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Abstract —This paper presents Cepstral analysis of speech 

signal using Discrete Hartley Transform. Hitherto, the cepstral 

analysis of speech was carried out using in temporal domain and 

in the frequency domain using Discrete Fourier Transform 

(DFT) based approach. A new approach of finding the cepstral 

coefficients in the frequency domain using DHT, rather than 

using the DFT is proposed. DFT being a complex transform takes 

more computation time for finding the cepstral coefficients of the 

speech signal, but DHT being a real transform takes less 

computation time to do the same with less memory requirement. 

The relationship between DFT and DHT is made use of for 

finding the cepstral coefficients, rather than using the DFT 

directly. The usage of DHT method is found to be optimal than 

using the direct DFT approach thereby saving implementation 

cost substantially in the cepstral analysis of speech signals. The 

analysis is done by comparing the usage of DFT directly on the 

speech signal and then using DHT, there by seeing the 

performance of these mathematical transforms based on 

computation time which is used as a performance metric for 

validating the veracity of the two discrete transforms used. This 

work is implemented using MATLAB R2014a software. 

 

Keywords—DHT, DFT, Cepstrum. 

I.  INTRODUCTION 

The Discrete Hartley Transform (DHT) is a variant of 

the Discrete Fourier Transform (DFT) which is renowned and 

is one of the largely used transforms in the Communication 

Engineering and Signal Processing.  Discrete Hartley 

Transform (DHT) was developed by Ronald N. Bracewell, a 

famous Australian physicist, engineer, and mathematician, in 

the 1980s. DHT is a discretized version of the Continuous 

Hartley Transform (CHT) invented by the U.S. electronics 

researcher Ralph Vinton Lyon Hartley (1888 A.D. – 1970 

A.D.) in 1942 [1]. Though it existed in the technical literature, 

it remained in the oblivion for a number of years until 

Bracewell invented and published a discretized version of it in 

1983. Hartley also invented the Hartley Oscillator and also 

contributed towards the development of Information Theory 

during its stage of infancy. In this paper, Hartley Transform 

and its discrete variant are reviewed followed by their 

application to the cepstral analysis of speech signal [2]. 

II. THE CONTINUOUS HARTLEY TRANSFORM   

The Continuous Hartley Transform (CHT) is an 

orthogonal integral transform. Originally, Hartley defined the 

CHT of a continuous – time function𝑓(𝑡) as 

𝐻(𝜔) =
1

√2𝜋
∫ 𝑓(𝑡). 𝑐𝑎𝑠(
∞

−∞
𝜔𝑡) 𝑑𝑡                          (1) 

Here, 𝜔 is the angular frequency in rad/sec. Note that 

𝑐𝑎𝑠(𝛼) = cos 𝛼 + 𝑠𝑖𝑛𝛼 =  √2 sin (𝛼 +
𝜋

4
) = √2 cos (𝛼 −

𝜋

4
) 

is the cosine-and-sine or Hartley kernel. In Signal Processing 

terms, this transform takes a signal (function) from the time-

domain to the Hartley spectral domain (frequency domain). 

Eq. (1) is called the Analysis Equation of the CHT [3]. The 

Inverse Continuous Hartley Transform (ICHT) was again 

defined by Hartley originally as  

𝑓(𝑡) =
1

√2𝜋
∫ 𝐻(𝜔). 𝑐𝑎𝑠(
∞

−∞
𝜔𝑡) 𝑑𝜔                        (2) 

Eq. (2) is called the Synthesis Equation of the CHT [4]. The 

Hartley transform has the convenient property of being its own 

inverse. Hence, it is an Involution Integral or Transform [5]. 

 

 The properties of the 𝑐𝑎𝑠[. ] function follow directly 

from Trigonometry and its definition as phase-shifted 

trigonometric functions as given below. 

𝑐𝑎𝑠𝜃2 =  √2 sin (𝜃2 +
𝜋

4
) = √2 cos (𝜃2 −

𝜋

4
). 

It has angle-addition identity as given below. 

𝑐𝑎𝑠(𝜃1 + 𝜃2) = {cos 𝜃1𝑐𝑎𝑠𝜃2 + sin 𝜃1𝑐𝑎𝑠(−𝜃2)} 

Also, 

𝑐𝑎𝑠(𝜃1 + 𝜃2) = {cos 𝜃2𝑐𝑎𝑠𝜃1 + sin 𝜃2𝑐𝑎𝑠 (−𝜃1)} 

The first-order derivative of 𝑐𝑎𝑠𝜃1 w.r.t. 𝜃1 is given by the 

following expression [6], 

𝑐𝑎𝑠 ′(𝜃1) =
𝑑

𝑑𝜃1

[𝑐𝑎𝑠𝜃1] = cos 𝜃1 − sin 𝜃1 = 𝑐𝑎𝑠(−𝜃1). 

