
Case Study of Agile Methodologies in Field of

Software Development

1Vishnu Yash Tripathi, 2Anoop Mishra

1-2
Devstringx technology Pvt. Ltd.

 Noida Sec-63A U.P. India

Abstract - During the past forty years, new software

development approaches were introduced to fit the new cultures

of the software development companies. Most software

companies nowadays aim to produce valuable software in short

time period with minimal costs, and within unstable, changing

environments. Agile Methodologies were thus introduced to

meet the new requirements of the software development

companies. This paper presents a review of three agile

approaches including Extreme Programming, Agile Modeling,

and SCRUM, describes the differences between them and

recommends when to use them.

Keywords: Software development approaches; agile

methodologies; extreme programming; agile modeling;

SCRUM.

1. INTRODUCTION

As we notice, software development is expanding.

Software has merged into many diverse fields, and is

becoming more complex. Changing requirements from

customers is making it even more difficult. Old software

development approaches are not able to satisfy the new

requirements of the market in the best way, anymore. As

a result, new software development approaches are

evolved, as agile methodologies, mainly to solve such

problem. The new methodologies include modifications

to software development processes, to make them more

productive and flexible.

This paper has the following structure: Section 2 briefs

the history of development approaches. Section 3

explains the evolvement of software development

towards agile methodologies, and presents the values and

concepts of agile development. It also covers the main

and most used agile methodologies. Section 4 describes

the limitations to apply agile methodologies, and the last

section concludes the paper.

2. HISTORY OF SOFTWARE DEVELOPMENT

APPROACHES
Programming started with structured languages as

Fortran in 1954 [4], and then evolved to object-

oriented languages in the 1960s [15]. Similarly,

software development approaches have evolved

during time.

A software development approach guides the

developer through the software development process. To

develop software, the developers usually choose a

software development approach, which usually divides

the development process into phases, and for each phase,

the developer has to apply the guidelines that the selected

approach provides for that phase.

The first development approach came into existence

after the software crisis in the 1970s [13]. Software

engineers tried to reduce the effect of the crisis and stop

it by following structured methodologies for software

development. These methodologies divide the software

development process into phases, so that the developer

focuses his/her efforts on one phase at a time. Using these

methods, the number of failed or uncompleted software

projects was reduced, the cost and development time of

software projects were decreased, and the effect of the

software crisis is limited [13].

After the structured methodologies, software development

approaches evolved into Object-Oriented
(OO) Methodologies, which include: Unified Process

and Rational Unified Process (RUP). They include not

only the objects and object oriented principles, but also

the best practices from structured methodologies [13].

3. AGILE METHODOLOGIES
At the early years of software development, most of

the users’ requirements were fairly stable, and

development followed the plans without major changes.

However, as software development involved more

critical and dynamic industrial projects, new difficulties

emerged according to the growth of companies. These

difficulties include [1][19]:

 Evolving requirements: customer requirements are

changing due to evolving business needs or

legislative issues. Most of the customers do not have

a clear vision about the specifications of their

requirements at the early stages. Some customers

realize what their true requirements are only when

they use an application that does not really meet

their needs. Another source of change comes from

experiences gained during the development.

 Customer involvement: lack of customer

involvement leads to higher chances of project

failure. Many companies usually do not allocate

any effort for customer involvement.

 Deadlines and budgets: often, customers do not

accept failure. On the other hand, companies usually

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

175

offer low budgets, tight deadlines, while at the same

time, requiring high demands, and all of this is

because of competition in the markets.

 Miscommunications: one cause of the

misunderstanding of requirements is the

miscommunication between developers and

customers. For example, each party uses its own

jargon, and this leads to misunderstanding of

customer’s needs.

With the existence of such problems, the OO software

development methodologies cannot satisfy the objectives

of software development companies. New development

methodologies have to be applied in order to overcome

these problems.

A number of IT professionals started to work

individually on new approaches to develop software. The

results of their researches were a set of new development

methodologies that have many common features. When

they met in 2001 in conference in Utah [1], they created

the so called: Agile Manifesto. These approaches were

developed based on the same rule that the best way to

verify a system is to deliver working versions to the

customer, then update it according to their notes. Agile

authors built their methodologies on four principles.

