
Case-Based Reasoning (CBR) based Path-

Planning using Robotic Operating System (ROS)

P. M. Manoj,

M.Tech Embedded Systems,

Karunya University, India.

Mr. C. Mahesh,
Asst. Professor,

Karunya University, India.

Abstract--Path planning in robotics has always been a research

topic. Several path planning methods are proposed with

improved efficiency interms of shortest path finding capability,

cost, space and time complexities. State space search and

heuristic search methods are the widely adapted methods for

path planning. Breadth-First Search, Depth-First Search,

Dijikstra’s algorithm and A-star algorithm are the techniques

used for path planning. Out of which A-star algorithm has

proven characteristics of finding the shortest path.

 Case-Based Reasoning (CBR) system implements a

simple form of dynamic memory that learns by adding new

cases, as and when new problems are encountered and solved.

In this paper, Case-Based Reasoning is used for creating a

case-base for path-planning. So different paths are stored as

cases and when robots are placed in an environment it tries to

retrieve the solution from the case-base, but if the environment

is new it retains the solution. Thus it helps the Heuristic

algorithm to function effectively and reduces the load to the

processor which can perform some other task in the mean

time.

Keywords-- Path planning; Heuristic search; A-Star algorithm;

Case based Reasoning.

I. INTRODUCTION

Path planning is an important issue in robotics as it

provides the robot to reach the goal node from a starting

node. It is measured by its computational complexity. The

feasibility of real-time motion planning is dependent on the

accuracy of the map, on robot localization and on the

number of obstacles. Topologically, the problem of path

planning is related to shortest path problem of finding a

route between two nodes in a graph. In algorithms such as

A*, informed search method is used. Informed search

algorithms are based on a function called Heuristic function,

which helps in deciding the path. Heuristic functions exploit

domain knowledge to orient the search process towards the

desired goal. The objective of using a heuristic function is to

improve the efficiency of the solution finding process.

A* algorithm combines the best features of Branch

and Bound , Dijikstra’s algorithm and Best first search

algorithm. Both Branch and Bound algorithm and

Dijikstra’s algorithm extend the least cost partial solution.

Branch and Bound generates a search tree that may have

duplicate copies of the same nodes with different costs,

while the latter searches over a given graph, keeping exactly

one copy of each node and back pointers for the best routes.

Though both of them do not have a sense of direction, Best

First Search algorithm comes in point. Best First Search

algorithm uses a heuristic function to decide which of the

candidate node is likely to be closest to the goal, and

expands that. However, it does not keep track of the cost

incurred to reach the node. Best First Search only looks

ahead from the current node, seeking a quick path to the

goal, while Branch and Bound only looks behind, keeping

track of the best paths found so far. Algorithm A* does

both. The advantages of the algorithm A* is that it finds a

path even if the graph is infinite and if there exists a path.

Also, the found path is the shortest path between the nodes.

Once the A* algorithm is implemented, it is made

to provide solutions for different environments. All these

solutions are stored as case-bases so that they can be used

again if the robot faces a similar problem again, thereby

saving the time to calculate the solution again for the same

problem which it incurred already. This is achieved using a

concept called Case-Based Reasoning that is loaded with

many solutions and also, it keeps on storing the solutions

whenever new problems are solved. In the mean time, the

robot can perform any other useful computation, that is the

key point behind this paper.

Case-based method and grid map method are used

together in path planning by Maarja Kruusmaa[1], in which

case-based system stores the solution and evaluates the

traversability. Grid-map method is used to find the solution,

whereas case based system is used only when the robot

travels in the same path again. In Ashok Goel’s paper[2],

model-based and case based reasoning are used for path

planning. Model based reasoning decomposes the main goal

into smaller tasksthe main goal into smaller tasks, such as

finding a path from initial location to the neighbourhood

towards the goal location. Case-based reasoning derives a

path by evaluating the case generated by model-based

reasoning. When new problems are found, model based

reasoning is alone used and at the same time these solutions

are stored in the case base and when the robot experiences

the same task again, it makes use of the case-based

reasoning to reduce the cost of time required.

1468

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041605

International Journal of Engineering Research & Technology (IJERT)

Start

Get the current node, which is same as

the starting node, initially

Create open list and closed

list

Find the 8 adjacent nodes of the

current node.

Find the F value for all the 8 adjacent

nodes

Find the smallest F value from the 8

values.

II. METHODOLOGY

A. Standard Template Library

 Standard Template Libraries(STL) provides a suite

of reusable programs, or lines of code, that could be used to

increase the programming productivity and quality. STL

provides a ready-made set of common classes for C++, such

as containers and associative arrays, that can be used with

any built-in type and with any user-defined type. It achieves

them using templates and also it provides compile-time

polymorphism which is more efficient than traditional run-

time polymorphism. It has sequence containers and

associative containers in which sequence container has

vector and associative container has map, which are used in

our path planning algorithm. Advantage of using vector

container is that it has the ability to resize itself

automatically when inserting or erasing an object. Map

container allows mapping from one data item(a key) to

another(a value) and it is typically implemented using a

self-balancing binary search tree. So, an efficient path

planning A* algorithm is written using Standard Template

Library(STL) in C++.

