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Abstract 

The content addressable memory (CAM) is an SRAM-based memory that can be accessed in 

parallel to search for a given search word, providing as a result the address of the matching data. 

Because of the parallel search performed by a CAM during the query of a word, a standard error 

correction code could not defend it against SEU events. In this paper, we propose a method that 

does not require any modification to a CAM’s internal structure and, therefore, can be easily 

applied at system level. Error detection is performed using a probabilistic structure called “Bloom 

filter,”which can signal if given data is present in the CAM. These filters permit to efficiently 

store and query the presence of data in a set. When a CAM suffers from SEU induced errors, the 

probabilistic nature of Bloom filters has consequence the so called false-positive effect. This paper 

proves that, by combining the use of a Bloom filter with a CAM, the complementary limitations of 

these modules can be compensated. The combined use of a CAM and a Bloom filter is analyzed in 

different cases, showing that the proposed technique can be implemented with a low penalty based 

area and power consumption. 

 

1.Introduction 
The content addressable memory (CAM) is an SRAM 

based memory capable of comparing the input data 

against the data stored in memory, providing the address 

of the matching data. CAMs with small dimensions are 

commonly used in translation look aside buffers (TLB), 

while large CAMs are used in systems must perform 

rapid searches within a large amount of data. One of the 

most used applications where CAMs are used is packet 

forwarding and classification in high-speed network 

systems. When a processor needs to read or write a 

location in the main memory, it has to check whether 

that memory location is in the cache. This is done by 

comparing the address of the memory location to all 

tags in the cache that might contain that address. N-way 

associative caches are commonly used to simplify the 

cache architecture and to limit the power consumption. 

When n corresponds to the total number of cache rows, 

the cache is called fully associative, while if each entry 

in main memory can go in just one place in the cache, 

the cache is directly mapped. 

SEUs occur because of particles striking a sensitive 

area of a circuit. The interaction between silicon and 

particles creates free charges that can be collected by 

the sensitive circuit nodes. The collected charge can 

change the state of a circuit. These effects are well 

known for SRAM and DRAM memories. Information 

redundancy has been exploited by using error-detection 

and correction codes, technology and circuit solutions 

are aimed to increase the critical charge value. These 

techniques are not well suited to be directly applied to a 

CAM, and therefore new approaches to mitigate SEU 

effects in CAM should be developed to use large CAMs 

in complex systems while ensuring high levels of 

reliability. Different techniques have been proposed to 

enhance robustness against SEUs in CAM. Almost all 

the proposed techniques require modifications to the 

CAM architecture, performed at circuit or at 

architectural level.  

The effects of SEU on a memory device closely 

relate to the technology node at which the device is 

realized. While until few years ago an SEU on a 

memory corresponded to a single-bit upset (SBU), in a 

memory realized with feature size less than 90 nm a 

single particle can change the value of multiple bits. 

This effect is commonly known as multibit upset 

(MBU). In this paper, we use SEU to refer to a generic 

radiation induced error, while we use the SBU and 

MBU terms to refer errors affecting one or more than 

one bit, respectively. In particular, we refer to an l-bit 

MBU for an SEU affecting up to l bits in the same 

word. While error-correcting codes (ECCs) can detect 

and correct errors in SRAM and DRAM, and can be 

easily extended to MBU  they cannot directly  used in 

associative memories such as CAMs or caches. 

Therefore, a standard CAM search operation cannot 

detect and correct a corrupted codeword. The use of 

ECC in a cache is usually applied to protect the cache 

data.We propose a method that does not require 

modifications to the internal structure of the CAM, 

therefore it is preferable to add error-detection and 

correction features without compromising the internal 
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structure and the overall performance of the circuit. The 

aim of this paper is to focus on a generic CAM device 

that is different  from cache memories is inherently fully 

associative. The underlying idea of this paper is to add 

in parallel to the CAM a well-know data structure, 

called Bloom filter, to efficiently detect if the CAM has 

provided a correct result or if it is affected by an error. 

A Bloom filter is a structure that can be realized 

efficiently with limited hardware resources, or with 

efficient software algorithms. In a Bloom filter when 

data has to be stored (or queried) it is hashed with 

multiple hash functions, and at the output of each hash a 

corresponding memory location is written (read).  