First, the main objective is to develop software that

satisfies the customers, through continuous delivering of

working software, and getting feedback from customers

about it. The second principle is accepting changes in

requirements at any development stage, so that

customers would feel more comfortable with the

development process. The third principle is the

cooperation between the developers and the customers

(business people) on a daily basis throughout the project

development. The last principle is developing on a test-

driven basis; that is to write test prior to writing code. A

test suite is run on the application after any code change

[1].

Agility in short means to strip away as much of the

heaviness, commonly associated with traditional

software development methodologies, as possible, in

order to promote quick response to changing

environments, changes in user requirements, accelerate

project deadlines, and the like [7]. Agile methodologies

prefer software development over documentation. Their

philosophy is to deliver many working versions of the

software in short iterations, then update the software

according to customers’ feedback. Applying this

philosophy will help to overcome the problems

mentioned earlier, by welcoming changes, satisfying

user requirements, faster development, and at the end,

users will have just the system they need.

Agile methodologies include:

 Extreme Programming

 Agile Modelling

 SCRUM

 Crystal methodologies family

 Feature-Driven Development

 Adaptive Software Development

3.1 Extreme Programming (XP)

Extreme Programming was introduced by Kent Beck

in 2000. Being an emerging agile methodology, XP

offers a number of practices, values and principles which

are advised to be adopted in order to run a software

development project [3]. XP is a package of several

practices and ideas, most of which are not new. The

combination and packaging of all of these is, however,

new [11]. Extreme Programming was in fact targeted

especially at small co-located teams developing non-

critical products. It has been suggested that the early

adopters of agile methods have been small high-tech

product companies [16]. Currently, however, it has

already been proven at many companies of all different

sizes and industries worldwide [8].

XP provides a list of simple, specific, and seemingly

naïve principles and values that guide the software

development process throughout the main four phases of

software development: planning, coding, designing, and

testing (Figure 1). The main purpose is to deliver what

the customer needs, at the time it is needed. In addition

to this, one of the main reasons of its success is its ability

to accept changes at anytime during the development. XP

also emphasises teamwork; experiences from all

stakeholders are employed to meet the specific goals, and

within the given constraints [8].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

176

Figure 1. The flow in a project using XP [8]

This agile methodology improves software

development in four ways. Firstly, high communications

between the developers and their customers. Second, the

simplicity of design. Third, the continuous modification

according customer’s feedback, by delivering a large

number of working software to the customer. Fourth,

encouraging the customer and developers to get to the

correct requirements by the develop-feedback cycle [8].

Those four items are called XP values.

There are some programming principles that are

encouraged by XP. One of them is that, simplicity and

flexibility will reduce maintenance costs of the software

in the future. Another programming practice is the

intensive and robust testing mechanism, which will

reduce the number of bugs reported later by the customer

after delivering the final version of the application.

Embracing changes is also encouraged by XP, since

customers are most likely to notice new opportunities for

improving the system to meet their goals, while still in

the development process. Moreover, XP encourages

creating high quality code [8].

Many other rules and practices are provided by XP, for

all the phases of software development. These include:

creating user stories; making small frequent releases;

dividing the project into iterations; creating spike

solutions to reduce risk; availability of the customer;

writing code to agreed standards; pair programming;

leaving optimization until last; all the code is unit tested;

creating a test case for each bug found; just to name a

few [8][11].

However, XP is not best suited for any project. There

are some conditions that help to decide whether to apply

the XP methodology for a software development project

or not. Some projects have unclear or dynamic

requirements, in such case XP will succeed, while other

methodologies will fail. For projects with high risk that

appear to be a new challenge for the developing

company, XP practices can help to lower this risk, and

increase the possibility of success. On the other hand, XP

is not best suited for companies with large teams; it

works best for teams with 2 to 12 members. Additionally,

it assumes strong cooperation and communication

between the developers and the customers. If this is not

the case (not possible for any reason such as distance),

then XP will not give good results. Another condition is

testability. Applying XP requires intensive testing for the

software, from the first day until delivery. However, if

the nature of the software to be developed does now

allow this, XP will not be the best to apply. Mainly, the

core purpose of XP is to deliver the software that is

needed, when it is needed [8].