B. Robotic Operating System:

 The Robotic Operating System(ROS) is a flexible

framework for writing robot software. It is a collection of

tools, libraries and conventions that aim to simplify the task

of creating complex and robust robot behavior across a wide

variety of robotic platforms. ROS provides standard

operating system services such as hardware abstraction,

low-level device control, implementation of commonly used

functionality, message-passing between processes and

package management. It is based on a graph architecture

where processing takes place in nodes that may receive, post

and multiplex sensor, control, state, planning, actuator and

other messages.

 A ROS workspace is created with A* algorithm as

a package in it, which is made to act as global planner for

the local planners that are already there in the ROS

packages. ROS has both 2D and 3D simulators, Stage and

Gazebo respectively which is used to visualize the

efficiency of the algorithm through a simulated robot.

C. Case-Based Reasoning:

 Case-based Reasoning(CBR) system implements a

simple form of dynamic memory that learns by adding new

cases, as and when new problems are encountered and

solved and these cases are related to path planning in this

application. So different paths are stored as cases and when

robots are placed in an environment it tries to retrieve the

solution from the case-base, if the environment is new, it

retains the solution from the robot. This feature of this

method favors the path-planning algorithm in storing and

retrieving the solutions as and when they are necessary,

thereby making the processor free from computational

complexities which can be used for some other useful

processes.

III. IMPLEMENTATION

 To verify the functionality of the algorithm,

Netbeans IDE software is used in Ubuntu. The steps

involved in A* algorithm are, getting the start and the goal

nodes from the user, Getting the current node which is same

as starting node in the beginning, since 2D grid is used as

environment a single node has eight successor nodes which

are found, two lists are created, one for openlist and the

other for closedlist, all the successor nodes are stored in the

openlist, and from which the node with lowest A* estimate

function (F value) is taken out and pushed into closedlist. F

value is the sum of the cost taken to reach the current node

from the starting node and the total cost from current node

to the goal node. All these steps are repeated until the goal

node is reached. Once the goal is reached, the co-ordinates

(way-points) to reach the goal node are generated. The steps

mentioned above are summarized in the flowchart in the

Fig. 1

A

B

1469

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041605

International Journal of Engineering Research & Technology (IJERT)

Fig. 1. Flowchart of the algorithm used in coding

Now that the waypoints to the goal are generated, these co-

ordinates has to be sent to the global planner of the robot.

To achieve this, a Robotic Operating System(ROS)

workspace is created with A* as a package in it. ROS

provides an environment to create plugins for the

workspaces which are already there. So this global planner

can be merged with a simulation, having a local planner

already. RVIZ launcher is better to visualize the robot in its

environment and Stage simulator is used in 2D simulation,

as shown in the Fig. 2.

Fig.2 . Simulation output.

4. CONCLUSION:

 Thus a highly efficient A* path planning algorithm

is implemented using the Standard Template Libraries with

map and vector containers as the key role concepts and the

same is simulated using Stage simulator and is visualized in

RVIZ launcher. Since the coding is done using Standard

Template Library, it is completely reusable in any

application in which the algorithm fits in and also memory

related issues are taken care of by the same since dynamic

memory allocation is used in the coding. As a future work, a

huge case-base will be created, so that the robot’s global

planner will be able to give the solution directly from the

case-base, instead of calculating the co-ordinates or

waypoints.

5. References

1. Subhrajit Bhattacharya, Vijay Kumar and Maxim

Likhachev, “Search-based Path Planning with

Homotopy Class Constarints”, in Proceedings of

the Twenty-Sixth AAAI conference on Artificial

Intelligence, pp 2097-2099., 2012.

2. Jaroslav Hodal and Jiri Dvorak, “Using Case-

Based Reasoning for Mobile Robot Path Planning”

in Engineering Mechanics, vol.15, No.3, pp. 181-

191., 2008.

3. Maarja Kruusmaa and bertil Svenson, “Combined

Map-based and Case-Based Path Planning for

Mobile Robot Navigation”, in Proceedings of

International symposium of Intelligent Robotic

Systems, pp 1-6., 1998.

4. Ashok Goel, Michael Donellan, Nancy Vazquez

and Todd Callantine, “An Integrated Experience-

Based Approach to Navigational Path Planning for

No

Yes

Get the node coordinates of the node

with smallest F value

Assign this node to the closed list

Assign this node as the current node

If current

node = Goal

?node?

Stop

Regenerate the Shortest Path

A B

1470

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041605

International Journal of Engineering Research & Technology (IJERT)

Autonomous Mobile Robots” in IEEE., pp 818-

825., 1993.

5. Ashok K. Goel, Todd J.Callantine, Michael W.

Donnellam and AAndrez Gomez de Silva Garza,

“Case-Based Path Planning: Router”, in AAAI

Technical Report WS-93-04, pp 162., 1993.

1471

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041605

International Journal of Engineering Research & Technology (IJERT)

