

By Using Bloom Filters Detecting and Correcting Errors In Cam

M.Manoj
1
, R. Manoj Srinivasan

2
, P.Suresh

3
, T.Shanthi

4

1
M.E VLSI DESIGN, Akshaya College Of Engineering And Technology

2
M.E VLSI DESIGN, Akshaya College Of Engineering And Technology

3
M.E VLSI DESIGN, Akshaya College Of Engineering And Technology

4
M.E VLSI DESIGN, Akshaya College Of Engineering And Technology

Abstract

The content addressable memory (CAM) is an SRAM-based memory that can be accessed in

parallel to search for a given search word, providing as a result the address of the matching data.

Because of the parallel search performed by a CAM during the query of a word, a standard error

correction code could not defend it against SEU events. In this paper, we propose a method that

does not require any modification to a CAM’s internal structure and, therefore, can be easily

applied at system level. Error detection is performed using a probabilistic structure called “Bloom

filter,”which can signal if given data is present in the CAM. These filters permit to efficiently

store and query the presence of data in a set. When a CAM suffers from SEU induced errors, the

probabilistic nature of Bloom filters has consequence the so called false-positive effect. This paper

proves that, by combining the use of a Bloom filter with a CAM, the complementary limitations of

these modules can be compensated. The combined use of a CAM and a Bloom filter is analyzed in

different cases, showing that the proposed technique can be implemented with a low penalty based

area and power consumption.

1.Introduction
The content addressable memory (CAM) is an SRAM

based memory capable of comparing the input data

against the data stored in memory, providing the address

of the matching data. CAMs with small dimensions are

commonly used in translation look aside buffers (TLB),

while large CAMs are used in systems must perform

rapid searches within a large amount of data. One of the

most used applications where CAMs are used is packet

forwarding and classification in high-speed network

systems. When a processor needs to read or write a

location in the main memory, it has to check whether

that memory location is in the cache. This is done by

comparing the address of the memory location to all

tags in the cache that might contain that address. N-way

associative caches are commonly used to simplify the

cache architecture and to limit the power consumption.

When n corresponds to the total number of cache rows,

the cache is called fully associative, while if each entry

in main memory can go in just one place in the cache,

the cache is directly mapped.

SEUs occur because of particles striking a sensitive

area of a circuit. The interaction between silicon and

particles creates free charges that can be collected by

the sensitive circuit nodes. The collected charge can

change the state of a circuit. These effects are well

known for SRAM and DRAM memories. Information

redundancy has been exploited by using error-detection

and correction codes, technology and circuit solutions

are aimed to increase the critical charge value. These

techniques are not well suited to be directly applied to a

CAM, and therefore new approaches to mitigate SEU

effects in CAM should be developed to use large CAMs

in complex systems while ensuring high levels of

reliability. Different techniques have been proposed to

enhance robustness against SEUs in CAM. Almost all

the proposed techniques require modifications to the

CAM architecture, performed at circuit or at

architectural level.

The effects of SEU on a memory device closely

relate to the technology node at which the device is

realized. While until few years ago an SEU on a

memory corresponded to a single-bit upset (SBU), in a

memory realized with feature size less than 90 nm a

single particle can change the value of multiple bits.

This effect is commonly known as multibit upset

(MBU). In this paper, we use SEU to refer to a generic

radiation induced error, while we use the SBU and

MBU terms to refer errors affecting one or more than

one bit, respectively. In particular, we refer to an l-bit

MBU for an SEU affecting up to l bits in the same

word. While error-correcting codes (ECCs) can detect

and correct errors in SRAM and DRAM, and can be

easily extended to MBU they cannot directly used in

associative memories such as CAMs or caches.

Therefore, a standard CAM search operation cannot

detect and correct a corrupted codeword. The use of

ECC in a cache is usually applied to protect the cache

data.We propose a method that does not require

modifications to the internal structure of the CAM,

therefore it is preferable to add error-detection and

correction features without compromising the internal

3552

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

structure and the overall performance of the circuit. The

aim of this paper is to focus on a generic CAM device

that is different from cache memories is inherently fully

associative. The underlying idea of this paper is to add

in parallel to the CAM a well-know data structure,

called Bloom filter, to efficiently detect if the CAM has

provided a correct result or if it is affected by an error.