One empirical study conducted by Kuppuswami et al.

(2003) found that increasing effort (independent

variable) into XP core practices reduced the total effort

(dependent variable) needed to create the system
[7]. Furthermore, XP is being experimented in different

ways to make it fit to the specific needs of the projects as

well as the development teams [18]. In summary, XP is

the coding of what the customer specifies, and testing

that code, to ensure that the prior steps in the

development process have accomplished what the

developers intended to do [7].

3.2 Agile Modeling (AM)

Modeling is an important step in software

development. It enables software developers to think

about complex issues before addressing them in

programming. Agile Modeling (AM) was established by

Scott Ambler in 2002. It is a collection of values,

principles, and practices for modeling software that can

be applied on a software development project in an

effective and light-weight manner [2]. Agile Modeling

was built to be adapted to, and used with existing

methodologies, as XP and RUP, aiming to allow a

developer to build a software system that truly meets the

customer’s needs.

The values of AM, which are considered to be an

extension to the values of XP include: communication,

simplicity, feedback, courage, and humility. Humility

means to admit that you may not know everything; others

may know things that you do not know, and thus, they

may provide useful contribution to the project [2].

Again, the principles of AM are quite similar to those

of XP, such as assuming simplicity, embracing changes,

incremental change of the system, and rapid feedback. In

addition to these principles, AM principles include the

knowledge of the purpose for modeling; having multiple

effective models; the content is more important than the

representation; keeping open and honest communication

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

177

between parties involved in the development process;

and finally, to focus on the quality of the work [2].

The practices of AM have some commonalities with

those of XP, too. An agile modeler needs to follow these

practices to create a successful model for the system. AM

practices highlight on active stakeholder participation;

focus on group work to create the suitable models; apply

the appropriate artifact as UML diagrams; verify the

correctness of the model, implement it and show the

resulting interface to the user; model in small increments;

create several models in parallel; apply modeling

standards; and other practices [2].

Agile Model Driven Development (AMDD) is the

agile version of model driven development. To apply

AMDD, an overall high level model for the whole system

is created at the early stage of the project. During the

development iterations, the modeling is performed as

planned per iteration. Usually, AM is applied along with

other methodologies, such as Test Driven Development

(TDD), and Extreme Programming (XP), to get the best

results [2].

AM basically creates a mediator between rigid

methodologies and lightweight methodologies, by

suggesting that developers communicate architectures

through applying its practices to the modelling process

[7]. In a nut, agile modelling defines a collection of

values, principles, and practices which describe how to

streamline the modelling and documentation efforts. It is

usually applied in conjunction with agile implementation

techniques for good results.

3.3 SCRUM
SCRUM methodology was initiated by Ken Swaber in

1995. It was practiced before the announcement of Agile

Manifesto. Later, it was included into agile methodology

since it has the same underlying concepts and rules of

agile development. SCRUM has been used with the

objective of simplifying project control through simple

processes, easy to update documentation and higher team

iteration over exhaustive documentation [6].

SCRUM shares the basic concepts and practices with

the other agile methodologies, but it comprises project

management as part of its practices. These practices

guide the development team to find out the tasks at each

development iteration.

In addition to the practices defined for agility, one

main mechanism recommended by SCRUM is to build a

backlog. A backlog is a place where one can see all

requirements pending for a project, sized based on

complexity, days or some other unit of measure the team

decides. Inside a product backlog, there is a simple

sentence for each requirement; something that will be

used by the team to start discussions and putting details

of what is needed to be implemented by the team for that

requirement [6].

For the team of SCRUM, three main roles are defined

as shown in Fig 2. The first role is the product owner,

who mainly would be the voice of business. The second

role is the SCRUM team which comprises developers,

testers, and other roles. This team would make initial

contact with customer and identify the need for a new

product. SCRUM master, the third role, is responsible for

keeping the team focused on the specific goals, and help

the team members to solve problems when they appear

[6][17].

Figure 2. Key roles and interaction artifacts in SCRUM [17]

The process of development using SCRUM divides

the project into phases. In each phase, one feature is fully

developed, tested, and become ready to go to production.

