Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCAIT - 2020 Conference Proceedings

Bloom Filter
A Data Structure for Quick Searching

Pranav Byali, Md Zaid S Bevinahalli, Vaishnavi Chavan
Dept. of Information Science and Engineering
KLE Institute of Technology, Hubli

Abstract- A Bloom filter is a data structure designed to tell us
whether an element is present in a set. The base data structure
of a Bloom filter is a Bit Vector (an array of flag variables). This
data structure is used when there are searches to be made in
large datasets. The results are definite negatives or probabilistic
positives. In datasets containing records in numbers very large
where search algorithms like linear search and binary search
will not be suitable in many case. Bloom filter fits more
appropriately in such cases. Lists like the ones of all google ids
are difficult in cases where one id is to be checked for
membership. In such cases elements in the set will be in billions
in number. Searches will take unacceptable amounts of time to
complete with linear search or binary search, or any other
conventional search algorithms The objective in this seminar to
explain how searches can made without actually checking to see
if the element is present in the set, i.e. without comparing the
element with every element in the set. The objective is also to
explain how use of bloom filter is a better way of searching or
checking membership.

I. INTRODUCTION
A Bloom Filter is a data structure designed to tell if an
element is definitely not present in a set. It gives probabilistic
positive results or definite negative results. Bloom filter
either tells us that an element is definitely not present in a set
or may be present in the set. Bloom filter gives results rapidly
and memory efficiently

Il. THE DATA STRUCTURE OF BLOOM FILTER
The base data structure of a Bloom filter is a Bit Vector. A
vector in programming is just an array and a bit is what is
called a flag. Flags take one of two possible values zero or
one.

Hash Functions
A hash function is like an f(x) of math. It passes a given
value through some operation(s) and gives a value, the hash
of that value. To add an element to the Bloom filter, we
simply hash it a few times and set the bits in the bit vector at
the index of those hashes to 1.

False Positive probability
The probability of a false positive result for the search of an
element not in the set, or the false positive probability, can be
calculated in a simple way, given our assumption that hash
functions are completely random. After all the elements of
set S are hashed into the Bloom filter, the probability of a
specific bit being 0 is
p = (1-1/m)"kn =e"(—kn/m.)

If we plot the false positive probability against the size of the
bit array or the bloom filter for a fixed number of elements
that are to be inserted, we can see that the rate of false

positives decreases as bit array size increases. From the graph
for p < 0.01, we would need a bit array of size 100x the
number of values (n) if we used only one hash function. A
key idea behind a bloom filter is that if we use k hash
functions, the space requirement (m) can be reduced in a
considerable amount. Whenever a new value is to be added to
the filter, it is hashed and the bits at the values gotten by the
hash functions are set to 1. Similarly, when we need to check
if the given value exists, we hash it and check if every
corresponding bit gotten by hash functions is set to 1. If one
bit is 0, it is concluded that the value is not present.

Choosing Hash Functions

Depending on the number of values to be inserted and the
maximum acceptable false positive rate, we can get at the
optimal number of hash functions to be used. There is a lot of
content on how to choose good hash functions.
p < 001 at (k=1, m=1B), (k=5, m=100M) and (k=8,
m=100M). Here, (n=10M, p < 0.01) our
ideal choice would be (k=5, m=100M) as it minimizes both
the space and time/compute requirements.
A bloom filter’s aim, by default, is to minimize the size of
it’s bit array, and the number of hash functions

Drawbacks
A bloom filter which is filled to it’s capacity would cause
the false positive possibility to be more.
The false positives increase as the filter is filled to a point
where it is not useful for lookups. Choosing a large bit array
size to solve this issue would make the bloom filter sparse
and also would slow down the lookups. When the number of
elements in the filter is maximum, expanding the size of the
filter isn’t exactly rendering them to be very rigid. The
rigidity can be dealt with by adding another bloom filter
when (m/n) crosses a certain threshold. Additional elements
go directly into the new filter, while lookups would have to
go via every single filter in the chain. This leads to
multiplicative increases in the overall false positive
probability. Chaining bloom filters would still require tighter
constraints on false positive rates to maintain the overall false
positive rate at the desired level, due to multiplying effect in
the chaining.

Bloom Filter Working

The bloom has to do with, as we have seen, two things.
One is when an element is added and another when we
check if an element is present in a set.

Adding elements to the set
When we want to add Elements to the set, they are hashed
and the bits at the positions of the hashes are set to 1.