III. RELATIONSHIP BETWEEN THE CONTINUOUS 

HARTLEY TRANSFORM  AND THE COMPLEX 

FOURIER TRANSFORM 

 

The CHT is closely related to the Continuous Time 

Fourier Transform or Infinite Fourier Transform or the 

Complex Fourier Transform. CHT differs from the classic 

Fourier transform in the choice of the kernel. It is well-known 

that the Continuous Time Fourier Transform is a complex 

integral transform due to the use of the complex exponential, 

𝑒−𝑗𝜔𝑡  or 𝑒−𝑗2𝜋𝑓𝑡  as its kernel. But the Continuous Hartley 

Transform (CHT), unlike the Continuous Time Fourier 

Transform, is a real transform because its kernel 𝑐𝑎𝑠(𝜃) =
cos 𝜃 + sin 𝜃 is real. Even its backward or inverse transform 

is also real [7].  
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The Continuous – Time Fourier Transform (CTFT) 

of a continuous – time function 𝑓(𝑡) is defined as, 

𝐹(𝜔) =
1

√2𝜋
∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡

∞

−∞
                                 (3) 

The Inverse Fourier Transform of 𝐹(𝜔) is defined by 

the following equation, 

𝑓(𝑡) =
1

√2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡  𝑑𝜔

∞

−∞
           (4) 

The CTFT can be directly obtained by CHT by the 

following expression, 

𝐹(𝜔) =
1

2
[𝐻(𝜔) + 𝐻(−𝜔)] − 𝑗

1

2
[𝐻(𝜔) − 𝐻(−𝜔)] 

                                                                                 (5) 

That is, the real and imaginary parts of the Fourier 

transform are simply given by the even and odd parts of the 

Hartley transform, respectively.Conversely, for a real-valued 

function 𝑓(𝑡), the Hartley transform is given from the 

Continuous – Time Fourier transform's real and imaginary 

parts [8] as 

𝐻(𝜔) = 𝐹𝑅(𝜔) − 𝐹𝐼(𝜔) = 𝑅𝑒[𝐹{𝑓(𝑡(1 + 𝑗))}]           (6) 

Here, 𝐹 is the Fourier Transform operator, and 𝑅𝑒[. ] depicts 

the real part of the entity. It is easy to extend the definition of 

Continuous Hartley Transform (CWT) and its inverse to 

𝑁 −dimensions. 

 

IV. THE DISCRETE HARTLEY TRANSFORM (DHT) 

 

The Discrete Hartley Transform (DHT) of a discrete 

– time signal, 𝑥(𝑛), is defined as [9] 

𝑋𝐻(𝑘) = 𝐷𝐻𝑇[𝑥(𝑛)] = ∑ 𝑥(𝑛) 𝑐𝑎𝑠 (
2𝜋𝑘𝑛

𝑁
)𝑁−1

𝑛=0       (7) 

∇ 0 ≤ 𝑛, 𝑘 ≤ 𝑁 − 1. 

where, 𝑐𝑎𝑠 (
2𝜋𝑘𝑛

𝑁
) = 𝑐𝑜𝑠 (

2𝜋𝑘𝑛

𝑁
) + 𝑠𝑖𝑛 (

2𝜋𝑘𝑛

𝑁
). 

Also, note that 𝑐𝑎𝑠 (−
2𝜋𝑘𝑛

𝑁
) = 𝑐𝑜𝑠 (

2𝜋𝑘𝑛

𝑁
) − 𝑠𝑖𝑛 (

2𝜋𝑘𝑛

𝑁
)     (8) 

 

The Inverse Discrete Hartley Transform (IDHT) of 

𝑋𝐻(𝑘) is defined as, 

𝑥(𝑛) = 𝐼𝐷𝐻𝑇[𝑋𝐻(𝑘)] = ∑ 𝑋𝐻(𝑘) 𝑐𝑎𝑠 (
2𝜋𝑘𝑛

𝑁
)𝑁−1

𝑘=0   (9) 

∇ 0 ≤ 𝑛, 𝑘 ≤ 𝑁 − 1. 
 

