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Abstract 

 
Processor speed has increased dramatically than 

memory speed which results in processor-memory gap. To 

bridge the gap small amount of fast access memory called 

cache is introduced. It forms a bridge between processor 

and memory to provide data for execution. Cache plays   an   

important   role in organization of processor – may it be 

uniprocessor or multiprocessor. Inclusion of caches 

introduces several challenges such as coherence protocols, 

finding optimum cache line size, replacement policies etc. 

Evaluation of cache systems and innovations in it is tedious 

job. This will be carried out using trace driven simulators. 

In this paper influence of cache size on miss rate was tested. 

It has been observed that miss rate get decreased by 

increasing the cache size.   
 

Keywords – Cache memory, coherence protocol, trace 

driven simulator etc. 

 

1. Introduction 
Multiprocessor demand has been increased in recent 

years. Uses of multiprocessors have grown from scientific 

and engineering applications to other areas also, such as 

databases, files and media servers. Multiprocessor 

architectures vary depending on the size of the machine and 

differ from vendor to vendor. Shared-memory architectures, 

become dominant in small and medium-sized machines, 

provide a single view of memory, which is shared among all 

processors referred as Centralized shared memory 

multiprocessor architectures. Like in uniprocessors, caching 

is used to achieve good performance in multiprocessors [3]. 

It reduces the latency of accesses by bringing the data closer 

to the processor [6] and it also reduces the communication 

traffic and bandwidth requirements in the network by 

satisfying requests without having to access the network. 

The presence of caches in achieving the shared memory 

model requires special mechanisms to maintain a coherent 

view of memory. These mechanisms enforce a cache 

coherence protocol and are usually implemented in 

hardware for performance. Hardware based cache coherence 

provides better results compare to software implemented 

coherence [1]. The hybrid software – hardware coherence 

mechanism has been proposed by [2]. 

Cache memory plays vital role in the performance of 

multiprocessor architectures. To achieve high performance 

it is very essential to select optimum cache size. But it is 

critical task to decide the size of caches in multiprocessor 

architectures.  The size of cache is not decided randomly. 

Random selection of cache size affects heavily on the 

performance of multiprocessor architecture. There are many 

factors to determine the cache size like block size, 

associativity, number of blocks with much attention to miss 

ratio [8].  In this paper cache misses followed by types and 

cache coherence problem followed by protocols are 

discussed. Followed by this, idea of simulation based 

evaluation along with trace driven simulator is discussed.  

The paper is organized as follows. Section 2 gives a 

discussion on cache misses and its types. Cache coherence 

problem and protocols are discussed in section 3. Concept 

of simulation based evaluation along with trace driven 

simulation tools and memory traces is discussed in section 

4. Results are given in section 5. Finally, conclusion and 

future work will be given in section 6. 

 

2. Cache Misses and Types 
Miss rate is one of the important metrics to 

measure the performance of cache systems. In the 
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uniprocessor architectures, cache misses are categorized into 

the “3 – Cs”. They are compulsory, capacity, and conflict 

misses [7]. Many studies have examined how cache size 

affects each category of miss.  

Compulsory misses 

Compulsory misses are also referred as cold 

misses; occur on the first reference to a memory block by a 

processor. Since data cannot exist in the cache without first 

being brought into the cache, these misses cannot be 

avoided. Cold misses can only be reduced by increasing the 

block size, so that a single cold miss will bring in more data 

that may be accessed as well. 

Capacity misses  

They occur in fully associative mapped caches. 

When there is no room to map the block that is referenced 

by a processor during the execution of a program, based on 

replacement policy one of the blocks already mapped is 

replaced. Capacity misses are reduced by enlarging the 

cache. 

Conflict misses  

They occur in direct mapped and set associative 

mapped caches. If block from cache is replaced by another 

block and if processor makes the request for the replaced 

block conflict occurs. They are misses that would not have 

occurred in a fully associative cache. Conflict misses are 

reduced by increasing the associativity or increasing the 

number of blocks (increasing cache size or reducing block 

size).  

