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Abstract:  Glaucoma is an irreversible chronic eye disease that 

leads to vision loss. As it can be slowed down through treatment, 

detecting the disease in time is important. However, many 

patients are unaware of the disease because it progresses slowly 

without easily noticeable symptoms. Currently, there is no 

effective method for low cost population-based glaucoma 

detection or screening. Recent studies have shown that 

automated optic nerve head assessment from 2D retinal fundus 

images is promising for low cost glaucoma screening. In this 

paper, we propose a method for cup to disc ratio (CDR) 

assessment using 2D retinal fundus images. Methods: In the 

proposed method, the optic disc is first segmented and 

reconstructed using a novel sparse dissimilarity-constrained 

coding (SDC) approach which considers both the dissimilarity 

constraint and the sparsity constraint from a set of reference 

discs with known CDRs. Subsequently, the reconstruction 

coefficients from the SDC are used to compute the CDR for the 

testing disc. Results: The proposed method has been tested for 

CDR assessment in a database of 650 images with CDRs 

manually measured by trained professionals previously. 

Experimental results show an average CDR error of 0.064 and 

correlation coefficient of 0.67 compared with the manual CDRs, 

better than the state-of-the-art methods. Our proposed method 

has also been tested for glaucoma screening. The method 

achieves areas under curve of 0.83 and 0.88 on datasets of 650 

and 1676 images, respectively, outperforming other methods. 

Conclusion: The proposed method achieves good accuracy for 

glaucoma detection. Significance: The method has a great 

potential to be used for large-scale population-based glaucoma 

screening. 
 

Index Terms- Cup to Disc Ratio, Glaucoma Screening, Sparse 

Dissimilarity-Constrained Coding 

 

I. INTRODUCTION  

Glaucoma is a chronic eye disease. It is the leading cause 

of irreversible blindness, and is predicted to affect around 80 

million people by 2020. As the disease progresses silently 

without easily noticeable visual symptoms especially in the 

early stages, 50%-90% of patients are unaware of the disease 

until it has reached its advanced stages. Thus, glaucoma is 

also called the silent theft of sight. Although glaucoma 

cannot be cured currently, it can be slowed down through 

treatment. This makes the screening of people at high risk of 

glaucoma for timely detection very meaningful. Currently, 

the air-puff intraocular pressure (IOP) measurement, visual 

field test and optic nerve head (ONH) assessment are often 

used in glaucoma assessment. However, the IOP 

measurement provides low accuracy in glaucoma detection 

and a visual field examination requires special equipment 

only present in specialized hospitals. Therefore, they are 

unsuitable for screening in the population. ONH assessment 

is more promising for glaucoma screening. It can be done by 

a trained professional. However, manual assessment is 

subjective, time consuming and expensive. In recent years, 

automated algorithms for ONH assessment have received 

much attention. There is some research into automated CDR 

assessment from 3D images such as stereo images and 

optical coherence tomography (OCT) images. However, the 

cost of obtaining 3D images is still high, which makes it 

inappropriate for low cost large-scale screening [9]. The 2D 

retinal fundus images can be acquired at much lower cost 

because such fundus cameras are widely available in 

hospitals, polyclinics, eye centers, and especially in optical 

shops. Therefore, there is little additional hardware cost to 

build a glaucoma screening programme using existing 

fundus cameras. This work is for automated CDR 

assessment from 2D fundus images. 

One strategy for automatic ONH assessment is to use 

image level features for a binary classification between 

glaucoma-tous and healthy subjects [10], [11], [12]. In these 

methods, selection of features and classification strategy is 

difficult and challenging . The other strategy is to follow 

clinical indicators. Many glaucoma risk factors can be 

considered, such as the vertical cup to disc ratio (CDR), disc 

diameter, ISNT  rule, etc. Although different 

ophthalmologists have different opinions on the usefulness of 

these factors, CDR is well accepted and commonly used. A 

larger CDR generally indicates a higher risk of glaucoma and 

vice versa. 
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In 2D retinal fundus images, the ONH or the optic disc can 

be divided into a central bright zone called the optic cup and 

a peripheral region called the neuroretinal rim, as shown in 

Fig. 1. The CDR is computed as the ratio of the vertical cup 

diameter to the vertical disc diameter clinically. Many 

methods have been proposed for CDR 

assessment/computation from 2D images. In  thresholding 

based on intensity is used. However, in many subjects from 

screening, the cup boundaries are not clear from intensity. 

Later, relevant vessel bending is used to aid in cup detection 

[9]. The challenge is to correctly identify the vessel bends. 

