
Bug Localization using LDACG Approach

Prof. Devendra Kumar Ritu Sharma
Computer Science & Engineering Department Computer Science and Engineering Department

IEC College of Engineering and Technology IEC College of Engineering and Technology

Greater Noida, UP, India Greater Noida, UP, India

Abstract –Bug Localization is the task of locating the area of

source code that requires modification to correct that bug. By

automating this task, effort of debugger can be considerably

reduced. In past, automated bug localization has been done

with the help of many IR(Information Retrieval) models that

focused on the semantic information. In this paper, we have

proposed LDACG approach for bug localization which

focuses on both semantic and structural information. In

LDACG approach, bugs are located using an IR model i.e.

LDA (Latent Dirichlet Allocation) and Call graph. Then the

combined score of both methods is calculated to locate bugs in

efficient manner. We have compared LDACG based

approach with LDA based approach and it has been found

that LDACG approach performs better than LDA approach

for bug localization. The performance of both approaches has

been evaluated on the datasets downloaded from two open

source projects i.e. Rhino and ModeShape.

Keywords – Bug localization, Call graph, Information Retrieval,

LDA.

I. INTRODUCTION

In today’s epoch, software companies are

competing with quality of the software which depends on

better software maintenance task. Software plays a

significant role in both business related enterprises and

daily life. In large and compound software systems;

insufficient-documentation and aging of the software

makes software project hard to understand and ultimately

leads to a complex software maintenance task. In order to

overcome this, proper testing and debugging jobs are

required. Software testing is a process that involves any

activity aimed at assessing an attribute or potentiality of a

program or system and determining that it meets its

requisite results. Also it may be defined as the method of

executing a program or system with the purpose of

discovering errors. It aids to take informed decision by

providing the relevant information based on the context.

Whereas, debugging is a systematic process of finding and

reducing the number of bugs, or flaws, in a computer

program, therefore making it act as expected.

Bug localization is a process of mapping a bug

back to the code that might have caused it. A computer bug

is an error, flaw, mistake, failure, or fault in a computer

program that stops it from working correctly or produces

an incorrect result. Bugs arise from mistakes and errors,

made by people, in either a program’s source code or its

design.

Bug localization can be performed in static and

dynamic manner. Static bug localization works on the

source code whereas dynamic bug localization works on

execution traces i.e. it requires working software and test

case that triggers the bug. The foremost drawback of

dynamic technique is that a program or software developed

for locating bugs cannot be made language independent.

Due to these shortcomings of traditional and dynamic bug

localization techniques, researchers have started using IR

models for locating the bugs. [3]

An Information Retrieval system is a software

program that stores and manages information on

documents. The system helps users in finding the

information they need. It does not return information or

answer questions. Instead, it informs the user about the

location of documents that might contain the required

information. Thus the goal of any IR system is to identify

the documents that are relevant to the user's query. Most

people equate information retrieval with web search, but

the main purpose of Information Retrieval is “the finding

of” concept where user or programmer finds

data/information which can have endless uses and

application.

One of the techniques applied in IR models is

topic modeling which can be defined as:- A topic model (or

latent topic model or statistical topic model) refers to a

model designed to automatically extract topics from a

corpus of text documents. A collection of terms that co-

occur frequently in the documents of the corpus, for

example {mouse, click, drag, right, left} and {user,

account, password, authentication} makes a topic.[5] Topic

models are algorithms for discovering the main themes that

pervade a large and otherwise unstructured collection of

documents. Topic models can organize the collection

according to the discovered themes. [1]

In rest of this paper, section II describes the previous work

done in this field. Section III describes the proposed

techniques and algorithm. Experimental results have been

discussed in section IV and proposed work has been

concluded in section V.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050095

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

155

II. PREVIOUS WORK

In recent times, researchers have applied many IR

models for the task of bug localization. Various models

used for this purpose are LSI, LDA, N-gram etc.