Eqs. (7) and (9) are respectively called the Analysis and 

Synthesis Equations of DHT. Note that 𝑐𝑎𝑠 (
2𝜋𝑘𝑛

𝑁
) is the 

kernel of DHT [10]. It is a real term due to which the DHT is a 

real transform. The same kernel is made use of in the 

computation of the IDHT. Thus, unlike in the DFT, where 

there is a change of sign in the kernel in the synthesis 

equation, in the case of the DHT,  there is no such thing which 

means that a single algorithm can be used to compute both the 

forward and backward transforms of DHT, which is a major 

advantage over the conventional DFT. This is the equivalent 

to the case encountered in Continuous Hartley Transform. 

Hence, the DHT also is its own inverse. Thus, the DHT 

involves only real operations and hence, the computational 

load and memory requirement are considerably reduced by 

50%, which stands out as a good merit over the conventional 

DFT. Efficient algorithms called the Fast Hartley Transforms 

(FHT) have been developed for computing the DHT and have 

been in use in many DSP applications [11].  

V. RELATIONSHIPS BETWEEN DHT AND DFT 

A. Relationship between the Analysis Equations of DFT and 

DHT 

The DFT of a discrete – time sequence 𝑥(𝑛) is 

defined as 

𝑋(𝑘) = 𝐷𝐹𝑇[𝑥(𝑛)] = ∑ 𝑥(𝑛) 𝑒−
2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0          (10) 

∇ 0 ≤ 𝑛, 𝑘 ≤ 𝑁 − 1. 
 

Using Euler’s Theorem, 𝑒±𝑗𝛾 = 𝑐𝑖𝑠(±𝛾) = cos(𝛾) ±
𝑗sin (𝛾), we get, 

𝑋(𝑘) = ∑ 𝑥(𝑛) [cos (
2𝜋𝑘𝑛

𝑁
) − 𝑗 sin (

2𝜋𝑘𝑛

𝑁
)]𝑁−1

𝑛=0     (11) 

Due to the absence of the 𝑗 term in 𝑋𝐻(𝑘),  DHT is 

purely real.Next, consider the following expression,  

𝑒𝑗𝛼 = 𝑐𝑖𝑠(𝛼) = cos(𝛼) + 𝑗sin(𝛼). 

We know that cos 𝛼 =
𝑒𝑗𝛼+𝑒−𝑗𝛼

2
 and sin 𝛼 =

𝑒𝑗𝛼−𝑒−𝑗𝛼

2𝑗
 

⇒ 𝑐𝑎𝑠𝛼 = cos 𝛼 + sin 𝛼 =
(1−𝑗)𝑒𝑗𝛼

2
+

(1+𝑗)𝑒−𝑗𝛼

2
    (12) 

Consider the following assumptions 

χ = 𝑒𝑗𝛼 , 𝑘 = 𝑐𝑎𝑠𝛼, 𝜉 =
(1−𝑗)

2
, 𝛿 =

1+𝑗

2
               (13) 

Then, we have the quadratic equation,  

𝜉𝜒2 − 𝑘𝜒 + 𝛿 = 0           (14) 

Solving for 𝜒, we get, 

⇒ 𝜒 =
𝜌

2𝜉
±

1

2𝜉
𝑗 (cos 𝛼 − sin 𝛼)                            (15) 

Considering only the negative sign and simplifying, we get, 

𝜒 = 𝑒𝑗𝛼 =
1+𝑗

2
𝑐𝑎𝑠𝛼 +  

1−𝑗

2
𝑐𝑎𝑠(−𝛼)         (16) 

Also, 𝜒−1 =
1

𝜒
= 𝑒−𝑗𝛼 =

1+𝑗

2
𝑐𝑎𝑠(−𝛼) +  

1−𝑗

2
𝑐𝑎𝑠(𝛼)         (17) 

Now, the DFT of𝑥(𝑛) is given by the well known equation 

𝑋(𝑘) = 𝐷𝐹𝑇[𝑥(𝑛)] = ∑ 𝑥(𝑛) 𝑒−
2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0              (18) 

Making use of Eq. (17) in the above equation, we get, 

𝑋(𝑘) =
1 + 𝑗

2
𝑋𝐻(−𝑘) +

1 − 𝑗

2
𝑋𝐻(𝑘) 

∴ 𝑋(𝑘) =
1

2
[𝑋𝐻(𝑘) + 𝑋𝐻(−𝑘)] + 𝑗

1

2
[𝑋𝐻(−𝑘) − 𝑋𝐻(𝑘)] 

