
Bloom Filter 
 

A Data Structure for Quick Searching 
 

Pranav Byali, Md Zaid S Bevinahalli, Vaishnavi Chavan 
Dept. of Information Science and Engineering 

KLE Institute of Technology, Hubli 

 
 Abstract- A Bloom filter is a data structure designed to tell us 

whether an element is present in a set. The base data structure 

of a Bloom filter is a Bit Vector (an array of flag variables). This 

data structure is used when there are searches to be made in 

large datasets. The results are definite negatives or probabilistic 

positives. In datasets containing records in numbers very large 

where search algorithms like linear search and binary search 

will not be suitable in many case. Bloom filter fits more 

appropriately in such cases. Lists like the ones of all google ids 

are difficult in cases where one id is to be checked for 

membership. In such cases elements in the set will be in billions 

in number. Searches will take unacceptable amounts of time to 

complete with linear search or binary search, or any other 

conventional search algorithms The objective in this seminar to 

explain how searches can made without actually checking to see 

if the element is present in the set, i.e. without comparing the 

element with every element in the set. The objective is also to 

explain how use of bloom filter is a better way of searching or 

checking membership. 

 

I. INTRODUCTION 

A Bloom Filter is a data structure designed to tell if an 

element is definitely not present in a set. It gives probabilistic 

positive results or definite negative results. Bloom filter 

either tells us that an element is definitely not present in a set 

or may be present in the set. Bloom filter gives results rapidly 

and memory efficiently 

 

II. THE DATA STRUCTURE OF BLOOM FILTER 

The base data structure of a Bloom filter is a Bit Vector. A 

vector in programming is just an array and a bit is what is 

called a flag. Flags take one of two possible values zero or 

one. 

 

Hash Functions 

A hash function is like an f(x) of math. It passes a given 

value through some operation(s) and gives a value, the hash 

of that value. To add an element to the Bloom filter, we 

simply hash it a few times and set the bits in the bit vector at 

the index of those hashes to 1. 

 

False Positive probability 

The probability of a false positive result for the search of an 

element not in the set, or the false positive probability, can be 

calculated in a simple way, given our assumption that hash 

functions are completely random. After all the elements of 

set S are hashed into the Bloom filter, the probability of a 

specific bit being 0 is 

p = (1−1/m)^kn ≈e^(−kn/m.) 

 

If we plot the false positive probability against the size of the 

bit array or the bloom filter for a fixed number of elements 

that are to be inserted, we can see that the rate of false 

positives decreases as bit array size increases. From the graph 

for p < 0.01, we would need a bit array of size 100x the 

number of values (n) if we used only one hash function. A 

key idea behind a bloom filter is that if we use k hash 

functions, the space requirement (m) can be reduced in a 

considerable amount. Whenever a new value is to be added to 

the filter, it is hashed and the bits at the values gotten by the 

hash functions are set to 1. Similarly, when we need to check 

if the given value exists, we hash it and check if every 

corresponding bit gotten by hash functions is set to 1. If one 

bit is 0, it is concluded that the value is not present. 

 

Choosing Hash Functions 

Depending on the number of values to be inserted and the 

maximum acceptable false positive rate, we can get at the 

optimal number of hash functions to be used. There is a lot of 

content on how to choose good hash functions. 

p < 0.01 at (k=1, m=1B), (k=5, m=100M) and (k=8, 

m=100M). Here, (n=10M, p < 0.01) our 

ideal choice would be (k=5, m=100M) as it minimizes both 

the space and time/compute requirements. 

A bloom filter’s aim, by default, is to minimize the size of 

it’s bit array, and the number of hash functions 

 

Drawbacks 

A bloom filter which is filled to it’s capacity would cause 

the false positive possibility to be more. 

The false positives increase as the filter is filled to a point 

where it is not useful for lookups. Choosing a large bit array 

size to solve this issue would make the bloom filter sparse 

and also would slow down the lookups. When the  number of 

elements in the filter is maximum, expanding the size of the 

filter isn’t exactly rendering them to be very rigid. The 

rigidity can be dealt with by adding another bloom filter 

when (m/n) crosses a certain threshold. Additional elements 

go directly into the new filter, while lookups would have to 

go via every single filter in the chain. This leads to 

multiplicative increases in the overall false positive 

probability. Chaining bloom filters would still require tighter 

constraints on false positive rates to maintain the overall false 

positive rate at the desired level, due to multiplying effect in 

the chaining. 

 

Bloom Filter Working 

The bloom has to do with, as we have seen, two things. 

One is when an element is added and another when we 

check if an element is present in a set. 