Deerwester et al. [12]proposed LSI model which

is based on the vector space model, which is an algebraic

model that represents documents as vectors of terms and

relationships among terms and documents as a term-

document co-occurrence matrix. Latent Dirichlet

allocation (LDA) was proposed by Blei et al. [1] as a topic

model that explained similarity among data.

Hayes et al. [11] proposed a technique for bug

localization in which LSI model has been used. And to

improve the efficiency, historical patch data has also been

used. For locating a given bug combined result of both

previous history and LSI based approach has been used.

Lukins et al.[3] proposed Latent Dirichlet Allocation model

for source code retrieval. And it has been shown that LDA

based approach performed better than LSI based approach

for bug localization.

Lal et. al. [10] presented technique (which falls

into the class of static techniques for bug localization) for

fault localization based on a character n-gram based

Information Retrieval (IR) model. Problem of bug

localization as a relevant document(s) search task for a

given query is framed and the application of character-level

n-gram based textual features derived from bug reports and

source-code file attributes is investigated.

Singh et al.[9] proposed a novel approach for bug

localization using call graph reduction where the size of the

call graph is reduced without changing the basic structure

and no major loss of the information is incurred. The

output generated using the proposed methodology showed

promising results.

III. PROPOSED WORK

In this work, we have performed Bug localization

using LDACG approach. In LDACG approach, bugs are

located using LDA and call graph. Then the combined

score of both methods is calculated to locate the bugs in

efficient manner. Section A provides the background

details of the work. While in section B proposed LDACG

algorithm has been defined.

A. Background

Bug localization is the process of locating bugs in

the source code which are resulting in the abnormal

execution of the program or software. Mistakes done in the

program are called as bugs. When we locate all the bugs in

the program we create its bug report which acts as a query

for the user.

Latent Dirichlet Allocation (LDA) is a statistical

model that has emerged as a popular technique for

discovering topics in a large text document corpus. Thus it

can be used in locating bugs in the source code [2]. LDA is

implemented on the source code where each vthword can be

represented as a V-Vector w such that wv = 1 and wu = 0

for u ≠ v. The next step involves Document Preprocessing

which includes 2 stages. Firstly, Identifier and Comment

Excerption: Extract semantic information such as comment

and identifier, from each source code element at the desired

level of granularity (Classes, Methods, Package etc.) and

secondly preprocessing: It involves four further steps like

Identifier Separation ,Case Normalization, Stop word

elimination and Stemming. The next step involves

Document Collection. After the preprocessing is done in

previous stages, the data corpus is created, through which

the information can be extracted using IR Model. The next

stage is LDA Analysis where various parameters are set

like the number of topics, the number of iterations, α, a

hyper parameter of LDA, determines the amount of

smoothing applied to the topic distribution per document.

β, a hyper parameter of LDA, determines the amount of

smoothing applied to the word distributed per topic. Finally

LDA Model is generated.

A call graph (Fig 1) is a software engineering

technique which provides a binary relation over selected

entities in a program, such as methods, classes, subsystem,

modules, files, etc., which represents invocations between

those entities. Call graphs are either static or dynamic. A

static call graph can be obtained from the source code. It

represents all methods of a program as nodes and all

possible method invocations as edges. A dynamic call

graph is the invocation relation that represents a specific set

of runtime executions of a program. A call graph is a

directed graph whose nodes represent the functions of

program and directed edges symbolize function calls. [11]

Fig. 1 Call Graph

B. LDACG

Here we have combined the concept of Latent

Dirichlet Allocation with Call Graph. Firstly, the user

provides a query based on information extracted from a

bug report. Then an LDA Model is generated based on the

source code listing all the methods in descending order of

probability of occurrence (LDASCORE).After that a

minimum criterion is selected for the Model. This

minimum score is called THRESHOLD. For all the

methods under the filtered THRESHOLD score, a call

graph is generated and CGSCORE is computed. For every

method we compute the new score as follows:

NSCORE = Ө*LDASCORE + (1-Ө)*CGSCORE (1)

Where:

Ө a weight in the range (0,1) that represents weightage of

each aspect.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050095

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

156

Then we create a new list, LDACG, containing the

methods ranked in descending order by NSCORE, and

return it to the user. Figure 2 shows the flow chart for

proposed LDACG approach.