A Bloom filter performs two tasks: 1) stores a set of 

items in its memory and  2) quickly responds to a query 

about the presence of an  item. An architecture using 

both CAM and Bloom filter could potentially be 

affected  by two very different effects are as 

follows:1.The CAM could give a wrong answer due to 

the occurrence of an SEU. 2. The Bloom filter could 

give a wrong answer due to a hash collision. It will be 

shown that these two effects are complementary and 

that can be used for mutual benefit, i.e., on one side the 

CAM can detect a false positive occurring in the Bloom 

filter, while on the other side the Bloom filter, can 

detect SEU induced errors occurring into the CAM. 

This paper also proposes a suitable algorithm, for 

correcting an error in the CAM after its detection by 

comparing data stored in the CAM with those stored in 

the Bloom filter.  

Finally, to manage the dynamic behaviour of a CAM 

that usually deletes and update its content, a well-known 

extension called counting Bloom filters is applied. 

Experiments performed on the realized system by using 

a cacti-based model shows  the technique proposed  in 

this paper introduces an  overhead ranging from 10 to 

50 percent and a 20-30 percent additional power 

consumption. Moreover, the proposed solution is 

particularly suited for CAM with wide word sizes since 

the overhead is independent on the CAM word size.  

 

2. Bloom Filters 

 
Bloom Filter consists of several hash functions and a 

bit vector. A given N-bit address is hashed into k hash 

values using k different random hash functions. The 

output of each hash function is an m-bit index that 

addresses the 2m entry bit vector, where m is much 

smaller than N. Initially, the Bloom filter bit vector is 

zero. Whenever an N bit address is observed, it is 

hashed to the b vector and the bit value hashed by each 

m-bit index is set to one. When a query is to be made, 

the given N-bit address is hashed using the same hash 

functions and the bit values are read from the locations 

indexed by the m-bit hash value. If at least one of the 

bits is 0, it indicates that this address was definitely not 

observed before. This is called a true miss. Whereas, if 

all of the bit values are 1, the address may have been 

observed but with no guarantee, which is called a false 

hit. As the number of hash functions increases, the 

Bloom filter bit vector is polluted faster. On the other 

hand, the probability of finding a zero during a query is 

increased if more hash functions are used. The major 

drawback of the original Bloom filter is the high false 

hit rate as it can be quickly filled up with all 1’s. Also, 

once a bit is set, there is no way to reset it. Thus, as 

more bits are set, the number of false hits increases. To 

address this issue, the counting Bloom filter was 

proposed for web cache sharing to provide capability of 

resetting entries in the filter. First, an array of counters 

is added along with the bit vector of the original Bloom 

Filter. Each L-bit counter has a one-to-one association 

with each bit in the bit vector. Queries to a counting 

Bloom filter are similar with a slight modification: when 

an address is entered, each m-bit hash index will 

increment its corresponding counter of the counter array 

in addition to setting the bit vector. Similarly, when an 

address is removed from the Bloom filter, each m-bit 

hash index will decrement its corresponding counter.  

 
Fig.1.Segmented Bloom filter 

 

If more than one hash indexes to the same location 

for a given address, the counter is incremented or 

decremented only once. Finally, when a counter is 

reduced to zero, its associated bit in the bit vector will 

be cleared. 

 

3. Segmented Counting Bloom Filter 
 

One application of the counting Bloom filter is to 

keep track of the line-fills and replacements of a cache 

and indicate whether an address is present in the cache. 

Query to a counting Bloom filter consumes less energy 

and quicker than accessing the entire cache. Ghosh et al. 

has shown a cache miss detection technique using a 

segmented counting Bloom filters. Their design redrawn 

contains the counter array (L bits per counter) 

decoupled from the bit vector with a duplicated hash 

function on the bit vector side. The cache line 
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fill/eviction addresses are sent to the counter array using 

one hash function while the cache request address from 

the processor is sent to the bit vector using a copy \ of 

the same hash function. The segmented Bloom filter 

design allows the counter array and bit vector to operate 

in separate physical locations. 

There are several reasons for a segmented Bloom 

filter:  

1) We only need the bit vector, which is 

smaller than the counter, to obtain the outcome of a 

query. Decoupling the bit vector enables faster and 

lower energy accesses to the Bloom Filter. Hence the 

result of a query issued from the core can be obtained 

by just looking up the bit vector. 