Coherence misses 

Cache-coherent multiprocessors introduce a fourth 

category of misses i.e. coherence misses. These occur when 

blocks of data are shared among multiple caches. Sharing is 

of two types: true sharing and false sharing. True sharing 

occurs when a data word produced by one processor is used 

by another. False sharing occurs when independent data 

words for different processors happen to be placed in the 

same block.  

      

3. Cache coherence 
Cache Coherence Problem 

For faster access of data caches have been introduced. 
Inclusion of caches introduces inherent cache coherence 
problem. It may be possible that multiple processors have 
copy of same data in their cache either to perform read or 
write operation. Read will not create the problem but write 
operation to any data will change or modify the data in 
cache. While memory and other caches will not get the 
notification of data being modified. If some action is not 
taken, other processors will read stale copy of data. 
Modification to locally cached copies of a memory data 
block by one or more processors leads to data incoherence.  

The cache coherence problem is illustrated in fig.1. 
Assume that memory contains location x with initial value 
0. Both processors P1 and P2 read location x and cache it. 
Subsequently processor P0 writes 1 to x, data in processor 

P1‟s cache becomes stale. Processor P1 on reading x from 
cache gets old value. 

Cache Coherence Protocols 

Cache coherence protocols try to maintain the coherent 
view. A variety of cache coherence protocols have been 
implemented. They differ mainly by the action performed 
on write.  

Cache coherence protocol are classified as invalidate or 
update depending on the notification of the changes 
conveyed to other processors. Consider the example with 
two processors P1 and P2 with private caches and shared 
memory containing block X. Both P1 and P2 have cached 
block X to perform read operation. The difference in an 
invalidate and update will be clear when P1 issues write 
operation on X. In an invalidate protocol processor P1 
modifies the X from its cache and invalidates the other 
copies. Whereas in an update protocol it modifies the copy 
in cache and propagates the changes in the system. Other 
caches update the copy on receiving the changes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Cache coherence problem 
 
Based on how memory is updated the cache coherence 

protocols have been classified into write – back and write – 
through protocols. In write – back protocol the memory is 
updated when any processor replaces the block from cache 
or when other processor requests the modified block. In 
write – through protocol whenever processor performs a 
write operation the memory is updated. Selection of an 
appropriate protocol plays an important role in 
multiprocessor systems. 

To keep the track of blocks present in processor‟s cache 
coherence protocol uses states. Based on the states 
considered to keep the track protocols are classified as MSI, 
MESI, etc. MSI coherence protocol is the basic cache 
coherence protocol. Most of the multiprocessor systems use 
MSI as basic cache coherence protocol. Cache block can be 
in one of the three states  
Modified (M): The cache block is in modified state means 
only this cache has the modified copy of the block. Block in 
memory is stale. This is also called as dirty block. The block 
must be written back to the memory before replacement.  
Shared (S): The block is valid and is in processor‟s cache. 
Copy of the block in memory is up-to-date. The same block 
might be present in another processor‟s cache in valid state. 
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Invalid (I): The block is in invalid state. Block might be 
absent in cache and needs to be fetched from memory.      
Exclusive (E) :E in MESI is for Exclusive state. The block 
is in current cache and status of the block is clean. 
There are several cache coherence protocols used to 
maintain the coherent view of the system, includes 
snooping, directory based, token coherence etc. 
 
Snooping Protocol 
This protocol gives best performance with centralized 
shared memory multiprocessor architectures. This is bus 
based architecture. Snoopers (cache controllers) are 
associated with each cache memory. Cache controllers 
monitor the bus to check whether there is copy of the block 
in its cache requested by other processor. Reliance on the 
bus is the characteristic feature of the snopping protocol 
which distinguishes them from the other protocols. 
 