Yin et al. developed an active shape model based approach 

by combining prior knowledge with contour deformation 

[17]. However, the contour deformation does not work well 

when the contrast between the cup and rim is weak. Cheng et 

al. proposed superpixel classification based approach [18] by 

including features from superpixel level, which significantly 

improves the disc and cup detection. However, it has a bias of 

under-estimating large cups and over-estimating small cups 

due to the dominance of medium sized cups used to train the 

model. Very often, these methods rely on the contrast 

between the cup and the neuroretinal rim to find the cup 

boundary for CDR computation and can be challenging to use 

effectively when the contrast is weak. Recently, Xu et al. 

proposed a reconstruction or atlas based method for cup 

estimation from the discs [19]. The method applies locality-

constrained linear coding (LLC) [20] with _ 2-norm Gaussian 

distance regularization to reconstruct the disc from a set of 

reference images with known CDRs. Then it infers the CDR 

based on the reconstruction coefficients. It significantly 

reduces the CDR errors. However, the _ 2-norm Gaussian 

distance suffers from the blood vessels and other noise, which 

lead to a bias similar to the superpixel based method  

 
Fig. 1. Structure of an optic disc: optic disc boundary (blue); optic cup 

(white); neuroretinal rim (cyan); CDR is computed as VCD/VDD. 

 

This paper focuses on computing the CDR from the disc. 

Motivated from the observation that similar discs often have 

very similar CDRs and the fact that many discs do not have 

obvious boundary between neuro-retinal rim and the optic 

cup, we propose a sparse dissimilarity-constrained coding 

(SDC) to estimate the CDR for a new disc image. In 

comparison with the LLC method [19] which uses the 

Gaussian distance, the proposed method computes the 

dissimilarities between the testing disc images and the 

reference disc images from their overall intensity changes 

and use them as the dissimilarity constraint in the SDC based 

disc reconstruction. Several major factors that often affect 

the disc dissimilarity computation and the disc 

reconstruction have been considered, including blood 

vessels, uneven illumination within each disc image and the 

illumination changes between different images. In addition, a 

sparsity constraint is also included in SDC inspired from the 

observation that a few reference disc images closest to the 

testing disc image are usually sufficient to estimate its CDR. 

The main contributions of this paper include: 

1) a novel SDC method for CDR assessment which 

consid-ers both dissimilarity constraint and sparse 

constraint;  

2) a new method to compute the dissimilarity between 

two disc images;  

3) The results show that the proposed method achieves 

much more accurate CDR assessment and better glau-

coma screening performance than the state-of-the-art  

          methods 

Different from most of previous methods which are based on 

low-level image segmentation, this method computes an 

optimal sparse linear reconstruction of the input disc from the 

most similar reference discs to estimate the CDR. This makes 

the algorithms more robust to the cases where the contrast 

between optic cup and rim is low. 

The rest of the paper is organized as follows. In Section II, 

we give a brief review of the disc localization and disc 

segmentation followed by the disc normalization used in this 

paper. Section III introduces the proposed SDC method for 

CDR assessment including the computation of disc 

dissimilar-ity, the formulation of SDC, the solution of SDC, 

and the CDR assessment using SDC. Section IV shows the 

experimental results followed by the discussions and 

conclusions in the last section. 

 

II. DISC LOCALIZATION, SEGMENTATION AND 

                               NORMALIZATION 

In this paper, we segment the disc using the state-of-the-art 

self-assessed disc segmentation method [32], which is a 

combination of three approaches. It has been shown that the 

self-assessed approach achieves more accurate disc 

segmentation than the individual methods in [32]. Here we 

give a brief review of the method while more details can be 

found in [32]. 

 

1) Blood vessel removal: The blood vessels within the disc 

vary largely among different individuals. The disc recon-

struction and the dissimilarity computation between two disc 

images are greatly affected by them. Therefore, it is 

important to remove the blood vessels. Many automated 

vessel detection methods [33][34] reported in the literature 

can be used. In this application, we found it unnecessary to 

use very complex and time-consuming vessel segmentation 

to get precise blood vessels for the disc dissimilarity 

computation and later the disc reconstruction. Instead, an 

approximate segmentation of blood vessel is sufficient for the 

objective of computing the disc dissimilarity. In this paper, 

we use a morphological closing process with an empirically 

selected structure element size of 5 to estimate the blood 

vessels (BV): 

 
where x˜ = morph(x) denotes the image after applying a 

morphological closing process on x. Then, the vessel 

removed image xˆ is obtained by replacing the vessel pixels 

in x with the pixels in x˜, i.e., 
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The balance corrected disc xb is computed as: 

 
 

III. SPARSE DISSIMILARITY-CONSTRAINED 

CODING 

 

  In this section, we introduce the proposed spare 

dissimilarity-constrained coding algorithm. Denote a set of n 

reference disc images X = [x1, · · · , xn] and the correspond-ing 

CDRs as r = [r1, r2, · · · , rn ]T , i = 1, 2, · · · , n, xi denotes the 

ith balance corrected disc computed above. Inspired from the 

reconstruction based method [19], we want to compute a 

linear reconstruction coefficient w = [w1, · · · , wn]T for a new 

testing disc image y while minimizing the reconstruction 

error _y − Xw _2. From our experience, a few reference disc 

images that are closest to y are sufficient to estimate the CDR 

for y while too many reference images often lead to a bias 

especially when the reference images do not have uniform 

CDR distribution. Therefore, we want to limit the number of 

reference images used, i.e., we want to minimize the non-

zeros elements in w, or _w_0. Because _0-norm is a NP-hard 

problem, the _1-norm _w_1 is used instead. In addition, as the 

reconstruction is more accurate from images more similar to 

the test disc, we add the difference between the reference and 

test disc images as a regularization term in the objective 

function to penalize the use of references. Denoting the 

difference between y and the reference discs in X as the 

vector d = [d1, · · · , dn]T , we want to minimize the overall 

difference term expressed as _d _ w_, where di represents the 

difference between y and xi, _ denotes the element-

wiseproduct. Previously, Gaussian distance di = exp(_ y−xi_2 

2σ2 ) between the test disc y and the ith reference disc xi is 

used in LLC [19]. However, the pixel-wise distance between 

two disc images suffers from various noise including blood 

vessels, disc alignment error, etc. In this paper, we propose to 

compute the dissimilarity between two disc images 

 