The team does not move to a new phase until the current

phase is completed. Whether what is being done adds

value to the process or not, is the main concern of each

phase.

Current studies on traditional SCRUM development

have shown that despites its advantages, it is not best

suited for products where the focus is on usability [17].

It fails to address usability needs of the user, because

product owners keep their focus mainly on business

issues and forget about usability. Since product owners

usually come from business background, they lack the

experience, skills, and motivation to design for user

experiences. Moreover, traditional agile methodologies

are not concerned about the user experience vision,

which drives the architecture and is essential for ensuring

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

178

a coherent set of user experiences [10]. According to

Mona Singh, U-SCRUM, is an agile methodology for

promoting usability [17].

Briefly, SCRUM is considered an iterative,

incremental methodology of software development. It

was proposed for software development projects, and at

the same time, it can be used as a program management

approach.

3.4 Other agile methodologies

In this paper, three main agile methodologies that have

been widely used in software development are discussed.

Besides these three methodologies, there are some other

software development methodologies lay under the agile

umbrella. They include Crystal methodologies, Feature-

Driven Development, and Adaptive Software

Development.

Crystal Methodologies were established by Alistar

Cockburn in 2000. They concentrate on efficiency and

habitability as components of project safety. Each of the

Crystal methodologies requires certain roles, policy

standards, products and tools to be adopted [12]. Crystal

Clear, which is one of the Crystal methodologies, can be

applied to development teams of six to eight members,

working on non-life critical systems. It focuses on

people, not processes of artifacts [5].

Feature Driven Development (FDD) was founded by

Jeff De Luca and Peter Coad. It combines some practices

recognized in the industry into one methodology. These

practices are all determined from a client-valued

functionality (feature) viewpoint. As of other agile

methodologies, its key goal is to deliver tangible,

working software repeatedly in a timely manner [9].

Adaptive Software Development (ASD) was created

in 2000 by Jim Highsmith. It has grown out of the Rapid

Application Development (RAD). Like other agile

methodologies, ASD aims to increase a software

organization’s responsiveness while decreasing

development overhead [14]. It embodies the belief that

continuous adaptation of the process to the work at hand

is the normal state of affairs.

4. LIMITATIONS OF AGILE METHODOLOGIES

Agile development aims to support early and quick

development of working code that meets the needs of the

customer. Agile supporters claim that code is the only

deliverable that matters, whereas, agile opponents found

that emphasis on code will lead to memory loss, because

the amount of documentation and modeling done is not

enough [19].

There are some limitations to apply agile

methodologies [19]. First one is that agile methodologies

are not suitable for green-field engineering and not

suitable for maintenance, since there will be not much

documentation for the systems. The second limitation is

that agile methodologies depend heavily on the user

involvement, and thus, the success of the project will

depend on the cooperation and communication of the

user. Another limitation is that agile methodologies

concentrate work quality on the skills and behaviours of

the developers, as the design of the modules and sub-

modules are created mainly by single developer. When

developing software to be reusable, then agile

methodologies will not provide the best way. This is

because they focus on building systems that solve

specific problems, and not the general ones. Agile

methodologies work best for teams with relatively small

number of members, and hence, they will not work well

for teams with large number of members.

To get the advantages of applying agile methodologies

in the development, there is a set of assumptions that are

assumed to be true. To mention some are: cooperation

and face to face relation between the customers and the

development team; evolving and changing requirements

of the project; developers having good individual skills

and experiences; in addition to many more [19]. If these

assumptions do not apply to a software development

project, then it is better to look for other methodologies

to apply for the development process, in order to get

better results.

5. CONCLUSION
Software development methodologies have evolved

since the 1970s. Agile methodologies came into

existence after the need for a light way to do software

development in order to accommodate changing

requirements environment. Agile methodologies provide

some practices that facilitate communication between the

developer and the customer, and under go develop-

deliver-feedback cycles, to have more specific view of

the requirements, and be ready for any change at any

time. The main aim of agile methodologies is to deliver

what is needed when it is needed.

