
Cache Systems: Significance And Evaluation In Multiprocessor Architectures

Sujit N. Deshpande

Lecturer,

Computer Science & Engineering Department

Walchand Institute of Technology

Solapur, Maharashtra, India

Dr. Mrs. S. S. Apte

Professor and Head,

Computer Science & Engineering Department

Walchand Institute of Technology

Solapur, Maharashtra, India

Abstract

Processor speed has increased dramatically than

memory speed which results in processor-memory gap. To

bridge the gap small amount of fast access memory called

cache is introduced. It forms a bridge between processor

and memory to provide data for execution. Cache plays an

important role in organization of processor – may it be

uniprocessor or multiprocessor. Inclusion of caches

introduces several challenges such as coherence protocols,

finding optimum cache line size, replacement policies etc.

Evaluation of cache systems and innovations in it is tedious

job. This will be carried out using trace driven simulators.

In this paper influence of cache size on miss rate was tested.

It has been observed that miss rate get decreased by

increasing the cache size.

Keywords – Cache memory, coherence protocol, trace

driven simulator etc.

1. Introduction
Multiprocessor demand has been increased in recent

years. Uses of multiprocessors have grown from scientific

and engineering applications to other areas also, such as

databases, files and media servers. Multiprocessor

architectures vary depending on the size of the machine and

differ from vendor to vendor. Shared-memory architectures,

become dominant in small and medium-sized machines,

provide a single view of memory, which is shared among all

processors referred as Centralized shared memory

multiprocessor architectures. Like in uniprocessors, caching

is used to achieve good performance in multiprocessors [3].

It reduces the latency of accesses by bringing the data closer

to the processor [6] and it also reduces the communication

traffic and bandwidth requirements in the network by

satisfying requests without having to access the network.

The presence of caches in achieving the shared memory

model requires special mechanisms to maintain a coherent

view of memory. These mechanisms enforce a cache

coherence protocol and are usually implemented in

hardware for performance. Hardware based cache coherence

provides better results compare to software implemented

coherence [1]. The hybrid software – hardware coherence

mechanism has been proposed by [2].

Cache memory plays vital role in the performance of

multiprocessor architectures. To achieve high performance

it is very essential to select optimum cache size. But it is

critical task to decide the size of caches in multiprocessor

architectures. The size of cache is not decided randomly.

Random selection of cache size affects heavily on the

performance of multiprocessor architecture. There are many

factors to determine the cache size like block size,

associativity, number of blocks with much attention to miss

ratio [8]. In this paper cache misses followed by types and

cache coherence problem followed by protocols are

discussed. Followed by this, idea of simulation based

evaluation along with trace driven simulator is discussed.

The paper is organized as follows. Section 2 gives a

discussion on cache misses and its types. Cache coherence

problem and protocols are discussed in section 3. Concept

of simulation based evaluation along with trace driven

simulation tools and memory traces is discussed in section

4. Results are given in section 5. Finally, conclusion and

future work will be given in section 6.

2. Cache Misses and Types
Miss rate is one of the important metrics to

measure the performance of cache systems. In the

123

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80127

uniprocessor architectures, cache misses are categorized into

the “3 – Cs”. They are compulsory, capacity, and conflict

misses [7]. Many studies have examined how cache size

affects each category of miss.

Compulsory misses

Compulsory misses are also referred as cold

misses; occur on the first reference to a memory block by a

processor. Since data cannot exist in the cache without first

being brought into the cache, these misses cannot be

avoided. Cold misses can only be reduced by increasing the

block size, so that a single cold miss will bring in more data

that may be accessed as well.

Capacity misses

They occur in fully associative mapped caches.

When there is no room to map the block that is referenced

by a processor during the execution of a program, based on

replacement policy one of the blocks already mapped is

replaced. Capacity misses are reduced by enlarging the

cache.

Conflict misses

They occur in direct mapped and set associative

mapped caches. If block from cache is replaced by another

block and if processor makes the request for the replaced

block conflict occurs. They are misses that would not have

occurred in a fully associative cache. Conflict misses are

reduced by increasing the associativity or increasing the

number of blocks (increasing cache size or reducing block

size).

Coherence misses

Cache-coherent multiprocessors introduce a fourth

category of misses i.e. coherence misses. These occur when

blocks of data are shared among multiple caches. Sharing is

of two types: true sharing and false sharing. True sharing

occurs when a data word produced by one processor is used

by another. False sharing occurs when independent data

words for different processors happen to be placed in the

same block.