 

Adding elements to the set 

When we want to add Elements to the set, they are hashed 

and the bits at the positions of the hashes are set to 1. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCAIT - 2020 Conference Proceedings

Volume 8, Issue 15

Special Issue - 2020

204

www.ijert.org


Suppose we want to add the string “filter” to the set. We get 

some hash values, say as follows. 

h1(“filter”) % 10 = 1 

 

h2(“filter”) % 10 = 4 

 

h3(“filter”) % 10 = 7 

 

The positions 1, 4 and 7 in bloom filter now have their bits 

set to 1 and the rest are zero. 

 

Checking membership 

While checking membership, we refer to the filter. The hash 

of the element is calculated and at these hashes the bits are 

checked to be set. For example, if checking for the string 

“Element”, the hashes are first calculated. Bits at the 

positions gotten are calculated. If all are set then the string is 

present, else it is not. 

 

Probability of false positives 

Say a hash function treats each array position with the same 

probability. Consider m as the number of bits in the bloom 

filter, the probability that any of the bits is not set to 1 by a 

hash function during the insertion of an element is 1-1/m. If 

k is the number of hash functions and each has no 

significant correlation between each other, then the 

probability that any bit in bloom filter is not set by any of 

the hash functions is (1+1/m)^k. If we have inserted n 

elements, the probability that a certain bit is still 0 is the 

probability that it is 1 is therefore 

1-(1-1/m)^kn 

For testing membership of an element that is not in the set, 

each of the positions gotten by the hash functions is 1 with 

a probability as above. The probability of all bits being 1, 

which would cause the algorithm to give result that the 

element is in the set, is often given as 

(1-(1-1/m)^kn)^k Which is 

approximately, (1-e^-(kn/m))^k 

This is not strictly correct as it assumes independence for 

the probabilities of each bit being set. However, assuming 

it is a close approximation we have that the probability of 

false positives decreases as m (the number of bits in the 

array) increases, and increases as n (the number of inserted 

elements) increases. An alternative analysis arriving at the 

same approximation without the assumption of 

independence is given by Mitzenmacher and Upfal. After 

all n items have been added to the Bloom filter, let q be the 

fraction of the m bits that are set to 0. (That is, the number 

of bits still set to 0 is qm.) Then, when testing membership 

of an element not in the set, for the array position given by 

any of the k hash functions, the probability that the bit is 

found set to 1 is 1-q 

. So the probability that all k hash functions find their bit 

set to 1 is (1-q^k). Further, the expected value of q is the 

probability that a given array position is left untouched by 

each of the k hash functions for each of the n items, which 

is (as above) 

E(q)=(1-1/m)^kn 

 

Optimal number of hash functions 

We are given m and n, so we choose a k to minimize the 

false positive rate. Let p = e−kn m 

. Thus we have 

 

f = (1 – e^(−kn/m)^k 

 

= (1 − p)^k 

 

= e^(kln(1−p)) 

 

So we wish to minimize g = k ln(1 − p) We could use 

calculus. Less messy, we notice that since ln(e^(−kn/m))= 

−kn/m 

we have 

 

g = k ln(1 − p) = − (m/n)ln(p)ln(1 − p) 

 

and by symmetry, we see that g is minimized when p = ½ 

Since p = e−kn/m , when p = 1/2 we have k = ln2 ·(m/n) 

Plugging back into f = (1 − p)^k, we find the minimum 

false positive rate is (1 2)^k ≈ (.6185)^(m/n) 3.3 

 

Optimal Filter Structure Recall 

p = e^(−kn)/m is the probability than any specific bit is 

still 0. So p = 1/2 corresponds to a half-full Bloom filter 

array. 

 

III. APPLICATIONS 

Bloom filters are useful when trying to determine of 

element doesn’t belong to a set. Other than this, bloom 

filter has a few applications in the field security. 

 

Google Ids 

When creating a new user id in google, we may see “user 

name is already taken”. This is because google needs user 

names to be unique. Now, when the user enters the user 

name, it has to be checked to see if it is present in the set of 

existing user names. There are more than 1.7 Billion gmail 

users. Comparing the new user name with existing 

usernames using whichever algorithm, is not an efficient 

way of solving this problem. For this, Google used bloom 

filters. 

 

Instagram 

Instagram, like Google, needs user names to be unique. Just 

like in creating Google user id, creating new user name in 

instagram is also quite a task. Instagram had reported in 

2018 that it has over 1 billion users. Instagram too, for 

creating new user names, used bloom filters. 