Agile methodologies include a set of software

development approaches. They have some variations, but

still they share the same basic concepts. The main agile

methodologies that are being used include XP, Agile

Modeling, and SCRUM. XP is the coding of what the

customer specifies, and the testing of that code. Agile

Modeling defines a collection of values, principles, and

practices which describe how to streamline modeling and

documentation efforts. SCRM, on the other hand,

supports management role in software development.

Agile methodologies are not best suited for all

projects. When communication between the developer

and the customer is difficult, or when the development

team includes mainly beginners, agile methodologies

will not give the best results. These methodologies

exhibit optimum results when there is a strong

communication between the developer and the customer,

and the development team compromises skilled team

members. When there is a big chance for

misunderstanding the exact customer’s requirements, or

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

179

when the deadlines and budgets are tight, then Agile

methodologies are among the best software development

approaches to apply.

6. REFRENCES:
[1] Agile Alliance. Manifesto for Agile Software

Development. [Online] Retrieved 16th March 2009.

Available at: http://www.agilemanifesto.org .

[2] Agile Modeling Home Page. Effictive Practices for

Modeling and Documentation. [Online] Retrieved 17th

March 2009. Available at: www.agilemodeling.com .

[3] K. Beck, and C. Andres, Extreme Programming

Explained: Embrace Change (2nd Edition), Addison-

Wesley, Boston, 2004.

[4] Computer Programming. [Online] Retrieved 5th April

2009. Available at:

http://en.wikipedia.org/wiki/Programming

[5] Crystal Clear (software development). [Online] Retrieved

22nd March 2009. Available at:

http://en.wikipedia.org/wiki/Crystal_Clear_(software_de

velopment)

[6] M. Cristal, D. Wildt and R. Prikladnicki, Usage of

SCRUM Practices within a Global Company. Global

Software Engineering, 2008. ICGSE 2008. IEEE

International Conference on, 2008, 222-226.

[7] J. Erickson, K. Lyytinen and K. Siau, Agile Modeling,

Agile Software Development, and Extreme

Programming: The State of Research. In Journal of

Database Management, 16(4), 2005, 88-100.

[8] Extreme Programming. What is Extreme Programming?

[Online] Retrieved 18th March 2009. Available at:

www.extremeprogramming.org

[9] Feature Driven Development. [Online] Retrieved 18th

March 2009. Available at:

http://en.wikipedia.org/wiki/Feature_Driven_Developm

ent

[10] J. Ferreira, J. Noble, and R. Biddle., Up-Front Interaction

Design in Agile Development. In Agile Processes in

Software Engineering and Extreme Programming,

Springer , Berlin / Heidelberg , 2007, 9-16.

[11] D. Karlström, Introducing Extreme Programming - An

Experience Report. In proceedings 3rd International

Conference on eXtreme Programming and Agile

Processes in Software Engineering, XP 2002, Sardinia,

Italy.
[12] F. Keenan, Agile process tailoring and problem analysis

(APTLY). In Software Engineering, 2004. ICSE (2004).

Proceedings. 26th International Conference on, 45- 47.

[13] C. Klimeš and J. Procházka, New Approaches in

Software Development. In Acta Electrotechnica et

Informatica, 6(2), 2006.
[14] F. Maurer and S. Martel, Extreme programming. Rapid

development for Web-based applications. In Internet

Computing, IEEE, 6(1), 2002, 86-90.

[15] Object-oriented programming. [Online] Retrieved 20th

March 2009. Available at:

http://en.wikipedia.org/wiki/Object_oriented

[16] C. Schwaber and R. Fichera, Corporate IT leads the

second wave of agile adoption. Forrester Research, Inc,

2005.

[17] M. Singh, U-SCRUM: An Agile Methodology for

Promoting Usability. In Ag. AGILE '08. Conference,

Toronto, 2008, 555-560.

[18] B. Tessem, Experiences in Learning XP Practices: A

Qualitative Study. In Extreme Programming and Agile

Processes in Software Engineering. 2003, 131-137.

[19] D. Turk, R. France and B. Rumpe, Limitations of agile

software processes. In Proceedings of the Third

International Conference on Extreme Programming and

Flexible Processes in Software Engineering, 2002.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS110104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 11, November - 2017

180