A Bloom filter is a structure that can be realized

efficiently with limited hardware resources, or with

efficient software algorithms. In a Bloom filter when

data has to be stored (or queried) it is hashed with

multiple hash functions, and at the output of each hash a

corresponding memory location is written (read).

A Bloom filter performs two tasks: 1) stores a set of

items in its memory and 2) quickly responds to a query

about the presence of an item. An architecture using

both CAM and Bloom filter could potentially be

affected by two very different effects are as

follows:1.The CAM could give a wrong answer due to

the occurrence of an SEU. 2. The Bloom filter could

give a wrong answer due to a hash collision. It will be

shown that these two effects are complementary and

that can be used for mutual benefit, i.e., on one side the

CAM can detect a false positive occurring in the Bloom

filter, while on the other side the Bloom filter, can

detect SEU induced errors occurring into the CAM.

This paper also proposes a suitable algorithm, for

correcting an error in the CAM after its detection by

comparing data stored in the CAM with those stored in

the Bloom filter.

Finally, to manage the dynamic behaviour of a CAM

that usually deletes and update its content, a well-known

extension called counting Bloom filters is applied.

Experiments performed on the realized system by using

a cacti-based model shows the technique proposed in

this paper introduces an overhead ranging from 10 to

50 percent and a 20-30 percent additional power

consumption. Moreover, the proposed solution is

particularly suited for CAM with wide word sizes since

the overhead is independent on the CAM word size.

2. Bloom Filters

Bloom Filter consists of several hash functions and a

bit vector. A given N-bit address is hashed into k hash

values using k different random hash functions. The

output of each hash function is an m-bit index that

addresses the 2m entry bit vector, where m is much

smaller than N. Initially, the Bloom filter bit vector is

zero. Whenever an N bit address is observed, it is

hashed to the b vector and the bit value hashed by each

m-bit index is set to one. When a query is to be made,

the given N-bit address is hashed using the same hash

functions and the bit values are read from the locations

indexed by the m-bit hash value. If at least one of the

bits is 0, it indicates that this address was definitely not

observed before. This is called a true miss. Whereas, if

all of the bit values are 1, the address may have been

observed but with no guarantee, which is called a false

hit. As the number of hash functions increases, the

Bloom filter bit vector is polluted faster. On the other

hand, the probability of finding a zero during a query is

increased if more hash functions are used. The major

drawback of the original Bloom filter is the high false

hit rate as it can be quickly filled up with all 1’s. Also,

once a bit is set, there is no way to reset it. Thus, as

more bits are set, the number of false hits increases. To

address this issue, the counting Bloom filter was

proposed for web cache sharing to provide capability of

resetting entries in the filter. First, an array of counters

is added along with the bit vector of the original Bloom

Filter. Each L-bit counter has a one-to-one association

with each bit in the bit vector. Queries to a counting

Bloom filter are similar with a slight modification: when

an address is entered, each m-bit hash index will

increment its corresponding counter of the counter array

in addition to setting the bit vector. Similarly, when an

address is removed from the Bloom filter, each m-bit

hash index will decrement its corresponding counter.

Fig.1.Segmented Bloom filter

If more than one hash indexes to the same location

for a given address, the counter is incremented or

decremented only once. Finally, when a counter is

reduced to zero, its associated bit in the bit vector will

be cleared.

3. Segmented Counting Bloom Filter

One application of the counting Bloom filter is to

keep track of the line-fills and replacements of a cache

and indicate whether an address is present in the cache.

Query to a counting Bloom filter consumes less energy

and quicker than accessing the entire cache. Ghosh et al.

has shown a cache miss detection technique using a

segmented counting Bloom filters. Their design redrawn

contains the counter array (L bits per counter)

decoupled from the bit vector with a duplicated hash

function on the bit vector side. The cache line

3553

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

fill/eviction addresses are sent to the counter array using

one hash function while the cache request address from

the processor is sent to the bit vector using a copy \ of

the same hash function. The segmented Bloom filter

design allows the counter array and bit vector to operate

in separate physical locations.

There are several reasons for a segmented Bloom

filter:

1) We only need the bit vector, which is

smaller than the counter, to obtain the outcome of a

query. Decoupling the bit vector enables faster and

lower energy accesses to the Bloom Filter. Hence the

result of a query issued from the core can be obtained

by just looking up the bit vector.