2) The update to the counters is not time-

critical with respect to the core. So, the segmented 

design allows the counter array to run at lower 

frequency than the bit vector. The vector part being 

smaller provides fast access time, whereas the larger 

counterpart runs at a lower frequency to save energy. 

The only additional overhead of the segmented design is 

the duplication of the hash function hardware. We now 

describe an innovative application of the segmented 

counting Bloom filter to avoid unnecessary cache way 

lookups. 

 

4. Mechanism of Bloom Filter 

 
Cache hierarchy has become a main consumer of 

both static and dynamic energy in processors. Even so, 

the trend in modern processor designs continues to 

increase both capacity and associativity to accommodate 

the ever-growing workloads and alleviate conflict 

misses. For processors employing highly associative 

caches, the energy consumption gets even worse as N-

tag comparisons are needed for each parallel lookup of 

an N-way cache. In fact, most of the energy consumed 

for such lookups is redundant as the requested data can 

only be present in one particular way. This redundancy 

provides a good opportunity for saving dynamic energy. 

We propose a technique called based on segmented 

counting Bloom filters to exploit these energy saving 

opportunities. Our scheme uses counting Bloom filters 

to efficiently skip the lookup of cache lines that do not 

contain the requested data to save significant energy in 

cache accesses. Bloom filters are simple, fast structures 

that can eliminate the need of performing associative 

lookup especially when the lookup address space is 

huge. They can replace the expensive set-associative tag 

matching with a simple bit vector that precisely 

identifies addresses that have not been observed before. 

This mechanism provides early detection of events to 

avoid an associative buffer lookup. This improves 

energy consumption significantly without adversely 

affecting performance given the efficient hardware 

structures. 

 
Fig.2. Bloom Filters 

 

5. Related Work 

 
The presence of an error in these devices can give 

different types of incorrect responses that have been 

classified like pseudo-HIT or pseudo-MISS events. 

When a word value becomes incorrect due to the 

occurrence of an SEU, if a query looks for the original 

value the response will be an incorrect miss, while if a 

query looks for the erroneous value the response will be 

an incorrect hit. To protect these memories against the 

SEU, different methods have been developed. Here, a 

literature survey is proposed starting from the methods 

that modify the CAM cell at circuit level, to the 

methods that exploit ECC, up to system level 

methodologies. 

The use of DRAM instead of SRAM has been 

proposed, exploiting the assumption that DRAM are 

less susceptible to SEU than SRAM. Salice et al. 

propose a methodology to produce a CAM structural 

architecture starting from a functional description of 

some high-level properties of the device. The content of 

the CAM is continuously refreshed by an associated 

DRAM with ECC features to scrub the memory 

recovering the CAM from errors due to SEU. 

The words stored in a CAM are protected against 

SEUs by utilizing one or more parity bits, and the SEU 

induced errors detection and correction is demanded to a 

modified encoder block that effectively works also as an 

embedded error-correction block based on Hamming 

codes. This encoder, therefore, requires a number of 

several cascaded XOR gates which degrade area 

occupancy and most of all the timing performances with 

respect to a non protected CAM. Moreover, the solution 

proposed is for match-line sense amplifiers although 

quite interesting, could be affected by issues both 

related to power consumption and noise immunity. 

Sense amplifier at the end of a match line with a 

comparator to signal a match even if some ternary bits 

mismatch and then adds a suitable error-correction code 
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for ternary CAM (called TECC). The techniques 

proposed in these papers to prevent SEU induced errors 

use a circuit level approach that requires changes in the 

internal structure of the CAM, and consequently a 

redesign of the entire chip. 

The fully associative cache can be maintained small 

exactly because the main cache has a limited 

associativity, but an extension of these methods to 

protect a generic full associative CAM is not trivial and 

the achievable results cannot be foreseen. 

Our solution is based on the use of a probabilistic 

structure called “Bloom filter.” The duplicated CAM is 

substituted by the Bloom filter and a store/query 

operation to the CAM is given in parallel also to the 

Bloom filter. The combined use of CAM and Bloom 

filters has been proposed in , where the performances of 

content addressable memory aided hash table are 

evaluated. However, Wan et al.  Propose to combine 

CAM and Bloom filters only for performance 

enhancement, and not against the occurrence of Soft 

errors. Finally, Bloom filters have been proposed to 

reduce latency and power consumption in cache 

memories. 