Fig. 2 Flow Chart for LDA using Bug Localization with Call Graph

Algorithm for LDACG

Step 1: User provides query

Using the information provided from a bug report, the user

provides a query for the LDA Model generation.

Step 2: LDA Model Generation

After the user query an LDA model is generated based on

the source code which contains probability of occurrence

of all methods in descending order. This list of score is

called as LDASCORE.

Step 3: Selection of Threshold value

Here we select a minimum criterion for the model and

select a THRESHOLD value. All those scores which are

below THRESHOLD value are neglected.

Step 4: Creation of Call Graph

Now we make a call graph for all those methods that are

under the filtered threshold value score and then we

compute a CGSCORE.

Step 5: Calculation of Optimized Score

Based on the LDASCORE and CGSCORE we create a new

score given by equation:-

NSCORE = Ө*LDASCORE + (1-Ө)*CGSCORE

Step 6: Result to the User

Finally we create a new list in descending order containing

the methods ranked by NSCORE and return it to the user.

IV. EXPERIMENTALRESULTS

In this paper, the performance of locating bugs by

LDA has been improved by combining it with Call Graph

technique. Thus the performance of LDA and LDACG has

been compared using the data set of two open source

software Rhino (Rhino) and ModeShape (ModeShape

Source Code - JBoss Community). For evaluating the

performance, we have used two evaluation metrics viz

Mean Average Precision(MAP) and Rank of Relevant files.

A.Rhino

For Rhino, it has been observed that the value of

MAP for LDA based bug localization is 0.157. While

performing bug localization with LDACG it comes out to

be 0.177. This comparison has been clearly shown in Fig.

3. It clearly shows the MAP value for LDACG is better

than LDA for bug localization.

Fig. 3 Comparison between LDA and LDACG approaches using MAP for
Rhino

In LDA based approach for locating bugs in

Rhino, 20% of bugs are located at Rank less than 5.28% of

bugs are located at rank between 6 to 10 and 50% of bugs

are located at rank between 11to 20. Fig. 4 illustrates the

bugs located with the respective rank ranges.

Fig.4 Rank of Relevant files using LDA approach for Rhino

While in LDACG based approach for bug

localization in Rhino dataset, 22% of bugs are located at

Rank less than 5. 38% of bugs are located at rank between

6 to 10 and 40% of bugs are located at rank between 11to

20. Fig. 5 illustrates the bugs located with the respective

rank ranges.

0.05

0.1

0.15

0.2

0.25

LDA LDACG

Mean Average Precision

Mean Average
Precision

20%
50%

28%

LDA based approach for Rhino

Rank<5

6<=Rank<=10

11<=Rank<=20

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050095

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

157

Fig. 5 Rank of Relevant files using LDACG approach for Rhino

B. ModeShape

For ModeShape, it has been observed that value of MAP is

0.100 in case of LDA based bug localization. While

performing bug localization using LDACG, value of MAP

becomes 0.124. This comparison has been clearly shown in

Fig. 6. It shows that the MAP of LDACG based approach

for bug localization is better than LDA based approach for

bug localization.

Fig. 6 Comparison between LDA and LDACG approaches using MAP for
ModeShape

In LDA based approach, 17% of bugs are located

at Rank less than 5.39% of bugs are located at rank

between 6 to 10 and 44% of bugs are located at rank

between 11to 20. Fig. 7 illustrates the bugs located with the

respective rank ranges.

Fig. 7 Rank of Relevant files using LDA approach for ModeShape

In LDACG based approach for bug localization,

15% of bugs are located at Rank less than 5. 37% of bugs

are located at rank between 6 to 10 and 48% of bugs are

located at rank between 11to20. Fig. 8 illustrates the bugs

located with the respective rank ranges.