2) The update to the counters is not time-

critical with respect to the core. So, the segmented

design allows the counter array to run at lower

frequency than the bit vector. The vector part being

smaller provides fast access time, whereas the larger

counterpart runs at a lower frequency to save energy.

The only additional overhead of the segmented design is

the duplication of the hash function hardware. We now

describe an innovative application of the segmented

counting Bloom filter to avoid unnecessary cache way

lookups.

4. Mechanism of Bloom Filter

Cache hierarchy has become a main consumer of

both static and dynamic energy in processors. Even so,

the trend in modern processor designs continues to

increase both capacity and associativity to accommodate

the ever-growing workloads and alleviate conflict

misses. For processors employing highly associative

caches, the energy consumption gets even worse as N-

tag comparisons are needed for each parallel lookup of

an N-way cache. In fact, most of the energy consumed

for such lookups is redundant as the requested data can

only be present in one particular way. This redundancy

provides a good opportunity for saving dynamic energy.

We propose a technique called based on segmented

counting Bloom filters to exploit these energy saving

opportunities. Our scheme uses counting Bloom filters

to efficiently skip the lookup of cache lines that do not

contain the requested data to save significant energy in

cache accesses. Bloom filters are simple, fast structures

that can eliminate the need of performing associative

lookup especially when the lookup address space is

huge. They can replace the expensive set-associative tag

matching with a simple bit vector that precisely

identifies addresses that have not been observed before.

This mechanism provides early detection of events to

avoid an associative buffer lookup. This improves

energy consumption significantly without adversely

affecting performance given the efficient hardware

structures.

Fig.2. Bloom Filters

5. Related Work

The presence of an error in these devices can give

different types of incorrect responses that have been

classified like pseudo-HIT or pseudo-MISS events.

When a word value becomes incorrect due to the

occurrence of an SEU, if a query looks for the original

value the response will be an incorrect miss, while if a

query looks for the erroneous value the response will be

an incorrect hit. To protect these memories against the

SEU, different methods have been developed. Here, a

literature survey is proposed starting from the methods

that modify the CAM cell at circuit level, to the

methods that exploit ECC, up to system level

methodologies.

The use of DRAM instead of SRAM has been

proposed, exploiting the assumption that DRAM are

less susceptible to SEU than SRAM. Salice et al.

propose a methodology to produce a CAM structural

architecture starting from a functional description of

some high-level properties of the device. The content of

the CAM is continuously refreshed by an associated

DRAM with ECC features to scrub the memory

recovering the CAM from errors due to SEU.

The words stored in a CAM are protected against

SEUs by utilizing one or more parity bits, and the SEU

induced errors detection and correction is demanded to a

modified encoder block that effectively works also as an

embedded error-correction block based on Hamming

codes. This encoder, therefore, requires a number of

several cascaded XOR gates which degrade area

occupancy and most of all the timing performances with

respect to a non protected CAM. Moreover, the solution

proposed is for match-line sense amplifiers although

quite interesting, could be affected by issues both

related to power consumption and noise immunity.

Sense amplifier at the end of a match line with a

comparator to signal a match even if some ternary bits

mismatch and then adds a suitable error-correction code

3554

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

for ternary CAM (called TECC). The techniques

proposed in these papers to prevent SEU induced errors

use a circuit level approach that requires changes in the

internal structure of the CAM, and consequently a

redesign of the entire chip.

The fully associative cache can be maintained small

exactly because the main cache has a limited

associativity, but an extension of these methods to

protect a generic full associative CAM is not trivial and

the achievable results cannot be foreseen.

Our solution is based on the use of a probabilistic

structure called “Bloom filter.” The duplicated CAM is

substituted by the Bloom filter and a store/query

operation to the CAM is given in parallel also to the

Bloom filter. The combined use of CAM and Bloom

filters has been proposed in , where the performances of

content addressable memory aided hash table are

evaluated. However, Wan et al. Propose to combine

CAM and Bloom filters only for performance

enhancement, and not against the occurrence of Soft

errors. Finally, Bloom filters have been proposed to

reduce latency and power consumption in cache

memories.

6. Architecture of Content Addressable

Memories

Fig. 3 shows the schematic representation of a

CAM. The input search word is an n-bit string which is

compared to all the J = 2
M

 words stored in the CAM.