 

6. Architecture of Content Addressable 

Memories 

 
Fig. 3 shows the schematic representation of a 

CAM. The input search word is an n-bit string which is 

compared to all the J = 2
M

 words stored in the CAM. 

The number of bits of the search word (n) ranging from 

36 to 144 bits is usually much larger than M that usually 

ranges from 7 to 15 bits . The memory array of a CAM 

has a structure similar to a conventional SRAM, has an 

arrangement in rows and columns. In operational point 

of view, the write operation inside the CAM is similar 

to the write operation of a RAM. The data is written 

through the CAM bit-lines, while the word-line 

identifies which row of the array must be written by the 

data driving the bit-lines. Instead, the specific CAM 

functionality of searching a data inside the memory is 

carried out in parallel by exploiting the suitable 

additional circuitry that is not present in the SRAM 

array. From the SEU susceptibility point of view, the 

core cell of a CAM is similar to the conventional SRAM 

cell, and a particle hitting the CAM produces similar 

consequence on the bits stored in the array 

.                         

 
Fig. 3. Scheme of a CAM. 

 

6.1 Consequences of a Soft Error in a CAM 

 
In this section, we discuss the effects of soft errors, 

by isolating four possible cases: 

(i). Pseudo-MISS. An SEU changes the content of the 

memory in a certain location, therefore when that 

content is searched, the CAM does not provide a match. 

Fig. 2a. An SEU hits the entry 0 of the CAM changing 

its content from 00100110 to 00100111. When the word 

00100110 if requested, the CAM will respond with a 

miss signal. 

(ii). Pseudo-HIT. Corrupted memory content 

corresponds to content. If this word is searched, the 

CAM gives response as the location in which the error 

has occurred. Fig. 2b. It should be noted that the same 

SEU can, therefore, produce both a pseudo-MISS and a 

pseudo-HIT effect. 

(iii). Multi-HIT. If the word changed by a bit flip 

assumes the same value stored in another entry of the 

CAM, a multi-HIT error occurs. The effects of a multi-

HIT error also depend on the kind of policy applied in 

case of a multiple match. If a priority encoding 

(resolved multiple matching) is used, the outcome of a 

multi-HIT error could be masked if the priority of the 

correct match is higher than the priority of the wrong 

one. This case is re presented in Fig. 2c. 

(iv). Wrong-HIT. This occurs only in case of multiple 

matching. Suppose to have words stored in k different 

entries and that one of these words is affected by an 

SEU. If the CAM uses the unresolved multiple 

matching policy, in case of a wrong-miss error the 

number N match of matched output lines will be k - 1. 

An example for this error is presented in Fig. 2d. Note 

that when the SEU hits an entry that does not have the 

highest priority the error is inherently masked by the 

other entries with higher priority. From the above 

description, it can be seen that different kinds of 

multiple matching policies, provide different behaviour 

when an SEU occurs in the CAM memory. 
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Fig. 4. Possible errors occurring in a CAM. Original and 

corrupted CAMs are presented side by side. In (a), the SEU 

hits a bits of entry 0 of the CAM. When the word is requested 

the CAM responds with a pseudo-MISS signal. In (b), the 

same SEU also produces a pseudo-HIT. In (c), a multi-HIT 

error is caused by the SEU affecting a bit of entry 2. In (d), the 

same error produces a wrong-HIT. 

 

7. Overview on Bloom Filters 

 
A Bloom filter is a probabilistic data structure used 

to check the membership of an element in a set. The 

structure allows the occurrence of false positives (i.e., 

the filter signals an element as present even if it is not 

true), but false negatives are not possible (i.e., if an 

element is present the filter will never signal the 

opposite ). Elements can be added to the set, but not 

removed and the more elements are added to the set, the 

larger the probability of false positives. In this the 

equations needed  to be correctly dimensioning the filter 

with respect to the required false-positive probability 

and the expected number of element to be stored. A 

Bloom filter is implemented as a bit array of m bits 

accessed via k hash functions H1(x) . . .Hk(x), each of 

which maps a set member x to one of the m bits within 

the bit array. We denote as v(i) the value of bit i within 

the bit array. 