Directory based Protocol 
This protocol uses the concept of directory to maintain the 
sharing status of the block. Directory might be kept  
centrally or distributed. Request from the procesor might be 
remote or local, in case of distributed directory, is sent first 
to directory. Upon receiving the request directory checks the 
status of the block requested, and grants the request if the 
requested block is available. It uses several messages for the 
communication purpose. Interconnection network is usd as a 
medium. 
 
Token – coherence Protocol 
This protocol uses tokens to enfore the coherence. In this 
protocol each block should have fixed number of tokens. 
Processor should hold atleast one for read operation whereas 
it sholud hold all for write operation. In the designing of 
several cache coherence protocols framework provided by 
token coherence protocol can be used. 

 

4. Trace driven simulator 
It is beneficial to evaluate the performance of cache 

systems using simulation tools. Industry uses simulation 

more commonly during processor and system design 

because it is the simple and least expensive way to explore 

design options. Simulation is even more important in 

research to evaluate new ideas and characterize the nature of 

the design space. Use of trace-driven simulation in 

estimating the performance of computer system designs  is a 

cost-effective method. In the designing process of caches, 

trace driven simulation is popular way to study and evaluate 

performance before builting the system.. Figure 2 explains 

the use of trace driven simulator.  

Trace driven simulator accepts two inputs. First supplies 

the configurations selected by applying different parameters 

and second memory traces. There is also a provision to store 

configurations as well as memory traces. In this paper trace 

driven simulator, „SMP Cache‟, designed and developed by 

ARCO Research Group, University of Extremadura, Spain 

is disscused. SMP Cache is windows based cache simulator 

used to make analysis of cache memory systems on  

symmetric multiprocessors. 

It has graphical interface. The version SMP Cache 2.0 

supports centralized shared memory bus based architecture 

whereas DSM Cache an advanced version of SMP Cache 

2.0 supports distributed shared memory architectures.  The 

working of SMP Cache 2.0 is explained in this paper. 

 

    

 

 

 

 

 

  

    

 
 
Figure 2 Use of Trace Driven Simulator 
 
SMP Cache 2.0  
 
Architecture and general working of the Simulator 
This simulator allows users to select different configurations 
and work with them. It also allows storing of the selected 
choices for future use in file with extension “ .cfg”. It 
supports several architectural characteristics specified in 
Table1. User has to select one configuration by choosing 
various parameters. The configuration along with memory 
traces has to be loaded by the user. It allows running the 
simulation in three steps, one step by step, with break point 
and complete execution. It shows results in three ways, 
multiprocessor evolution, cache evolution and memory 
block evolution.  
 
Memory traces  
It consists of memory references made by processor during 
the execution. The extension of the trace file is “.prg”. Trace 
files are constructed by using trace convertor. It accepts file 
in “.ref” format and convert the trace files. It consists of two 
fields, label and value. Label is decimal number specifies 
the memory operation requested by processor. „0‟ is used to 
represent instruction capture operation, „2‟ is used for 
memory read operation and „3‟ for memory write operation. 
Value represents effective address of the memory word 
referenced by processor in hexadecimal format.  
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No. of Processors Upto 8 

Cache coherence protocols MSI, MESI, DRAGON 

Bus arbitration schemes LRU, LFU, Random 

Bits per word  8, 16, 32 or 64 

Blocks per word 1, 2, 4, 8, 16, 32, 64, 128, 
256, 512 or 1024 

Main memory blocks 1, 2, 4, 8, 16, 32, 64, 128, 

256, 512, 1024, 2048, 4096, 

8192, 16384, 32768, 65536, 

131072, 262144, 
524288, 1048576, 2097152 
or 4194304 

Cache blocks 1, 2, 4, 8, 16, 32, 64, 128, 
256, 512, 1024 or 2048 

Cache Mapping Direct, Set-Associative, 
Fully-Associative 

No. of sets in cache 1, 2, 4, 8, 16, 32, 64, 128, 
256, 512, 1024, 2048 

Replacement policies Random, LRU, FIFO, LFU 

Writing strategies Write-Back  

No. of Cache levels 1 

Maximum size of block 8 KB 

Max.size of main memory 32 GB 

Maximum size of cache 16 MB 

Table 1: Architectural characteristics [5] 

 

Trace file is shown in Figure 3. It consists of 6 instruction 
captures along with 3 data reading and 1 data writing 
operation.  