Fig. 8Rank of Relevant files using LDACG for ModeShape

It can be clearly seen from the results that for

ModeShape, LDACG based approach has performed better

than LDA based approach for bug localization, for both

MAP and Ranking metrics.

V. CONCLUSIONS

In present time the quality of software is a major factor in

software industry and it can be maintained if software is

bug free. In this research paper, we have performed Bug

Localization using both lexical (IR Models) and structural

(CG) techniques. For locating bugs, LDACG approach

using both LDA model and call graph has been used and

experimental results have shown that LDACG based

approach performs better than LDA based approach for bug

localization. For Rhino, it has been observed that the value

of MAP for LDA based bug localization is 0.157. While

performing bug localization with LDACG it comes out to

be 0.177. For ModeShape, it has been observed that value

of MAP is 0.100 in case of LDA based bug localization.

While performing bug localization using LDACG, value of

MAP becomes 0.124.

REFERENCES

[1] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent Dirichlet Allocation,"

Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.
[2] G. Maskeri, S. Sarkar and K. Heafield, "Mining Business Topics in

Source Code using Latent Dirichlet Allocation", ISEC '08

Proceedings of the 1st India software engineering conference, pp.
113-120.

[3]S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, "Source Code Retrieval

for Bug Localization using Latent Dirichlet Allocation," Proc. 15th
Working Conf. Reverse Engineering (WCRE 2008), pp. 155-167,

2008.

[4]M. Beard, N. Kraft, L. Etzkorn and S. Lukins, "Measuring the
Accuracy of Information Retrieval," Proc. 15th Working Conf.

Reverse Engineering (WCRE 2008), Limerick, pp. 124 – 128, 2008.

22%38%

40%

LDACG based approach for Rhino

Rank<5

6<=Rank<=10

11<=Rank<=20

0.02

0.07

0.12

LDA LDACG

Mean Average Precision

Mean Average
Precision

17%

44%

39%

LDA based approach for
ModeShape

Rank<5

6<=Rank<=10

11<=Rank<=20

15%
37%

48%

LDACG based approach for
ModeShape

Rank<5

6<=Rank<=10

11<=Rank<=20

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050095

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

158

[5]S. W. Thomas, "Mining Software Repositories with Topic Models,"

Proc. 33rd International Conference on Software Engineering

(Doctoral Symposium), pp. 1138-1139, 2011.

[6]X. Wang, A. McCallum and X. Wei, "Topical N-grams: Phrase and

Topic Discovery," Proc. ICDM’07 Proceedings of the 2007 Seveth
IEEE International Conference on Data Mining, pp. 697-702.

[7]J. Zhou, H. Zang and D. Lo, "Where Should the Bugs Be Fixed?,"

Proc. ICSE 2012 Proceedings of the 2012 International Conference on
Software Engineering , pp. 14-24, 2008.

[8]P. Shao, R. k. Smith, N. A. Kraft, T. Atkinson, J. C. Carver and A. S.

Parrish, "Combining Information Retrieval Modules And Structural
Information For Source Code Bug Localization And Feature

Location," Ph.D. dissertation, Department of Computer Science,

University of Alabama, 2011.
[9]P. Singh and S. Batra, "A Novel Technique for Call Graph Reduction

for Bug Localization," International Journal of Computer

Applications (0975 – 888)Volume 47– No.15, June 2012.
[10]S. Lal and A. Sureka, "A Static Technique for Fault Localization

Using Character N-Gram Based Information Retrieval Model,"

Proceedings of ISEC '12, Kanpur, UP, India, February 2012.
[11]C. J. Hayes, B. Nichols,N. A. Kraft and M.D. Anderson,“Improving

LSI-Based Bug Localization using Historical Patch data,”The

University of Alabama McNair Journal .
[12]S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,

R.Harshman, "Indexing by Latent Semantic Analysis," Journal Of

The American Society For Information Science, 1990.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050095

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

159