Two operations are possible with a Bloom filter are as 

follows: 

1. Insertion. An element x is inserted into the filter by 

setting to one all the indexes of the bit array addressed 

by the k hash functions. In a mathematical notation, this 

corresponds to, 

  
2. Querying. An element is present in the filter if all the 

values of the bit array addressed by the k hash functions 

are equal to 1 result, 

  
For a Bloom filter in which n elements are stored, 

the probability that a given bit in the filter is zero is 

given by 

 
If we test membership of an element that is not in 

the set, each of the k bit array values indexed by the 

hash is 1 with probability The probability of all of them 

being 1, which would cause the false positive, is then 

 
The three operations of the CBF are as follows: 

Increment (or insertion) of a bin for a set 

member x in a CBF consists of setting 

 
Decrement (or deletion) of a bin for a set 

member x in a CBF consists of setting 

 
Querying of a set member x within a CBF is the 

same as in a Bloom filter. 

Through the deletion operation, the counting Bloom 

filters preserve the characteristic absence of false 

negatives typical of Bloom filters until no overflow 

occurs on the counters. To explain this concept, 

consider the case in which a number of items n > 2b _ 1 

saturates the ith counter. After 2b_1 deletions, the 

counter is set to zero, even if not all the n items 

corresponding to the ith counter have been evicted from 

the filter. A modified version of the decrement 

operation can be used to limit this behaviour. The 

operation is modified as follows 

 

 
With this modification if a saturated counter will not 

be decremented anymore. The CBF, therefore, keeps 

track of the items that have been stored but it will not 

decrement the counters that have been saturated. The 

effect of the presence of this “dirty” counters is the 

increase of the false-positive rate of the filter. In fact, if 

a number s of counters is saturated, it is like ns ¼ ds=ke 

additional items have been stored in the filter. The false-

positive probability of the counter can be, therefore, 

evaluated as 

 
The increment in the false-positive probability given by 

ns is negligible since usually n has a magnitude of 1,000 

or more, while the magnitude of ns is very small. In 

fact, the probability that a specific i counter in the array 

of counters is saturated, can be computed as 

 
The probability of having ns saturated counters can 

be computed by using the binomial distribution 

 
 

8. Error Detection and Correction in a Cam 

 
This part, deals about how to detect and correct SEU 

induced errors in a CAM. Here we will focus on a 

solution that will not require substantial modifications 
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to existing CAM circuits. We make use of parity check 

bits, and, by introducing a Bloom filter we correct SEU 

induced errors at a higher system level. Therefore, while 

we assume that the CAM output could be affected by an 

error, we monitor the inputs and outputs of the CAM 

and, by leveraging the characteristics of the fault model 

described above, we show that we can correct the 

occurrence of errors. Different from  the address that is 

provided to the CAM already includes the parity bits, 

this encoding can be performed in a block that is 

externally instantiated with respect to the CAM itself, 

therefore, not requiring any structural modification to 

existing commercial CAMs. Another main difference 

between our method and the method proposed is that the 

redundant parity bits are used to form an error-detection 

code, leaving the error-correction  phase to the 

combined use of the information provided by the Bloom 

filter and the error-correction algorithm. The separation 

between the detection and the correction phases allows 

the designer to avoid the use of decoders for ECC that 

can be very costly, especially for multiple-bit error 

correction .The parity check bits protection scheme is 

based on memory interleaving. With the proposed parity 

scheme, we can always avoid the pseudo-HIT error in a 

CAM. In fact, with an interleaved parity encoded CAM 

if an SEU hits a codeword it will turn it into a non 

codeword (rather than a wrong codeword) and since the 

CAM search words are always code words pseudo-HIT 

or multi-HIT errors will never occur. When an error hits 

an entry of the CAM, changing it into a non codeword, 

the CAM produces a MISS signal if this entry is 

queried. Note that this error induced false-MISS cannot 

be distinguished by the MISS signal produced when 

querying an item not stored in the CAM. Therefore, a 

CAM affected by an SEU can be seen as a structure 

that, when affected by an error, gives a false negative 

response to the query of an element. This is exactly the 

opposite behavior of a counting Bloom filter. The CAM 

is susceptible to the occurrence of false negatives (due 

to SEU), the CBF is susceptible to the occurrence of 

false positives (due to hash collision). The address is 

given  to a counting Bloom filter and in parallel is given 

to a CAM by passing through the “GROUP PARITY 

ENCODER” module. The CBF is configured to provide 

as output a MISS response if all the counters 

corresponding to a query are set to 0, a HIT otherwise. 