Volume 8, | ssue 15

Published by, www.ijert.org 204

www.ijert.org

Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCAIT - 2020 Conference Proceedings

Suppose we want to add the string “filter” to the set. We get
some hash values, say as follows.
h1(“filter”) % 10 =1

h2(“filter”) % 10 = 4
h3(“filter”) % 10 =7

The positions 1, 4 and 7 in bloom filter now have their bits
set to 1 and the rest are zero.

Checking membership
While checking membership, we refer to the filter. The hash
of the element is calculated and at these hashes the bits are
checked to be set. For example, if checking for the string
“Element”, the hashes are first calculated. Bits at the
positions gotten are calculated. If all are set then the string is
present, else it is not.

Probability of false positives

Say a hash function treats each array position with the same
probability. Consider m as the number of bits in the bloom
filter, the probability that any of the bits is not set to 1 by a
hash function during the insertion of an element is 1-1/m. If
k is the number of hash functions and each has no
significant correlation between each other, then the
probability that any bit in bloom filter is not set by any of
the hash functions is (1+1/m)™k. If we have inserted n
elements, the probability that a certain bit is still 0 is the
probability that it is 1 is therefore

1-(1-1/m)™kn

For testing membership of an element that is not in the set,
each of the positions gotten by the hash functions is 1 with
a probability as above. The probability of all bits being 1,
which would cause the algorithm to give result that the
element is in the set, is often given as

(1-(2-1/m)~kn) "k Which is

approximately, (1-e™-(kn/m))"~k

This is not strictly correct as it assumes independence for
the probabilities of each bit being set. However, assuming
it is a close approximation we have that the probability of
false positives decreases as m (the number of bits in the
array) increases, and increases as n (the number of inserted
elements) increases. An alternative analysis arriving at the
same approximation without the assumption of
independence is given by Mitzenmacher and Upfal. After
all n items have been added to the Bloom filter, let g be the
fraction of the m bits that are set to 0. (That is, the number
of bits still set to 0 is gm.) Then, when testing membership
of an element not in the set, for the array position given by
any of the k hash functions, the probability that the bit is
found setto 1is 1-q

. So the probability that all k hash functions find their bit
set to 1 is (1-g"k). Further, the expected value of q is the
probability that a given array position is left untouched by
each of the k hash functions for each of the n items, which
is (as above)

E(g)=(1-1/m)"kn

Optimal number of hash functions

We are given m and n, so we choose a k to minimize the
false positive rate. Let p=e—kn m
. Thus we have

f=(1- e N—kn/m)"k
=(1-p’k
= eMNkIn(1—p))

So we wish to minimize g = k In(1 — p) We could use
calculus. Less messy, we notice that since In(e”(—kn/m))=
—kn/m

we have

g =k In(l = p) == (m/n)In(p)In(1 — p)

and by symmetry, we see that g is minimized when p = %
Since p = e—kn/m , when p = 1/2 we have k = In2 -(m/n)
Plugging back into f = (1 — p)"k, we find the minimum
false positive rate is (1 2)"k = (.6185)"(m/n) 3.3

Optimal Filter Structure Recall

p = e*(—kn)/m is the probability than any specific bit is
still 0. So p = 1/2 corresponds to a half-full Bloom filter
array.

I1l. APPLICATIONS
Bloom filters are useful when trying to determine of
element doesn’t belong to a set. Other than this, bloom
filter has a few applications in the field security.

Google Ids

When creating a new user id in google, we may see “user
name is already taken”. This is because google needs user
names to be unique. Now, when the user enters the user
name, it has to be checked to see if it is present in the set of
existing user names. There are more than 1.7 Billion gmail
users. Comparing the new user name with existing
usernames using whichever algorithm, is not an efficient
way of solving this problem. For this, Google used bloom
filters.

Instagram

Instagram, like Google, needs user names to be unique. Just
like in creating Google user id, creating new user name in
instagram is also quite a task. Instagram had reported in
2018 that it has over 1 billion users. Instagram too, for
creating new user names, used bloom filters.