The number of bits of the search word (n) ranging from

36 to 144 bits is usually much larger than M that usually

ranges from 7 to 15 bits . The memory array of a CAM

has a structure similar to a conventional SRAM, has an

arrangement in rows and columns. In operational point

of view, the write operation inside the CAM is similar

to the write operation of a RAM. The data is written

through the CAM bit-lines, while the word-line

identifies which row of the array must be written by the

data driving the bit-lines. Instead, the specific CAM

functionality of searching a data inside the memory is

carried out in parallel by exploiting the suitable

additional circuitry that is not present in the SRAM

array. From the SEU susceptibility point of view, the

core cell of a CAM is similar to the conventional SRAM

cell, and a particle hitting the CAM produces similar

consequence on the bits stored in the array

.

Fig. 3. Scheme of a CAM.

6.1 Consequences of a Soft Error in a CAM

In this section, we discuss the effects of soft errors,

by isolating four possible cases:

(i). Pseudo-MISS. An SEU changes the content of the

memory in a certain location, therefore when that

content is searched, the CAM does not provide a match.

Fig. 2a. An SEU hits the entry 0 of the CAM changing

its content from 00100110 to 00100111. When the word

00100110 if requested, the CAM will respond with a

miss signal.

(ii). Pseudo-HIT. Corrupted memory content

corresponds to content. If this word is searched, the

CAM gives response as the location in which the error

has occurred. Fig. 2b. It should be noted that the same

SEU can, therefore, produce both a pseudo-MISS and a

pseudo-HIT effect.

(iii). Multi-HIT. If the word changed by a bit flip

assumes the same value stored in another entry of the

CAM, a multi-HIT error occurs. The effects of a multi-

HIT error also depend on the kind of policy applied in

case of a multiple match. If a priority encoding

(resolved multiple matching) is used, the outcome of a

multi-HIT error could be masked if the priority of the

correct match is higher than the priority of the wrong

one. This case is re presented in Fig. 2c.

(iv). Wrong-HIT. This occurs only in case of multiple

matching. Suppose to have words stored in k different

entries and that one of these words is affected by an

SEU. If the CAM uses the unresolved multiple

matching policy, in case of a wrong-miss error the

number N match of matched output lines will be k - 1.

An example for this error is presented in Fig. 2d. Note

that when the SEU hits an entry that does not have the

highest priority the error is inherently masked by the

other entries with higher priority. From the above

description, it can be seen that different kinds of

multiple matching policies, provide different behaviour

when an SEU occurs in the CAM memory.

3555

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

Fig. 4. Possible errors occurring in a CAM. Original and

corrupted CAMs are presented side by side. In (a), the SEU

hits a bits of entry 0 of the CAM. When the word is requested

the CAM responds with a pseudo-MISS signal. In (b), the

same SEU also produces a pseudo-HIT. In (c), a multi-HIT

error is caused by the SEU affecting a bit of entry 2. In (d), the

same error produces a wrong-HIT.

7. Overview on Bloom Filters

A Bloom filter is a probabilistic data structure used

to check the membership of an element in a set. The

structure allows the occurrence of false positives (i.e.,

the filter signals an element as present even if it is not

true), but false negatives are not possible (i.e., if an

element is present the filter will never signal the

opposite). Elements can be added to the set, but not

removed and the more elements are added to the set, the

larger the probability of false positives. In this the

equations needed to be correctly dimensioning the filter

with respect to the required false-positive probability

and the expected number of element to be stored. A

Bloom filter is implemented as a bit array of m bits

accessed via k hash functions H1(x) . . .Hk(x), each of

which maps a set member x to one of the m bits within

the bit array. We denote as v(i) the value of bit i within

the bit array.

Two operations are possible with a Bloom filter are as

follows:

1. Insertion. An element x is inserted into the filter by

setting to one all the indexes of the bit array addressed

by the k hash functions. In a mathematical notation, this

corresponds to,

2. Querying. An element is present in the filter if all the

values of the bit array addressed by the k hash functions

are equal to 1 result,

For a Bloom filter in which n elements are stored,

the probability that a given bit in the filter is zero is

given by

If we test membership of an element that is not in

the set, each of the k bit array values indexed by the

hash is 1 with probability The probability of all of them

being 1, which would cause the false positive, is then

The three operations of the CBF are as follows:

Increment (or insertion) of a bin for a set

member x in a CBF consists of setting

Decrement (or deletion) of a bin for a set

member x in a CBF consists of setting

Querying of a set member x within a CBF is the

same as in a Bloom filter.