The deletion operation avoids the presence of false 

negatives at the cost of a higher false positive 

probability. With this approach the CBF acts as a classic 

BF with respect to the query operation, but can also 

perform the delete operations. When an entry in the 

CAM is substituted by another one, the old entry is also 

deleted from the CBF, while the new one is inserted. 

The number b of bits of the CBF is set to 2, since the 

number of saturated counters is always negligible. The 

outputs of the CAM and of the CBF are input to the 

“CHECKER” that detects whether there has been an 

error. When the CAM responds with a HIT, its output 

can be considered correct (with parity encoding there 

are no false HITs) this will be different when we will 

make also the assumption of multiple HITs as we will 

discuss below. Instead, when the CBF provides a MISS 

signal, because there are no false negatives in a CBF, 

the “CHECKER” module can output a MISS signal. A 

problem arises when the CBF provides a HIT signal and 

the CAM a MISS signal. 
 

 
 

Fig. 5. Scheme of the proposed error-correction scheme for a 

CAM/CBF pair. 

 

9. Simulation of Microprocessor Tag Array 

Protection 

 
In this project sim-outorder processor simulator 

provided in Simple Scalar 3.0 and the SPEC INT2000 

Benchmark suites .The modification of Simple Scalar 

allowed us extracting the addresses corresponding to the 

insertions, queries, and evictions from the CAM 

associated to the different caches and TLBs, i.e., from 

the level one instruction and data caches, from the level 

2 unified cache and from the data and address TLBs. 

The leftmost bar of each group represents the number of 

executed instructions, while the other bars in each group 

represent the number of accesses to the IL1, DL1, UL2, 

ITLB, and DTLB, respectively (the y-axis is in 

logarithmic scale with unit of 1 million of 

instructions/accesses). Moreover the miss rate (in 

percentage) for each kind of cache/TLB are very 

dependent on the type of program that is being 

executed. For this reason, the cache miss rate is highly 

variable depending on the total number of accesses 

which is related to the overall instruction and data 

footprint. 

 

9.1. Sizing of Bloom Filter Auxiliary Cache 

 
In can be seen that the probability of false positive 

grows with the number of stored items and directly 

depends on the ratio between the number of stored items 

n and the filter size m. In particular, a filter occupation 

corresponding to a n=m ratio of 1=8 has a false-positive 

probability of about 1E-3 (0.1 percent), while a value of 

1=16 provides a false positive rate of about 1E-6. It 

should be noted that the size of the Bloom filters is 
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independent on the width of the searched data; 

therefore, this method obtains better results for CAMs 

with wider word width. 

We recall that a higher false positive rate in a Bloom 

filter corresponds to a temporal overhead due to the 

execution of the error-detection procedure. The Error-

detection procedure searches in the CAM against 2l _W 

noncodewords, whereW is the width of the searched 

word and l is the maximum expected length of the 

MBU. The estimated temporal overhead can, therefore, 

be computed as proportional to the product between the 

false-positive rate and the number of queries, as 

reported in the following equation: 

 
To limit the Overhead, we propose to leverage the 

auxiliary CAM introduced above (Fig. 6). This 

approach gives a substantial advantage under the 

hypothesis that the inputs of the CAM are almost 

limited to a certain fixed subset of items. This is a 

plausible assumption because we can usually divide the 

set of data input to a CAM for a query into two subsets: 

The subset of entries that are most likely to the queried, 

corresponding to data stored in the CAM, for which we 

want to know the corresponding entry, and the subset of 

entries that are less likely to be queried which are those 

not present in the CAM. With this assumption also the 

words causing false positives in the BF belong to the 

same subset. Once these entries have been stored in the 

auxiliary CAM the false-positive rate of the filter is 

drastically reduced until an entry not belonging to the 

frequently used set causes an unexpected false positive. 