Other applications

The servers of Akamai Technologies, a satisfied delivery
provider, use Bloom filters to prevent "one-hit-wonders"
from being stored in its disk caches. One-hit-wonders are
web objects requested by users just once, something that
Akamai found applied to nearly three-quarters of their
caching infrastructure. Using a Bloom filter to detect the
second request for a web object and caching that object
only on its second request prevents one-hit wonders from
entering the disk cache, significantly reducing disk

Volume 8, | ssue 15

Published by, www.ijert.org 205

www.ijert.org

Special Issue - 2020 International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181

NCAIT - 2020 Conference Proceedings

workload and increasing disk cache hit rates.[10] Google
Bigtable, Apache HBase, and Apache Cassandra and
PostgreSQL[11] use Bloom filters to decrease the disk
lookups for fictitious rows or columns. Evading costly disk
lookups considerably increases the performance of a
database query operation.[12] The Google Chrome web
browser used to use a Bloom filter to recognize malicious
URLs. Any URL was first checked against a local Bloom
filter, and only if the Bloom filter returned a positive result
was a full check of the URL performed (and the user
warned if that too returned a positive result).[13][14]
Microsoft Bing (search engine) uses multi-level
hierarchical Bloom filters for its search index, BitFunnel.
Bloom filters produced a lower cost than the previous Bing
index, which was based on inverted files.[15]. The Squid
Web Proxy Cache uses Bloom filters for cache digests.[16]
Bitcoin uses Bloom filters to speed up wallet
synchronization.[17] The Venti archival storage system
uses Bloom filters to detect earlier stored data.[18] The
SPIN model checker uses Bloom filters to track the
reachable state space for large verification problems.[19]
The Cascading analytics framework practices Bloom filters
to speed up asymmetric joins, where one of the joined data
sets is significantly larger than the other (often called
Bloom join in the database literature).[20]

The Exim mail transfer agent (MTA) uses Bloom filters in

its rate-limit feature.[21] Medium practices Bloom filters

to avoid recommending articles a user has earlier

read.[22] Ethereum uses Bloom filters for quickly finding

logs on the Ethereum block chain.

Bloom Filters other applications

Weak Password Dictionary: Store dictionary has easy

passwords as bloom filters, queries when users pick

passwords. Can add new entries (e.g. earlier used

passwords). What is a false positive in these

circumstances? A strong password that strikes to hit, just

asks the user for another password. Application: Cache

Sharing: Proxies on the same side of the network

bottleneck share their caches. Proxies use the Internet

Cache Protocol (ICP). Proxy hashes all of the URLSs in its

cache into Bloom Filter. Proxies regularly exchange

Bloom filters, so queries of other caches can be made

locally without sending an ICP message.

Bloomier filters

Chazelle et al. (2004) designed an idea of Bloom filters that
could link value with each element that had been inserted,
implementing an associative array. While using a Bloom
filter, these structures assume the potential effects of false
positives. In the even of "Bloomier filters", a false positive
is determined as returning a result when the key is not in
the map. The map will never return the wrong value for a
key that is in on the map.

Counting Bloom filters

Counting filters abide by to implement a delete operation
on a Bloom filter without refurbishing recreating the filter
afresh. In a counting filter, the array positions (buckets) are
extended from being a single bit to being a multi-bit
counter. Regular Bloom filters can be considered as

counting filters with a bucket size of one bit.

The insert operation is used to increment the value of the
buckets, and the lookup operation checks that each of the
required buckets is non- zero. The delete operation then
includes decrementing the value of each of the buckets. The
size of counters is usually 3 or 4 bits. Hence counting
Bloom filters use 3 to 4 times more space than static Bloom
filters.

Layered Bloom filters

A layered Bloom filter has multiple Bloom filter layers.
Layered Bloom filters help us to keep the track of how
many times an item was added to the Bloom filter by
checking how many layers contain the item. With a layered
Bloom filter, a check operation will normally return the
deepest layer number the item was found in.

IV. CONCLUSION

Bloom Filters and their extensions can be useful tools for
many of the applications. When a list or set is being used,
and space is a consideration, a Bloom filter can be used.
While using a Bloom filter, assume potential effects of
false positives. Bloom filters are simple data structures
that can be used in practice. They are so useful that any
significant reduction in the time required to perform a
Bloom filter operation immediately translates to a
substantial speedup for many practical applications. There
is no room for optimization in Bloom Filters. This report
focuses on the introduction to Bloom Filters, and
applications of bloom filters in searching over other
search algorithms.

V. REFERENCES

[1] Adam Kirsch,* Michael Mitzenmacher, Less Hashing, Same
Performance: Building a Better Bloom Filter, In: Harvard School of
Engineering and Applied Sciences, Cambridge, Massachusetts
02138; e-mails: {kirsch, michaelm}@eecs.harvard.edu

[2] Jacob Honoroff, An Examination of Bloom Filters and their
Applications, March 16, 2006

Volume 8, | ssue 15

Published by, www.ijert.org

206

www.ijert.org