3. Cache coherence
Cache Coherence Problem

For faster access of data caches have been introduced.
Inclusion of caches introduces inherent cache coherence
problem. It may be possible that multiple processors have
copy of same data in their cache either to perform read or
write operation. Read will not create the problem but write
operation to any data will change or modify the data in
cache. While memory and other caches will not get the
notification of data being modified. If some action is not
taken, other processors will read stale copy of data.
Modification to locally cached copies of a memory data
block by one or more processors leads to data incoherence.

The cache coherence problem is illustrated in fig.1.
Assume that memory contains location x with initial value
0. Both processors P1 and P2 read location x and cache it.
Subsequently processor P0 writes 1 to x, data in processor

P1‟s cache becomes stale. Processor P1 on reading x from
cache gets old value.

Cache Coherence Protocols

Cache coherence protocols try to maintain the coherent
view. A variety of cache coherence protocols have been
implemented. They differ mainly by the action performed
on write.

Cache coherence protocol are classified as invalidate or
update depending on the notification of the changes
conveyed to other processors. Consider the example with
two processors P1 and P2 with private caches and shared
memory containing block X. Both P1 and P2 have cached
block X to perform read operation. The difference in an
invalidate and update will be clear when P1 issues write
operation on X. In an invalidate protocol processor P1
modifies the X from its cache and invalidates the other
copies. Whereas in an update protocol it modifies the copy
in cache and propagates the changes in the system. Other
caches update the copy on receiving the changes.

Figure 1 Cache coherence problem

Based on how memory is updated the cache coherence

protocols have been classified into write – back and write –
through protocols. In write – back protocol the memory is
updated when any processor replaces the block from cache
or when other processor requests the modified block. In
write – through protocol whenever processor performs a
write operation the memory is updated. Selection of an
appropriate protocol plays an important role in
multiprocessor systems.

To keep the track of blocks present in processor‟s cache
coherence protocol uses states. Based on the states
considered to keep the track protocols are classified as MSI,
MESI, etc. MSI coherence protocol is the basic cache
coherence protocol. Most of the multiprocessor systems use
MSI as basic cache coherence protocol. Cache block can be
in one of the three states
Modified (M): The cache block is in modified state means
only this cache has the modified copy of the block. Block in
memory is stale. This is also called as dirty block. The block
must be written back to the memory before replacement.
Shared (S): The block is valid and is in processor‟s cache.
Copy of the block in memory is up-to-date. The same block
might be present in another processor‟s cache in valid state.

124

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80127

Invalid (I): The block is in invalid state. Block might be
absent in cache and needs to be fetched from memory.
Exclusive (E) :E in MESI is for Exclusive state. The block
is in current cache and status of the block is clean.
There are several cache coherence protocols used to
maintain the coherent view of the system, includes
snooping, directory based, token coherence etc.

Snooping Protocol
This protocol gives best performance with centralized
shared memory multiprocessor architectures. This is bus
based architecture. Snoopers (cache controllers) are
associated with each cache memory. Cache controllers
monitor the bus to check whether there is copy of the block
in its cache requested by other processor. Reliance on the
bus is the characteristic feature of the snopping protocol
which distinguishes them from the other protocols.

Directory based Protocol
This protocol uses the concept of directory to maintain the
sharing status of the block. Directory might be kept
centrally or distributed. Request from the procesor might be
remote or local, in case of distributed directory, is sent first
to directory. Upon receiving the request directory checks the
status of the block requested, and grants the request if the
requested block is available. It uses several messages for the
communication purpose. Interconnection network is usd as a
medium.

Token – coherence Protocol
This protocol uses tokens to enfore the coherence. In this
protocol each block should have fixed number of tokens.
Processor should hold atleast one for read operation whereas
it sholud hold all for write operation. In the designing of
several cache coherence protocols framework provided by
token coherence protocol can be used.

4. Trace driven simulator
It is beneficial to evaluate the performance of cache

systems using simulation tools. Industry uses simulation

more commonly during processor and system design

because it is the simple and least expensive way to explore

design options. Simulation is even more important in

research to evaluate new ideas and characterize the nature of

the design space. Use of trace-driven simulation in

estimating the performance of computer system designs is a

cost-effective method. In the designing process of caches,

trace driven simulation is popular way to study and evaluate

performance before builting the system.. Figure 2 explains

the use of trace driven simulator.