Therefore, suppose that we have a set of frequently 

queried words composed of K items, corresponding to 

the number of entries of the CAM and Pfp, the 

probability that there are J different false positive in the 

set is given by the following equation: 

 
The ratio J=K can be seen as the relative dimension 

of the auxiliary CAM with respect to the CAM to be 

protected. The trade off for minimization of the 

Overhead can be, therefore, performed by replacing in 

(8) Pfp with PN obtained from (9). For example, using a 

n=m ratio of 1=8 and a J=K ratio of 1=128 the value of 

PN is around 1E-5. 

 

10. Results 

 
To evaluate the effectiveness of the proposed solution, 

we carried out several experiments with different values 

of CAM widths and sizes to assess the corresponding 

area and power overhead. Width values have been set to 

32, 64, and 128 bits, while the number K of rows of the 

CAM varies from 32 to 32K entries. For the comparison 

between the CAM without error-correction capabilities 

and the one with error-correction capabilities, we 

suppose to use an interleaved factor of ID ¼ 4, 

therefore, the CAMs used for comparison have widths 

of 36, 68, and 132 bits. The auxiliary CAM, can be 

assumed to be 128 times smaller than the principal 

CAM, thus providing a negligible contribution to the 

overhead in terms of energy and area of the overall 

system.  

To compute the contributions of the CBF overhead in 

terms of area and power consumption, we fix for all the 

experiments the ratio n=m ¼ 1=8 . The CBF area 

evaluation has been done ignoring the contributions of 

the functions performing the hash of the incoming data, 

thus, assuming that the CBF is realized using an SRAM 

with a size within the n=m occupation ratio. For a given 

size number of row K, the corresponding size S of the 

CBF can be calculated imposing that the number of 

items stored in the CBF is equal to the number of rows 

of the CAM to be protected. 

 
Fig.6.Error detection and correction for a CAM 

used in conjunction with a RAM. 

 

Fig.7.The false-positive probability Pfp as a function of n and 

m. An optimal number of hash functions k has been assumed. 

 

It should be noticed that, even if the data presented  

cannot be directly applied to a fully associative CAM,its 

result for 16 KB four-way associative data cache in 

terms of area penalty (10 percent) and energy penalty 
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(20 percent) are comparable with those presented here. 

In particular, the use of CBF allows us to use an SRAM 

that requires less power than a CAM, while for the area 

occupation the best results are obtained for CAM with 

larger word width. 

The presented method is used to protect all these 

tags, and the effectiveness of our method is tested 

simulating the behavior of a microprocessor with 

respect to the insertion, query, and eviction operation in 

the tag arrays, and the corresponding behavior of the 

CBF used to protect the tags against the occurrence of a 

temporary fault. 

The use of these external CAMs limits their 

maximum operating frequency to 300-400 MHz. The 

dimension of the corresponding SRAM used for the 

CBF varies from 512 Kbits (64 Kbytes) to 2 M bits (256 

Kbytes). Since Layer 2 Ethernet switches are usually 

equipped also with high-speed SRAM memories, that 

provide several megabits of memories, the CBF can be 

stored in these memories that are already available. 

Alternatively, a commercial 18-Mbits SRAM would 

provide enough space to store the CBF. It can be noted 

that these SRAMs compared to the CAM have similar 

operating frequencies, consume only a fraction of their 

energy and have a much lower retail cost. 

 

11. Conclusion 

 
Content addressable memories like other memories 

can be affected by the occurrence of SEU which can 

alter their operation causing different effects such as 

pseudo-HIT or pseudo-MISS events. To avoid the 

effects of SEUs the available technical literature 

proposes several approaches that require modifications 

to the internal architecture of the CAM.  

This paper proposed a method to detect and correct 

errors occurring on a CAM using interleaved parity bit 

encoding to avoid pseudo-HIT and comparing the 

output of the CAM with the response of a Bloom filter 

to detect the other types of errors that can occur in the 

CAM. This approach does not require any modification 

to the internal structure of existing CAMs. The 

interleaved parity bit encoding protects the CAM 

against MBU, while the combined use of a Bloom filter 

with a suitable error correction algorithm allows to 

correct errors occurring in the CAM. Moreover, the use 

of a counting Bloom filter permits to consider the 

dynamic behavior of the CAM by keeping track of the 

previous insertions and deletions. Moreover, a 

discussion on the sizing of the Bloom filter and of the 

auxiliary CAM has been presented and finally, some 

simulation experiments showing the effectiveness of 

these techniques for the protection of caches and TLB 

of a microprocessor have been reported. 
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