Through the deletion operation, the counting Bloom

filters preserve the characteristic absence of false

negatives typical of Bloom filters until no overflow

occurs on the counters. To explain this concept,

consider the case in which a number of items n > 2b _ 1

saturates the ith counter. After 2b_1 deletions, the

counter is set to zero, even if not all the n items

corresponding to the ith counter have been evicted from

the filter. A modified version of the decrement

operation can be used to limit this behaviour. The

operation is modified as follows

With this modification if a saturated counter will not

be decremented anymore. The CBF, therefore, keeps

track of the items that have been stored but it will not

decrement the counters that have been saturated. The

effect of the presence of this “dirty” counters is the

increase of the false-positive rate of the filter. In fact, if

a number s of counters is saturated, it is like ns ¼ ds=ke

additional items have been stored in the filter. The false-

positive probability of the counter can be, therefore,

evaluated as

The increment in the false-positive probability given by

ns is negligible since usually n has a magnitude of 1,000

or more, while the magnitude of ns is very small. In

fact, the probability that a specific i counter in the array

of counters is saturated, can be computed as

The probability of having ns saturated counters can

be computed by using the binomial distribution

8. Error Detection and Correction in a Cam

This part, deals about how to detect and correct SEU

induced errors in a CAM. Here we will focus on a

solution that will not require substantial modifications

3556

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

to existing CAM circuits. We make use of parity check

bits, and, by introducing a Bloom filter we correct SEU

induced errors at a higher system level. Therefore, while

we assume that the CAM output could be affected by an

error, we monitor the inputs and outputs of the CAM

and, by leveraging the characteristics of the fault model

described above, we show that we can correct the

occurrence of errors. Different from the address that is

provided to the CAM already includes the parity bits,

this encoding can be performed in a block that is

externally instantiated with respect to the CAM itself,

therefore, not requiring any structural modification to

existing commercial CAMs. Another main difference

between our method and the method proposed is that the

redundant parity bits are used to form an error-detection

code, leaving the error-correction phase to the

combined use of the information provided by the Bloom

filter and the error-correction algorithm. The separation

between the detection and the correction phases allows

the designer to avoid the use of decoders for ECC that

can be very costly, especially for multiple-bit error

correction .The parity check bits protection scheme is

based on memory interleaving. With the proposed parity

scheme, we can always avoid the pseudo-HIT error in a

CAM. In fact, with an interleaved parity encoded CAM

if an SEU hits a codeword it will turn it into a non

codeword (rather than a wrong codeword) and since the

CAM search words are always code words pseudo-HIT

or multi-HIT errors will never occur. When an error hits

an entry of the CAM, changing it into a non codeword,

the CAM produces a MISS signal if this entry is

queried. Note that this error induced false-MISS cannot

be distinguished by the MISS signal produced when

querying an item not stored in the CAM. Therefore, a

CAM affected by an SEU can be seen as a structure

that, when affected by an error, gives a false negative

response to the query of an element. This is exactly the

opposite behavior of a counting Bloom filter. The CAM

is susceptible to the occurrence of false negatives (due

to SEU), the CBF is susceptible to the occurrence of

false positives (due to hash collision). The address is

given to a counting Bloom filter and in parallel is given

to a CAM by passing through the “GROUP PARITY

ENCODER” module. The CBF is configured to provide

as output a MISS response if all the counters

corresponding to a query are set to 0, a HIT otherwise.

The deletion operation avoids the presence of false

negatives at the cost of a higher false positive

probability. With this approach the CBF acts as a classic

BF with respect to the query operation, but can also

perform the delete operations. When an entry in the

CAM is substituted by another one, the old entry is also

deleted from the CBF, while the new one is inserted.

The number b of bits of the CBF is set to 2, since the

number of saturated counters is always negligible. The

outputs of the CAM and of the CBF are input to the

“CHECKER” that detects whether there has been an

error. When the CAM responds with a HIT, its output

can be considered correct (with parity encoding there

are no false HITs) this will be different when we will

make also the assumption of multiple HITs as we will

discuss below. Instead, when the CBF provides a MISS

signal, because there are no false negatives in a CBF,

the “CHECKER” module can output a MISS signal. A

problem arises when the CBF provides a HIT signal and

the CAM a MISS signal.

Fig. 5. Scheme of the proposed error-correction scheme for a

CAM/CBF pair.