0 00001b08 

0 00001ca5 

2 00007951 

0 00001d04 

0 00001eb8 

2 00007952 

0 0000201c 

2 00007c71 

0 0000201f 

3 00007b51 

Figure 3. Example of trace file 

 
Various snapshots of the loading configuration, loading 
memory traces, view during multiprocessor simulation, 
view during cache simulation and view during memory 
block simulation are shown in the figures (4 to 8) 
respectively.  

 
Figure 4. Loading configuration  

Figure 5 Loading memory trace files 

Figure 6 View during multiprocessor simulation 

Figure 7 View during cache simulation 

Figure 8 View during memory block simulation 

5. Results 
The set of experiments were carrie out with unified 

cache. The configuraion was selected from Table1. Selected 
configuration o carry out the experiments is shown in Table 
3. By varying number of blocks the influence of cache size 
over miss rate was examined. Figure 9 displays global miss 
rate for two traces SPEECH and SIMPLE by varying cache 
size from (1KB to 128 KB). The Table 4 and Table 5 shows 
the detailed results for SPEECH and SIMPLE memory trace 
files respectively including number of hits, hit rate, number 
of misses, miss rate for the cache size 1KB to 128 KB. 
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Table 3 and Table 4 show that for SPEECH and for 
SIMPLE traces 128 KB cache size shows minimum miss 
rate.   

Number of Processors 8 

Coherence Protocol MESI 

Bus Arbitration LRU 

Word Wide (Bits) 16 

Word by Block 32 

Blocks in Main Memory 262144 

Block Size 64 Bytes 

Main Memory Size 32 Mbytes 

Blocks in Cache Varies 

Cache Size Varies 

Mapping  Set Associative 

Number of Cache Sets Varies 

Replacement Policy LRU 

Cache Levels 1 

Writing Strategy Write Back 

Table 3. Selected configuration. 

Cache Size 

(in KB) 

# Hits Hit Rate 

(%) 

# Misses Miss Rate 

(%) 

1 1426490 12.118 10345174 87.882 

2 1426490 12.118 10345174 87.882 

4 4148893 35.245 7622771 64.755 

8 5017752 42.626 6753912 57.374 

16 5521651 46.906 6250013 53.094 

32 7035183 59.764 4736481 40.236 

64 7214731 61.289 4556933 38.711 

128 7287619 61.908 4484045 38.092 

Table 4. Hit and Miss rate for SPEECH trace file 

Cache Size 

(in KB) 

# Hits Hit Rate 

(%) 

# Misses Miss 

Rate (%) 

1 10481957 38.779 16548135 61.221 

2 10481957 38.779 16548135 61.221 

4 11967766 44.276 15062326 55.724 

8 14888574 55.081 12141518 44.919 

16 17203493 63.646 9826599 36.354 

32 17491493 64.711 9538599 35.289 

64 17767655 65.733 9262437 34.267 

128 17835789 65.985 9194303 34.015 

Table 5. Hit and Miss rate for SIMPLE trace file 

 

 

 

 

6. Conclusion and Future Work 
Study of cache systems and its evaluation can be easily 

carried out by using trace driven simulator SMP Cache2.0. 
Trace driven simulators are really helpful in getting the 
results with wide variety of configurations and analyze them 
than the actual system implementation. In this it has been 
observed that miss rate decreases by increasing the cache 
size. But it gets saturated at one point further increasing the 
cache size it won‟t affect on miss rate. 

By understanding the use of simulator any one can use it 
to carry out the pracical work. It can be used to perform the 
evaluation of cache systems in multiprocessor architectures 
and to find the optimum performance of the system.  
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