Trace driven simulator accepts two inputs. First supplies

the configurations selected by applying different parameters

and second memory traces. There is also a provision to store

configurations as well as memory traces. In this paper trace

driven simulator, „SMP Cache‟, designed and developed by

ARCO Research Group, University of Extremadura, Spain

is disscused. SMP Cache is windows based cache simulator

used to make analysis of cache memory systems on

symmetric multiprocessors.

It has graphical interface. The version SMP Cache 2.0

supports centralized shared memory bus based architecture

whereas DSM Cache an advanced version of SMP Cache

2.0 supports distributed shared memory architectures. The

working of SMP Cache 2.0 is explained in this paper.

Figure 2 Use of Trace Driven Simulator

SMP Cache 2.0

Architecture and general working of the Simulator
This simulator allows users to select different configurations
and work with them. It also allows storing of the selected
choices for future use in file with extension “ .cfg”. It
supports several architectural characteristics specified in
Table1. User has to select one configuration by choosing
various parameters. The configuration along with memory
traces has to be loaded by the user. It allows running the
simulation in three steps, one step by step, with break point
and complete execution. It shows results in three ways,
multiprocessor evolution, cache evolution and memory
block evolution.

Memory traces
It consists of memory references made by processor during
the execution. The extension of the trace file is “.prg”. Trace
files are constructed by using trace convertor. It accepts file
in “.ref” format and convert the trace files. It consists of two
fields, label and value. Label is decimal number specifies
the memory operation requested by processor. „0‟ is used to
represent instruction capture operation, „2‟ is used for
memory read operation and „3‟ for memory write operation.
Value represents effective address of the memory word
referenced by processor in hexadecimal format.

125

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80127

No. of Processors Upto 8

Cache coherence protocols MSI, MESI, DRAGON

Bus arbitration schemes LRU, LFU, Random

Bits per word 8, 16, 32 or 64

Blocks per word 1, 2, 4, 8, 16, 32, 64, 128,
256, 512 or 1024

Main memory blocks 1, 2, 4, 8, 16, 32, 64, 128,

256, 512, 1024, 2048, 4096,

8192, 16384, 32768, 65536,

131072, 262144,
524288, 1048576, 2097152
or 4194304

Cache blocks 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, 1024 or 2048

Cache Mapping Direct, Set-Associative,
Fully-Associative

No. of sets in cache 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048

Replacement policies Random, LRU, FIFO, LFU

Writing strategies Write-Back

No. of Cache levels 1

Maximum size of block 8 KB

Max.size of main memory 32 GB

Maximum size of cache 16 MB

Table 1: Architectural characteristics [5]

Trace file is shown in Figure 3. It consists of 6 instruction
captures along with 3 data reading and 1 data writing
operation.

0 00001b08

0 00001ca5

2 00007951

0 00001d04

0 00001eb8

2 00007952

0 0000201c

2 00007c71

0 0000201f

3 00007b51

Figure 3. Example of trace file

Various snapshots of the loading configuration, loading
memory traces, view during multiprocessor simulation,
view during cache simulation and view during memory
block simulation are shown in the figures (4 to 8)
respectively.

Figure 4. Loading configuration

Figure 5 Loading memory trace files

Figure 6 View during multiprocessor simulation

Figure 7 View during cache simulation

Figure 8 View during memory block simulation

5. Results
The set of experiments were carrie out with unified

cache. The configuraion was selected from Table1. Selected
configuration o carry out the experiments is shown in Table
3. By varying number of blocks the influence of cache size
over miss rate was examined. Figure 9 displays global miss
rate for two traces SPEECH and SIMPLE by varying cache
size from (1KB to 128 KB). The Table 4 and Table 5 shows
the detailed results for SPEECH and SIMPLE memory trace
files respectively including number of hits, hit rate, number
of misses, miss rate for the cache size 1KB to 128 KB.

126

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80127

Table 3 and Table 4 show that for SPEECH and for
SIMPLE traces 128 KB cache size shows minimum miss
rate.

Number of Processors 8

Coherence Protocol MESI

Bus Arbitration LRU

Word Wide (Bits) 16

Word by Block 32

Blocks in Main Memory 262144

Block Size 64 Bytes

Main Memory Size 32 Mbytes

Blocks in Cache Varies

Cache Size Varies

Mapping Set Associative

Number of Cache Sets Varies

Replacement Policy LRU

Cache Levels 1

Writing Strategy Write Back

Table 3. Selected configuration.