A. Dissimilarity 

It is important to compute a dissimilarity score between two 

discs which reflects their CDR difference. As mentioned, the 

previously used Gaussian distance [19] often suffers from 

noise, imperfect vessel removal etc. Therefore, it faces some 

challenges to represent the actual CDR difference between 

two discs. Very often, we found two discs with similar CDRs 

have a Gaussian distance even larger than two discs with 

significant different CDRs. Therefore, Gaussian distance is 

not a good choice. In fact, this is also the reason that a k 

nearest neighbor (kNN) approach works poorly for this task. 

In this paper, we observe that the overall intensity change 

within the disc is highly related with the CDR value. 

Motivated from this, we propose to apply surface fitting 

within the disc image to compute the dissimilarity. Fig. 3 

shows an example of a disc image plotted in 3D and its best 

fitted surface. Although higher order polynomials can be 

computed, a second order two-dimensional polynomial 

surface S(j, k) is sufficient to capture the overall intensity 

change by 

 

 

Where and T denotes the transpose. 

This can be expressed in matrix form as 

 
where s contains the coefficients S(j, k) strung out into a 

column vector, and the matrix Q contains the coefficients of q 

as specified in Equation (4). The coefficient v is then 

determined by minimizing the following quadratic error 

between s and x, where x contains the intensities of the disc 

image xi or y strung out into a column vector 

 
As the blood vessels are not relevant to the overall intensity 

changes of the discs, we exclude pixels belonging to blood 

vessels extracted previously, i.e., pixels (j, k) with BV (j, k)  

It can be seen that  

 
The difference between two surfaces Sxi and Sy is computed 

from their coefficients vxi and vy. As the overall intensity 

change of the disc is only related to the a and c components 

axi , cxi , ay, cy, the difference di between the two surfaces 

can be computed by a function f(axi , cxi , ay, cy). Here, the 

subscript denotes the disc used to compute the surface 

parameters. In this paper, we use  

 
B. Formulation of sparse dissimilarity-constrained coding  

The objective function of the proposed SDC method 

is then given by:  

 
where λ1 and λ2 are parameters controlling the 

weights of the two regularization items. Rewriting the second 

item and merging it with the first item in (9), we get 

 
 

 

C. Solution 

     The problem in (10) is a standard _1 norm regularized 

least 

square minimization problem. It has been shown that this 

unconstrained convex optimization problem can be 

representedas the following constrained optimization problem 

[35]: 
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where t is inversely related to λ2. It can be solved by least 

angle regression (LARS) [36]. 

 

V. EXPERIMENTAL RESULTS 

 

A. Data set and Evaluation Criteria 

In this paper, we use these manual CDRs as‘ground truth’ 

unless specified. The SCES images are collected in a 

screening study. There are two sizes: 3504 × 2336 

and3888×2592. All the SCES images are resized to be the 

same size as the SiMES set for convenience. Among the 2326 

eyes,168 SiMES and 46 SCES eyes are diagnosed as 

glaucomatous by ophthalmologists. These diagnostic 

outcomes are used asthe gold ground truth. The disc 

localization method in [23] 

is used to locate the disc and determine an 800 × 800 region  

of interest for disc segmentation. It locates the disc correctly 

in all 650 SiMES images. In SCES, it fails in four of 1676 

images. 

 

B. Comparison with other methods 

 

 
IV. CONCLUSION 

The proposed SDC method achieves CDR computation and 

glaucoma detection accuracy comparable with manual CDR 

assessment by experts. It suggests that the proposed method 

can be used to replace the time-consuming and expensive 

manual CDR assessment. Therefore, the proposed method 

has great potential for low cost glaucoma screening in 

polyclinics, eye centers, and especially in optical shops, 

according to discussions with clinicians and 

ophthalmologists. This paper discussed the proposed SDC for 

CDR computation within this paper, the general formulation 

in (9) can be extended for other applications, though the 

computation of the d might need to be specially defined based 

on actual data. The CDR based screening from 2D images 

has its limitations. For example, 2D 

images do not have depth information, which is the primary 

indicator of cup. Compared with 3D images which capture 

true 3D morphological structures of disc and cup, 2D images 

capture the color information of disc and rely on intensities to 

estimate the CDR. Future work will explore the integration of 

other factors to improve diagnostic outcomes towards a more 

reliable and efficient glaucoma screening system. 
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