, the DFT coefficients in terms of DHT coefficients are
given by the following two equations,

Xg () = 5 [Xyy () + Xy (=] (20)

X, (k) = [Xp (—k) = Xy ()] (21)

Subtracting Eq. (21) from Eg. (20), we get the DHT
coefficients which are expressed in terms of DFT [12].

Xy (k) = Xg(k) — X, (k) (22)

B. Relationship between the Synthesis Equations (Inverses)
Of DFT and DHT

Ifxy(n) = IDHT[Xy(k)], then it is possible to
express the IDHT of X, (k) in terms of the IDFT of X (k).
xp(n) = xg(n) — x,(n) (23)
Here, xz(n) and x;(n) are the real and imaginary parts of
x(n) respectively. Note that xz(n) = IDFT[Xz(k)] and
x;(n) = IDFT[X,(k)] respectively. DHT finds applications in
a variety of domains such as Speech Processing, Image
Processing, Biomedical Signal Processing, Data Compression,
etc [13].
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VI. SPEECH ANALYSIS USING CEPSTRUM

Cepstrum was invented jointly by B. P. Bogert, M. J.
R. Healy, and J. W. Tukey in 1963. The name "cepstrum" was
derived by reversing the first four letters of "spectrum."
Operations on cepstra are labelled quefrency
analysis, or cepstral analysis. A cepstrumis the result of
taking the Inverse Fourier Transform (IFT) of the logarithm of
the  estimated spectrumof a  signal. There is
a complex cepstrum, a real cepstrum, a power cepstrum, and
phase cepstrum. The power cepstrum in particular finds
applications in the analysis of human speech. This was the one
that was originally invented [12].

Speech is considered to be the output of a system, the
vocal tract V(z)to an input p(n) which is either a periodic
impulse train due to the vibration of vocal chords or the white
noise due to the air flow. Based on the type of the input, the
speech signal is broadly classified as voiced for the periodic
impulse train input and as unvoiced speech for the white noise
input [13].

Speech is composed of excitation source and vocal
tract system components. The main theme of cepstral analysis
of speech signal is to segregate its excitation and vocal tract
components without any advanced knowledge about source
and/or system. Voiced sounds are generated by exciting the
time varying system characteristics with periodic impulse
signals. The unvoiced sounds are generated by exciting the
time varying system with a stochastic noise sequence. Hence,
the resultant speech signal is the linear convolution of the
corresponding excitation sequence and vocal tract filter
characteristics. Let a(n) and h(n) be the excitation sequence
and vocal tract filter sequences. Then, the speech signal is
given by the one-dimensional linear convolution of a(n)with
h(n).

s(n) = a(m)®h(n) (24)
where, the symbol ‘®’ denotes discrete — time linear
convolution.Taking Discrete — Time Fourier Transform
(DTFT) on both sides of Eq. (24) vyields the frequency
spectrum,

S(e/?) = A(e/®). H(e/®) (25)
Eqg. (25) can also be written as
S(w) = A(w).H(w) (26)

The speech signal is then deconvolved into the
excitation and vocal tract components in the temporal domain.
Taking magnitudes on both sides of Eq. (26), we get,

= [S(w)] = |A(w)]. |H(w)] (@7)

Taking Naperian or Natural logarithms on both sides
of Eq. (27), we get,

log|S(w)| = log.{|A(w)]. |H(w)I} (28)

Orn|S(w)| = In|A(w)| + In |H(w)]| (29)

The logarithmic operation is used for transforming
the magnitude speech spectrum where the excitation
component and vocal tract component are multiplied, into a
linear combination of these components [14]. The segregation
is done by taking the Inverse Discrete Fourier Transform
(IDFT) of In|S(w)]|, which vyields the cepstral coefficients in
the temporal domain. In the cepstral domain, the vocal tract

components are represented by the slowly varying components
concentrated near the lower cepstral region and excitation
components are represented by the fast varying components at
the higher cepstral region [15].

c¢(n) = IDFT[In|S(w)]]

= c¢(n) = IDFT[In|A(w)| + In|H (w)]] (30)
Apodization | x(r) | DFT using IDFT using
$(0) —> using Hamming — DHT > I|X(0)| 2 —>(n)
Window

Figure 1 Cepstral Computation using DHT Approach.

Sometimes, variations occur in the lower cepstral
region due to the vocal tract characteristics and the rapid
varying strata of the cepstrum towards the upper cepstral
region that is represented by the excitation characteristics of
the short time speech segment. A method that is used for
extracting vocal tract and excitation characteristics is liftering
operation which is done in the temporal domain.
Liftering operation is similar to filtering operation in the
frequency domain where a desired cepstral region for analysis
is selected by multiplying the whole cepstrum by a Boxcar
apodization function at the desired position [12]. Liftering is a
useful and meaningful process with the real cepstrum for
obtaining an estimate of the log spectrum of either of the
separated components. That is, we can apply a useful linear
operation to the real cepstrum. The output of this process in
the quefrency domain is a real cepstrum. However, if the
objective is to return to the original time domain with an
estimate of the separated signal, the real cepstrum will fail,
because its "linearizing" operation is not invertible. To
complete this task, we would need a phase — preserving
linearizing operation [14].