9. Simulation of Microprocessor Tag Array

Protection

In this project sim-outorder processor simulator

provided in Simple Scalar 3.0 and the SPEC INT2000

Benchmark suites .The modification of Simple Scalar

allowed us extracting the addresses corresponding to the

insertions, queries, and evictions from the CAM

associated to the different caches and TLBs, i.e., from

the level one instruction and data caches, from the level

2 unified cache and from the data and address TLBs.

The leftmost bar of each group represents the number of

executed instructions, while the other bars in each group

represent the number of accesses to the IL1, DL1, UL2,

ITLB, and DTLB, respectively (the y-axis is in

logarithmic scale with unit of 1 million of

instructions/accesses). Moreover the miss rate (in

percentage) for each kind of cache/TLB are very

dependent on the type of program that is being

executed. For this reason, the cache miss rate is highly

variable depending on the total number of accesses

which is related to the overall instruction and data

footprint.

9.1. Sizing of Bloom Filter Auxiliary Cache

In can be seen that the probability of false positive

grows with the number of stored items and directly

depends on the ratio between the number of stored items

n and the filter size m. In particular, a filter occupation

corresponding to a n=m ratio of 1=8 has a false-positive

probability of about 1E-3 (0.1 percent), while a value of

1=16 provides a false positive rate of about 1E-6. It

should be noted that the size of the Bloom filters is

3557

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

independent on the width of the searched data;

therefore, this method obtains better results for CAMs

with wider word width.

We recall that a higher false positive rate in a Bloom

filter corresponds to a temporal overhead due to the

execution of the error-detection procedure. The Error-

detection procedure searches in the CAM against 2l _W

noncodewords, whereW is the width of the searched

word and l is the maximum expected length of the

MBU. The estimated temporal overhead can, therefore,

be computed as proportional to the product between the

false-positive rate and the number of queries, as

reported in the following equation:

To limit the Overhead, we propose to leverage the

auxiliary CAM introduced above (Fig. 6). This

approach gives a substantial advantage under the

hypothesis that the inputs of the CAM are almost

limited to a certain fixed subset of items. This is a

plausible assumption because we can usually divide the

set of data input to a CAM for a query into two subsets:

The subset of entries that are most likely to the queried,

corresponding to data stored in the CAM, for which we

want to know the corresponding entry, and the subset of

entries that are less likely to be queried which are those

not present in the CAM. With this assumption also the

words causing false positives in the BF belong to the

same subset. Once these entries have been stored in the

auxiliary CAM the false-positive rate of the filter is

drastically reduced until an entry not belonging to the

frequently used set causes an unexpected false positive.

Therefore, suppose that we have a set of frequently

queried words composed of K items, corresponding to

the number of entries of the CAM and Pfp, the

probability that there are J different false positive in the

set is given by the following equation:

The ratio J=K can be seen as the relative dimension

of the auxiliary CAM with respect to the CAM to be

protected. The trade off for minimization of the

Overhead can be, therefore, performed by replacing in

(8) Pfp with PN obtained from (9). For example, using a

n=m ratio of 1=8 and a J=K ratio of 1=128 the value of

PN is around 1E-5.

10. Results

To evaluate the effectiveness of the proposed solution,

we carried out several experiments with different values

of CAM widths and sizes to assess the corresponding

area and power overhead. Width values have been set to

32, 64, and 128 bits, while the number K of rows of the

CAM varies from 32 to 32K entries. For the comparison

between the CAM without error-correction capabilities

and the one with error-correction capabilities, we

suppose to use an interleaved factor of ID ¼ 4,

therefore, the CAMs used for comparison have widths

of 36, 68, and 132 bits. The auxiliary CAM, can be

assumed to be 128 times smaller than the principal

CAM, thus providing a negligible contribution to the

overhead in terms of energy and area of the overall

system.

To compute the contributions of the CBF overhead in

terms of area and power consumption, we fix for all the

experiments the ratio n=m ¼ 1=8 . The CBF area

evaluation has been done ignoring the contributions of

the functions performing the hash of the incoming data,

thus, assuming that the CBF is realized using an SRAM

with a size within the n=m occupation ratio. For a given

size number of row K, the corresponding size S of the

CBF can be calculated imposing that the number of

items stored in the CBF is equal to the number of rows

of the CAM to be protected.