 

Other applications 

The servers of Akamai Technologies, a satisfied delivery 

provider, use Bloom filters to prevent "one-hit-wonders" 

from being stored in its disk caches. One-hit-wonders are 

web objects requested by users just once, something that 

Akamai found applied to nearly three-quarters of their 

caching infrastructure. Using a Bloom filter to detect the 

second request for a web object and caching that object 

only on its second request prevents one-hit wonders from 

entering the disk cache, significantly reducing disk 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCAIT - 2020 Conference Proceedings

Volume 8, Issue 15

Special Issue - 2020

205

www.ijert.org


workload and increasing disk cache hit rates.[10] Google 

Bigtable, Apache HBase, and Apache Cassandra and 

PostgreSQL[11] use Bloom filters to decrease the disk 

lookups for fictitious rows or columns. Evading costly disk 

lookups considerably increases the performance of a 

database query operation.[12] The Google Chrome web 

browser used to use a Bloom filter to recognize malicious 

URLs. Any URL was first checked against a local Bloom 

filter, and only if the Bloom filter returned a positive result 

was a full check of the URL performed (and the user 

warned if that too returned a positive result).[13][14] 

Microsoft Bing (search engine) uses multi-level 

hierarchical Bloom filters for its search index, BitFunnel. 

Bloom filters produced a lower cost than the previous Bing 

index, which was based on inverted files.[15]. The  Squid 

Web Proxy Cache uses Bloom filters for cache digests.[16] 

Bitcoin uses Bloom filters to speed up wallet 

synchronization.[17] The Venti archival storage system 

uses Bloom filters to detect earlier stored data.[18] The 

SPIN model checker uses Bloom filters to track the 

reachable state space for large verification problems.[19] 

The Cascading analytics framework practices Bloom filters 

to speed up asymmetric joins, where one of the joined data 

sets is significantly larger than the other (often called 

Bloom join in the database literature).[20] 

The Exim mail transfer agent (MTA) uses Bloom filters in 

its rate-limit feature.[21] Medium practices Bloom filters 

to avoid recommending articles a user has earlier 

read.[22] Ethereum uses Bloom filters for quickly finding 

logs on the Ethereum block chain. 

Bloom Filters other applications 

Weak Password Dictionary: Store dictionary has easy 

passwords as bloom filters, queries when users pick 

passwords. Can add new entries (e.g. earlier used 

passwords). What is a false positive in these 

circumstances? A strong password that strikes to hit, just 

asks the user for another password. Application: Cache 

Sharing: Proxies on the same side of the network 

bottleneck share their caches. Proxies use the Internet 

Cache Protocol (ICP). Proxy hashes all of the URLs in its 

cache into Bloom Filter. Proxies regularly exchange 

Bloom filters, so queries of other caches can be made 

locally without sending an ICP message. 

 

Bloomier filters 

Chazelle et al. (2004) designed an idea of Bloom filters that 

could link value with each element that had been inserted, 

implementing an associative array. While using a Bloom 

filter, these structures assume the potential effects of false 

positives. In the even  of  "Bloomier filters", a false positive 

is determined as returning a result when the key is not in 

the map. The map will never return the wrong value for a 

key that is in on the map. 

 

Counting Bloom filters 

Counting filters abide by to implement a delete operation 

on a Bloom filter without refurbishing recreating the filter 

afresh. In a counting filter, the array positions (buckets) are 

extended from being a single bit to being a multi-bit 

counter. Regular Bloom filters can be considered as 

counting filters with a bucket size of one bit. 

The insert operation is used to increment the value of the 

buckets, and the lookup operation checks that each of the 

required buckets is non- zero. The delete operation then 

includes decrementing the value of each of the buckets. The 

size of counters is usually 3 or 4 bits. Hence counting 

Bloom filters use 3 to 4 times more space than static Bloom 

filters. 

 
Layered Bloom filters 

A layered Bloom filter has multiple Bloom filter layers. 

Layered Bloom filters help us to keep the track of how 

many times an item was added to the Bloom filter by 

checking how many layers contain the item. With a layered 

Bloom filter, a check operation will normally return the 

deepest layer number the item was found in. 

 
IV. CONCLUSION 

Bloom Filters and their extensions can be useful tools for 

many of the applications. When a list or set is being used, 

and space is a consideration, a Bloom filter can be used. 

While using a Bloom filter, assume potential effects of 

false positives. Bloom filters are simple data structures 

that can be used in practice. They are so useful that any 

significant reduction in the time required to perform a 

Bloom filter operation immediately translates to a 

substantial speedup for many practical applications. There 

is no room for optimization in Bloom Filters. This report 

focuses on the introduction to Bloom Filters, and 

applications of bloom filters in searching over other 

search algorithms. 

 

V. REFERENCES 

[1] Adam Kirsch,* Michael Mitzenmacher, Less Hashing, Same 

Performance: Building a Better Bloom Filter, In: Harvard School of 
Engineering and Applied Sciences, Cambridge, Massachusetts 

02138; e-mails: {kirsch, michaelm}@eecs.harvard.edu 

[2] Jacob Honoroff, An Examination of Bloom Filters and their 

Applications, March 16, 2006 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCAIT - 2020 Conference Proceedings

Volume 8, Issue 15

Special Issue - 2020

206

www.ijert.org