VII. APPLICATION OF THE DISCRETE HARTLEY
TRANSFORM (DHT) IN DIGITAL SPEECH
PROCESSING

DHT, since it is a real transform, is very much useful
in the cepstral analysis of speech. If x(n) is the discrete
speech signal, firstly, its N-point DHT, Xy(k) is
computed.Then, the DFT of x(n) is calculated by exploiting
the relationship between DFT and DHT, by using the
following relations.

XR (k) — XH(k)"'ZXH(_k) (31)
X, () = 2O (32)
X(k) = Xgp(k) +jX; (k) (33)
We next express X(k) in Steinmetz form or polar form as,
X (k) = |X(k)|e/o® (34)

But from Digital Speech Processing theory, it is known that
Z(n) = IDFT[log.{X(k)}] = IDFT[In{X (k)}]

= 2(n) = IDFT[In{|X (k)|e/°®]}]
£(n) = IDFT[In|X (k)| + j@ (k)] = IDFT[X (k)] (35)
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DHT is then computed by using the relation, X,(k) =
Xr (k) — X, (k), where, X (k) = In|X (k)| and X, (k) = 0 (k).
= Xy (k) = In|X(k)| — 0 (k) (36)
Finally, the cepstral coefficients x(n), are computed by taking
the IDHT of [15] X, (k), i.e.,

£(n) = IDHT Xy (k)] (37)

VIII. RESULT ANALYSIS AND VALIDATION
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Figure 2 Cepstrum of voiced speech segment using DHT.
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Figure 3 Cepstrum of unvoiced speech segment using DHT.

The cepstra of voiced and unvoiced speech segments
using DHT approach are shown in Figures 2 and 3
respectively.The main theme of cepstral analysis of speech
signal is to segregate its excitation and vocal tract
components. The input speech signal is converted into short-
term segments of duration 15 — 20 msec. The frame size is
maintained to 20 msec and then each frame is multiplied by
Hamming Window. Then, the cepstral representation of short-

term speech is computed by finding the IDFT of the log
magnitude spectrum. In this work, instead of using the IDFT
directly, we have used IDHT to compute IDFT. This is done
by using IDHT rather than using IDFT directly. Figure 2
shows a 20 msec voiced frame and its cepstrum in the
temporal domain. It can be clearly seen that the vocal tract
components are concentrated in the lower cepstral region and
the excitation components are concentrated in the higher
cepstral region. Figure 2 also showss(n) which is the voiced
frame considered and x(n) which is the windowed frame.
Also shown is the cepstralcoefficients c(n). Note that c(n) is
symmetrical in the cepstral domain.

CONCLUSIONS

The DHT is two to three times faster than DFT because of no
complex arithmetic being involved. All the four quadrants of
the Hartley domain data must be used. In the computation of
DHT and its inverse, only one quadrant of sines and cosines
need to be calculated due to symmetry. Also, the
multiplication in DHT is real but complex in the case of DFT.
The DHT butterfly loop requires less memory space than the
DFT because all of the data are stored in arrays of real
numbers. The DFT butterfly loop on the other hand uses
complex arrays, which require twice the memory space of a
real array. In the DFT computation, there is one multiplication
and two additions of complex numbers, which adds up to four
multiplications and six additions of floating point numbers
foreach iteration. Also, the DHT has our multiplications and
six additions of floating point numbers for each iteration. The

butterfly loop of the DHT loops from 2 to g while the

butterfly loop of the DFT loops from 1 to N. Since the DHT
loops half the number of times as the DFT, the DHT algorithm
has two multiplications and three additions for every four
multiplications and six additions of the DFT. Also, the DHT
has no multiplications for the zero and Nyquist frequencies,
which is a major advantage of DHT over DFT. DHT needs
less memory to store numbers than the DFT because DHT
does not use complex numbers. The results of the DHT can be
stored in the same memory space as the original data set, thus
eliminating the need to allocate more disk space. Also
converting from Hartley domain to Fourier domain and vice
versa is a direct and simple procedure.

In this work carried out by the authors, cepstral
analysis of voiced speech segment and unvoiced speech
segment using both DFT and DHT approaches were
considered. Usage of direct DFT approach required 1171.5085
complex additions and 585.75425 complex multiplications.
Usage of DHT approach required 292.9 multiplications and
585.823 additions, which indicate that DHT has saved the
computation load by 50%. Thus, by using the DHT approach,
the computation, storage time and the memory requirement are
saved by 50% in the cepstral analysis of speech. This is a good
improvement and the DHT based method is good when
compared to the traditional DFT approach.
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FUTURE SCOPE AND STUDY

The present work is based on the concept of the basic Discrete
Hartley Transform. Other variants of Hartley Transform and
its amalgamation with Wavelet Transform need to be worked
within the nature of quasiperiodicity and the nonstationarity of
the speech signal. The behaviour of the speech signal
spectrum to such robust algorithms needs to be analysed.
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