Fig.6.Error detection and correction for a CAM

used in conjunction with a RAM.

Fig.7.The false-positive probability Pfp as a function of n and

m. An optimal number of hash functions k has been assumed.

It should be noticed that, even if the data presented

cannot be directly applied to a fully associative CAM,its

result for 16 KB four-way associative data cache in

terms of area penalty (10 percent) and energy penalty

3558

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

(20 percent) are comparable with those presented here.

In particular, the use of CBF allows us to use an SRAM

that requires less power than a CAM, while for the area

occupation the best results are obtained for CAM with

larger word width.

The presented method is used to protect all these

tags, and the effectiveness of our method is tested

simulating the behavior of a microprocessor with

respect to the insertion, query, and eviction operation in

the tag arrays, and the corresponding behavior of the

CBF used to protect the tags against the occurrence of a

temporary fault.

The use of these external CAMs limits their

maximum operating frequency to 300-400 MHz. The

dimension of the corresponding SRAM used for the

CBF varies from 512 Kbits (64 Kbytes) to 2 M bits (256

Kbytes). Since Layer 2 Ethernet switches are usually

equipped also with high-speed SRAM memories, that

provide several megabits of memories, the CBF can be

stored in these memories that are already available.

Alternatively, a commercial 18-Mbits SRAM would

provide enough space to store the CBF. It can be noted

that these SRAMs compared to the CAM have similar

operating frequencies, consume only a fraction of their

energy and have a much lower retail cost.

11. Conclusion

Content addressable memories like other memories

can be affected by the occurrence of SEU which can

alter their operation causing different effects such as

pseudo-HIT or pseudo-MISS events. To avoid the

effects of SEUs the available technical literature

proposes several approaches that require modifications

to the internal architecture of the CAM.

This paper proposed a method to detect and correct

errors occurring on a CAM using interleaved parity bit

encoding to avoid pseudo-HIT and comparing the

output of the CAM with the response of a Bloom filter

to detect the other types of errors that can occur in the

CAM. This approach does not require any modification

to the internal structure of existing CAMs. The

interleaved parity bit encoding protects the CAM

against MBU, while the combined use of a Bloom filter

with a suitable error correction algorithm allows to

correct errors occurring in the CAM. Moreover, the use

of a counting Bloom filter permits to consider the

dynamic behavior of the CAM by keeping track of the

previous insertions and deletions. Moreover, a

discussion on the sizing of the Bloom filter and of the

auxiliary CAM has been presented and finally, some

simulation experiments showing the effectiveness of

these techniques for the protection of caches and TLB

of a microprocessor have been reported.

References

[1] N. Kanekawa, E.H. Ibe, T. Suga, and Y. Uematsu,

Dependability in Electronic Systems: Mitigation of Hardware

Failures, Soft Errors, and Electro-Magnetic Disturbances.

Springer Verlag, 2010.

[2] G.C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A.

Salsano, “A Fault-Tolerant Solid State Mass Memory for

Space Applications,”

IEEE Trans. Aerospace and Electronic Systems, vol. 41, no. 4,

pp. 1353-1372, Oct. 2005.

[3] W.W. Peterson and E.J. Weldon, Error-Correcting Codes.

The MIT Press, 1972.

[4] T. Yamagata, M. Mihara, T. Hamamoto, Y. Murai, T.

Kobayashi, M. Yamada, and H. Ozaki, “A 288-kb Fully

Parallel Content Addressable Memory Using a Stacked-

Capacitor Cell Structure,” IEEE J. Solid-State Circuits, vol.

27, no. 12, pp. 1927-1933, Dec. 1992.

[5] L. Chisvin and R.J. Duckworth, “Content-Addressable and

Associative Memory: Alternatives to the Ubiquitous RAM,”

IEEE

Computer, vol. 22, no. 7, pp. 51-64, July 1989.

[6] V. Lines, A. Ahmed, P. Ma, S. Ma, R. McKenzie, H-S.

Kim, and C. Mar, “66 MHz 2.3 M Ternary Dynamic Content

Addressable

Memory,” Proc. IEEE Int’l Workshop Memory Technology,

Design Testing, pp. 101-105, 2000.

[7] N. Azizi and F.N. Najm, “A Family of Cells to Reduce the

Soft- Error-Rate in Ternary-CAM,” Proc. 43rd Ann. Design

Automation

Conf., 2006.

3559

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS111146