Since 𝑋(𝑘) is complex, we can write the above equation as, 

𝑋(𝑘) = 𝑋𝑅(𝑘) + 𝑗𝑋𝐼(𝑘)                                        (19) 

Thus, the DFT coefficients in terms of DHT coefficients are 

given by the following two equations, 

𝑋𝑅(𝑘) =
1

2
[𝑋𝐻(𝑘) + 𝑋𝐻(−𝑘)]         (20) 

𝑋𝐼(𝑘) =
1

2
[𝑋𝐻(−𝑘) − 𝑋𝐻(𝑘)]          (21) 

Subtracting Eq. (21) from Eq. (20), we get the DHT 

coefficients which are expressed in terms of DFT [12].  

𝑋𝐻(𝑘) = 𝑋𝑅(𝑘) − 𝑋𝐼(𝑘)                                       (22) 

B. Relationship between the Synthesis Equations (Inverses) 

Of DFT and DHT 

 If𝑥𝐻(𝑛) = 𝐼𝐷𝐻𝑇[𝑋𝐻(𝑘)], then it is possible to 

express the 𝐼𝐷𝐻𝑇 of 𝑋𝐻(𝑘) in terms of the IDFT of 𝑋(𝑘). 
𝑥𝐻(𝑛) = 𝑥𝑅(𝑛) − 𝑥𝐼(𝑛)           (23) 

Here, 𝑥𝑅(𝑛) and 𝑥𝐼(𝑛) are the real and imaginary parts of 

𝑥(𝑛) respectively. Note that 𝑥𝑅(𝑛) = 𝐼𝐷𝐹𝑇[𝑋𝑅(𝑘)] and 

𝑥𝐼(𝑛) = 𝐼𝐷𝐹𝑇[𝑋𝐼(𝑘)] respectively. DHT finds applications in 

a variety of domains such as Speech Processing, Image 

Processing, Biomedical Signal Processing, Data Compression, 

etc [13]. 
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VI. SPEECH ANALYSIS USING CEPSTRUM 

 

Cepstrum was invented jointly by B. P. Bogert, M. J. 

R. Healy, and J. W. Tukey in 1963. The name "cepstrum" was 

derived by reversing the first four letters of "spectrum." 

Operations on cepstra are labelled quefrency 

analysis, or cepstral analysis. A cepstrum is the result of 

taking the Inverse Fourier Transform (IFT) of the logarithm of 

the estimated spectrum of a signal. There is 

a complex cepstrum, a real cepstrum, a power cepstrum, and 

phase cepstrum. The power cepstrum in particular finds 

applications in the analysis of human speech. This was the one 

that was originally invented [12]. 

  

Speech is considered to be the output of a system, the 

vocal tract 𝑉(𝑧)to an input 𝑝(𝑛) which is either a periodic 

impulse train due to the vibration of vocal chords or the white 

noise due to the air flow. Based on the type of the input, the 

speech signal is broadly classified as voiced for the periodic 

impulse train input and as unvoiced speech for the white noise 

input [13]. 

 

Speech is composed of excitation source and vocal 

tract system components. The main theme of cepstral analysis 

of speech signal is to segregate its excitation and vocal tract 

components without any advanced knowledge about source 

and/or system. Voiced sounds are generated by exciting the 

time varying system characteristics with periodic impulse 

signals. The unvoiced sounds are generated by exciting the 

time varying system with a stochastic noise sequence. Hence, 

the resultant speech signal is the linear convolution of the 

corresponding excitation sequence and vocal tract filter 

characteristics. Let 𝑎(𝑛) and ℎ(𝑛) be the excitation sequence 

and vocal tract filter sequences. Then, the speech signal is 

given by the one-dimensional linear convolution of 𝑎(𝑛)with 

ℎ(𝑛). 

𝑠(𝑛) = 𝑎(𝑛)⨂ℎ(𝑛)          (24) 

where, the symbol ‘⨂’ denotes discrete – time linear 

convolution.Taking Discrete – Time Fourier Transform 

(DTFT) on both sides of Eq. (24) yields the frequency 

spectrum, 

𝑆(𝑒𝑗𝜔) = 𝐴(𝑒𝑗𝜔). 𝐻(𝑒𝑗𝜔)          (25) 

Eq. (25) can also be written as 

𝑆(𝜔) = 𝐴(𝜔). 𝐻(𝜔)                                              (26) 

 The speech signal is then deconvolved into the 

excitation and vocal tract components in the temporal domain.  