Cache Size

(in KB)

Hits Hit Rate

(%)

Misses Miss Rate

(%)

1 1426490 12.118 10345174 87.882

2 1426490 12.118 10345174 87.882

4 4148893 35.245 7622771 64.755

8 5017752 42.626 6753912 57.374

16 5521651 46.906 6250013 53.094

32 7035183 59.764 4736481 40.236

64 7214731 61.289 4556933 38.711

128 7287619 61.908 4484045 38.092

Table 4. Hit and Miss rate for SPEECH trace file

Cache Size

(in KB)

Hits Hit Rate

(%)

Misses Miss

Rate (%)

1 10481957 38.779 16548135 61.221

2 10481957 38.779 16548135 61.221

4 11967766 44.276 15062326 55.724

8 14888574 55.081 12141518 44.919

16 17203493 63.646 9826599 36.354

32 17491493 64.711 9538599 35.289

64 17767655 65.733 9262437 34.267

128 17835789 65.985 9194303 34.015

Table 5. Hit and Miss rate for SIMPLE trace file

6. Conclusion and Future Work
Study of cache systems and its evaluation can be easily

carried out by using trace driven simulator SMP Cache2.0.
Trace driven simulators are really helpful in getting the
results with wide variety of configurations and analyze them
than the actual system implementation. In this it has been
observed that miss rate decreases by increasing the cache
size. But it gets saturated at one point further increasing the
cache size it won‟t affect on miss rate.

By understanding the use of simulator any one can use it
to carry out the pracical work. It can be used to perform the
evaluation of cache systems in multiprocessor architectures
and to find the optimum performance of the system.

7. Acknowledgements

 We are very much thankful to Vega-Rodriguez, Miguel

A., Associate Professor and Member of ARCO Research

Group at Department of Technologies of Computer and

Communications, University of Extremadura (Spain), for

providing SMPCache 2.0 – trace driven simulator for

research work.

8. References
[1] Milo M.K. Martin, Mark D. Hill, and Daniel J. Sorin. “Why On-Chip

Cache Coherence is Here to Stay” In communications of the ACM
July 2012, vol. 55, no. 7. Page(s): 78-89.

[2] Thomas J. Ashby, Pedro Dı´az, and Marcelo Cintra. “Software-Based
Cache Coherence with Hardware-Assisted Selective Self-
Invalidations Using Bloom Filters”, IEEE Transactions On
Computers, VOL. 60, NO. 4, April 2011 Page(s): 472 – 483.

[3] Sujit Deshpande, Priya Ravale, Sulabha Apte, “Cache Coherence In
Centralized Shared Memory And Distributed Shared Memory
Architectures”, International Journal on Computer Science and
Engineering (IJCSE), ISSN : 0975-3397, February 2011 Page(s): 39 –
44.

[4] Miguel A. Vega-Rodríguez, R. Jorge Gil-Ramos, Juan A. Gómez-
Pulido, Juan M. Sánchez-Pérez. “A Versatile Simulator for Cache
Memories on DSM Systems”, In the proceedings of 19th European
Conference on Modelling and Simulation ISBN 1-84233-112-4,
2005.

[5] Miguel Ángel Vega Rodrı́guez , Juan Manuel Sánchez Pérez, Juan
Antonio Gómez Pulido. “An Educational Tool for Testing Caches on
Symmetric Multiprocessors”, Microprocessors and Microsystems,
vol. 25, Page(s)187–194, June 2001.

[6] “A New Approach for the Verification of Cache Coherence
Protocols” Fong Pong, Member, IEEE, and Michel Dubois, Senior
Member, IEEE Computer Society IEEE Transactions On Parallel And
Distributed Systems, VOL. 6, NO. 8, AUGUST 1995 Page(s): 773-
787.

[7] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU
Caches. IEEE Transactions on Computers, vol. C-38, no. 12,
December 1989, Page(s) : 1612-1630.

[8] A.J. Smith, “Line (block) size choice for CPU cache
memories”, IEEE transaction on Computers, vol. 100, no 9,
September 1987, Page(s): 1063-1075.

Figure 9 Miss Rate vs Cache Size

127

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80127