Taking magnitudes on both sides of Eq. (26), we get, 

⇒ |𝑆(𝜔)| = |𝐴(𝜔)|. |𝐻(𝜔)|         (27) 

Taking Naperian or Natural logarithms on both sides 

of Eq. (27), we get, 

log𝑒|𝑆(𝜔)| = log𝑒{|𝐴(𝜔)|. |𝐻(𝜔)|}                     (28) 

Or ln|𝑆(𝜔)| = ln |𝐴(𝜔)| + ln |𝐻(𝜔)|        (29) 

 

The logarithmic operation is used for transforming 

the magnitude speech spectrum where the excitation 

component and vocal tract component are multiplied, into a 

linear combination of these components [14]. The segregation 

is done by taking the Inverse Discrete Fourier Transform 

(IDFT) of ln|S(ω)|, which yields the cepstral coefficients in 

the temporal domain. In the cepstral domain, the vocal tract 

components are represented by the slowly varying components 

concentrated near the lower cepstral region and excitation 

components are represented by the fast varying components at 

the higher cepstral region [15]. 

 

𝑐(𝑛) = 𝐼𝐷𝐹𝑇[ln|S(ω)|] 
⇒ 𝑐(𝑛) = 𝐼𝐷𝐹𝑇[ln|𝐴(𝜔)| + ln|𝐻(𝜔)|]         (30) 

 

 

Figure 1 Cepstral Computation using DHT Approach. 

 

Sometimes, variations occur in the lower cepstral 

region due to the vocal tract characteristics and the rapid 

varying strata of the cepstrum towards the upper cepstral 

region that is represented by the excitation characteristics of 

the short time speech segment. A method that is used for 

extracting vocal tract and excitation characteristics is liftering 

operation which is done in the temporal domain. 

Liftering operation is similar to filtering operation in the 

frequency domain where a desired cepstral region for analysis 

is selected by multiplying the whole cepstrum by a Boxcar 

apodization function at the desired position [12]. Liftering is a 

useful and meaningful process with the real cepstrum for 

obtaining an estimate of the log spectrum of either of the 

separated components. That is, we can apply a useful linear 

operation to the real cepstrum. The output of this process in 

the quefrency domain is a real cepstrum. However, if the 

objective is to return to the original time domain with an 

estimate of the separated signal, the real cepstrum will fail, 

because its "linearizing" operation is not invertible. To 

complete this task, we would need a phase – preserving 

linearizing operation [14]. 

 

VII. APPLICATION OF THE DISCRETE HARTLEY 

TRANSFORM (DHT) IN DIGITAL SPEECH 

PROCESSING  

 

 DHT, since it is a real transform, is very much useful 

in the cepstral analysis of speech. If  𝑥(𝑛) is the discrete 

speech signal, firstly, its N-point DHT, 𝑋𝐻(𝑘) is 

computed.Then, the DFT of 𝑥(𝑛) is calculated by exploiting 

the relationship between DFT and DHT, by using the 

following relations. 

𝑋𝑅(𝑘) =
𝑋𝐻(𝑘)+𝑋𝐻(−𝑘)

2
                         (31) 

𝑋𝐼(𝑘) =
𝑋𝐻(−𝑘)−𝑋𝐻(𝑘)

2
                         (32) 

𝑋(𝑘) = 𝑋𝑅(𝑘) + 𝑗𝑋𝐼(𝑘)                         (33) 

We next express 𝑋(𝑘) in Steinmetz form or polar form as, 

𝑋(𝑘) = |𝑋(𝑘)|𝑒𝑗𝛩(𝑘)           (34) 

But from Digital Speech Processing theory, it is known that 

𝑥̂(𝑛) = 𝐼𝐷𝐹𝑇[𝑙𝑜𝑔𝑒{𝑋(𝑘)}] = 𝐼𝐷𝐹𝑇[𝑙𝑛{𝑋(𝑘)}] 

⇒ 𝑥̂(𝑛) = 𝐼𝐷𝐹𝑇[ln{|𝑋(𝑘)|𝑒𝑗𝛩(𝑘)}] 

𝑥̂(𝑛) = 𝐼𝐷𝐹𝑇[ln|𝑋(𝑘)| + 𝑗𝛩(𝑘)] = 𝐼𝐷𝐹𝑇[𝑋̂(𝑘)]              (35) 
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DHT is then computed by using the relation, 𝑋̂𝐻(𝑘) =
𝑋̂𝑅(𝑘) − 𝑋̂𝐼(𝑘), where, 𝑋̂𝑅(𝑘) = ln|𝑋(𝑘)| and 𝑋̂𝐼(𝑘) = 𝛩(𝑘). 
⇒ 𝑋̂𝐻(𝑘) = ln|𝑋(𝑘)| − 𝛩(𝑘)          (36) 

Finally, the cepstral coefficients 𝑥̂(𝑛), are computed by taking 

the IDHT of [15] 𝑋̂𝐻(𝑘), i.e., 

𝑥̂(𝑛) = 𝐼𝐷𝐻𝑇[𝑋̂𝐻(𝑘)]           (37) 
 

VIII. RESULT ANALYSIS AND VALIDATION 

 
Figure 2 Cepstrum of voiced speech segment using DHT. 

 

 
Figure 3 Cepstrum of unvoiced speech segment using DHT. 

 

The cepstra of voiced and unvoiced speech segments 

using DHT approach are shown in Figures 2 and 3 

respectively.The main theme of cepstral analysis of speech 

signal is to segregate its excitation and vocal tract 

components. The input speech signal is converted into short-

term segments of duration 15 – 20 msec. The frame size is 

maintained to 20 msec and then each frame is multiplied by 

Hamming Window. Then, the cepstral representation of short-

term speech is computed by finding the IDFT of the log 

magnitude spectrum. In this work, instead of using the IDFT 

directly, we have used IDHT to compute IDFT. This is done 

by using IDHT rather than using IDFT directly. Figure 2 

shows a 20 msec voiced frame and its cepstrum in the 

temporal domain. It can be clearly seen that the vocal tract 

components are concentrated in the lower cepstral region and 

the excitation components are concentrated in the higher 

cepstral region. Figure 2 also shows𝑠(𝑛) which is the voiced 

frame considered and 𝑥(𝑛) which is the windowed frame. 

Also shown is the cepstralcoefficients 𝑐(𝑛). Note that 𝑐(𝑛) is 

symmetrical in the cepstral domain. 

 
CONCLUSIONS 

  

The DHT is two to three times faster than DFT because of no 

complex arithmetic being involved. All the four quadrants of 

the Hartley domain data must be used. In the computation of 

DHT and its inverse, only one quadrant of sines and cosines 

need to be calculated due to symmetry. Also, the 

multiplication in DHT is real but complex in the case of DFT. 

The DHT butterfly loop requires less memory space than the 

DFT because all of the data are stored in arrays of real 

numbers. The DFT butterfly loop on the other hand uses 

complex arrays, which require twice the memory space of a 

real array. In the DFT computation, there is one multiplication 

and two additions of complex numbers, which adds up to four 

multiplications and six additions of floating point numbers 

foreach iteration. Also, the DHT has our multiplications and 

six additions of floating point numbers for each iteration.  The 

butterfly loop of the DHT loops from 2 to 
𝑁

2
, while the 

butterfly loop of the DFT loops from 1 to 𝑁. Since the DHT 

loops half the number of times as the DFT, the DHT algorithm 

has two multiplications and three additions for every four 

multiplications and six additions of the DFT. Also, the DHT 

has no multiplications for the zero and Nyquist frequencies, 

which is a major advantage of DHT over DFT. DHT needs 

less memory to store numbers than the DFT because DHT 

does not use complex numbers. The results of the DHT can be 

stored in the same memory space as the original data set, thus 

eliminating the need to allocate more disk space. Also 

converting from Hartley domain to Fourier domain and vice 

versa is a direct and simple procedure.  

 

 In this work carried out by the authors, cepstral 

analysis of voiced speech segment and unvoiced speech 

segment using both DFT and DHT approaches were 

considered. Usage of direct DFT approach required 1171.5085 

complex additions and 585.75425 complex multiplications. 

Usage of DHT approach required 292.9 multiplications and 

585.823 additions, which indicate that DHT has saved the 

computation load by 50%. Thus, by using the DHT approach, 

the computation, storage time and the memory requirement are 

saved by 50% in the cepstral analysis of speech. This is a good 

improvement and the DHT based method is good when 

compared to the traditional DFT approach. 
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FUTURE SCOPE AND STUDY 

  

The present work is based on the concept of the basic Discrete 

Hartley Transform. Other variants of Hartley Transform and 

its amalgamation with Wavelet Transform need to be worked 

within the nature of quasiperiodicity and the nonstationarity of 

the speech signal. The behaviour of the speech signal 

spectrum to such robust algorithms needs to be analysed. 
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