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Abstract— Anonymizing networks such as allow 

users to access Internet services privately by 

using a series of routers to hide the client’s IP 

address from the server. The success of such 

networks, however, has been limited by users 

employing this anonymity for abusive purposes 

such as defacing popular websites. Website 

administrators routinely rely on IP-address 

blocking for disabling access to misbehaving 

users, but blocking IP addresses is not practical 

if the abuser routes through an anonymizing 

network. As a result, administrators block all 

known exit nodes of anonymizing networks, 

denying anonymous access to misbehaving and 

behaving users alike. To address this problem, we 

present Nymble, a system in which servers can 

“blacklist” misbehaving users, thereby blocking 

users without compromising their anonymity. 

Our system is thus agnostic to different servers’ 

definitions of misbehavior — servers can blacklist 

users for whatever reason, and the privacy of 

blacklisted users is maintained. 

 

Index Terms—Verifier Local Revocation(VLR), 

Trusted Third Party(TTP), Transport Control 

Protocol/Internet                                                                                                                                             

Protocol(TCP/IP) 

I.  INTRODUCTION (Heading 1) 

Anonymizing networks such as Tor [18] route 

traffic through independent nodes in separate 

administrative domains to hide a client’s IP address. 

Unfortunately, some users have misused such networks 

— under the cover of anonymity, users have 

repeatedly defaced popular websites such as Wikipedia. 

Since web-site administrators cannot blacklist individual 

malicious users’ IP addresses, they blacklist the entire 

anonymizing network. Such measures eliminate malicious 

activity through anonymizing networks at the cost of 

denying anonymous access to behaving users. In other 

words, a few “bad apples” can spoil the fun for all. 

(This has happened repeatedly with Tor.1) 

 

There are several solutions to this problem, each pro-

viding some degree of accountability. In pseudonymous 

credential systems [14], [17], [23], [28], users log into 

websites using pseudonyms, which can be added to a 

blacklist if a user misbehaves. Unfortunately, this 

approach results in pseudonymity for all users, and weakens 

the anonymity provided by the anonymizing 

network..Anonymous credential systems [10], [12] employ 

group signatures. Basic group signatures [1], [6], [15] 

allow servers to revoke a misbehaving user’s 

anonymity by complaining to a group manager. Servers 

must query the group manager for every authentication, 

and thus lacks scalability. Traceable signatures [26] allow 

the group man-ager to release a trapdoor that allows all 

signatures generated by a particular user to be traced; such 

an approach does not provide the backward unlink ability 

[30] that we desire, where a user’s accesses before the 

complaint remain anonymous. Backward unlink ability 

allows for what we call subjective blacklisting, where 

servers can blacklist users for whatever reason since the 

privacy of the blacklisted user is not at risk. In contrast, 

approaches without backward unlink ability need to pay 

careful attention to when and why a user must have 

all their connections linked, and users must worry about 

whether their behaviors will be judged fairly. 

 
 Fig 1 The Nymble system architecture  

  Subjective blacklisting is also better suited to servers 
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such as Wikipedia, where misbehaviors such as 

questionable edits to a webpage, are hard to define in 

mathematical terms. In some systems, misbehavior can 

indeed be defined precisely. For instance, double-

spending of an “e-coin” is considered misbehavior in 

anonymous e-cash systems [8], [13], following which 

the offending user is deanonymized. Unfortunately, such 

systems work for only narrow definitions of misbehavior 

— it is difficult to map more complex notions of 

misbehavior onto “double spending” or related 

approaches [32].With dynamic accumulators [11], [31], a 

revocation operation results in a new accumulator and 

public parameters for the group, and all other existing 

users’ credentials must be updated, making it impractical. 

Verifier local revocation (VLR) [2], [7], [9] fixes this 

shortcoming by requiring the server (“verifier”) to 

perform only local updates during revocation. 

Unfortunately, VLR requires heavy computation at the 

server that is linear in the size of the blacklist. For 

example, for a blacklist with 1,000 entries each 

authentication would take tens of seconds,2 a  

prohibitive cost in practice. 

In contrast, our scheme takes the server about one 

millisecond per authentication, which is several thousand 

times faster than VLR. We believe these low overheads 

will incentivize servers to adopt such a solution when 

weighed against the potential benefit of anonymous 

publishing (e.g., whistle-blowing, reporting, anonymous 

tip lines, activism, and so on.). 

II. AN OVERVIEW OF NYMBLE 

 

We now present a high-level overview of the Nymble 

system, and defer the entire protocol description and 

security analysis to subsequent sections.  

A. Resource based Blocking 

To limit the number of identities a user can obtain 
(called the Sybil attack [19]), the Nymble system binds 
nymbles to resources that are sufficiently difficult to 
obtain in great numbers. For example, we have used IP 
addresses as the resource in our implementation, but our 
scheme generalizes to other resources such as email 
addresses, identity certificates, and trusted hardware. We 
address the practical issues related with resource-based 
blocking in Section 8, and suggest other alternatives for 
resources. We do not claim to solve the Sybil attack. This 
problem is faced by any credential system [19], [27], and we 
suggest some promising approaches based on resource-
based blocking since we aim to create a real-world 
deployment 

B. The Pseudonym Manager 

The user must first contact the Pseudonym Manager (PM) 

and demonstrate control over a resource; for IP-address 

blocking, the user must connect to the PM directly (i.e., 

not through a known anonymizing network), as shown 

in Figure 1. We assume the PM has knowledge about 

Tor routers. For example, and can ensure that users are 

communicating with it directly.6 Pseudonyms are de-

terministically chosen based on the controlled resource, 

ensuring that the same pseudonym is always issued for 

the same resource. Note that the user does not disclose 

what server he or she intends to connect to, and the 

PM’s duties are limited to mapping IP addresses (or 

other resources) to pseudonyms. As we will explain, the 

user contacts the PM only once per link ability window 

(e.g., once a day). 

C. The Nymble Manager 

After obtaining a pseudonym from the PM, the 

user connects to the Nymble Manager (NM) through 

the anonymizing network, and requests nymbles for 

access to a particular server (such as Wikipedia). A 

user’s requests to the NM are therefore pseudonymous, 

and nymbles are generated using the user’s pseudonym 

and the server’s identity. These nymbles are thus specific 

to a particular user-server pair. Nevertheless, as long as the 

PM and the NM do not collude, the Nymble system 

cannot identify which user is connecting to what server; 

the NM knows only the pseudonym-server pair, and the 

PM knows only the user identity-pseudonym pair. 

To provide the requisite cryptographic protection and 

security properties, the NM encapsulates nymbles within 

nymble tickets. Servers wrap seeds into linking tokens and 

therefore we will speak of linking tokens being used 

to link future nymble tickets. The importance of these 

constructs will become apparent as we proceed. 

D. Time  

     Nymble tickets are bound to specific time periods. 

As illustrated in Figure 2, time is divided into link 

ability windows of duration W, each of which is split 

into L time periods of duration T (i.e., W = L∗T ). We 

will refer to time periods and linkability windows 

chronologically as t1, t2, . . . , tL and w1, w2, . . . 

respectively. While a user’s access within a time period is 

tied to a single nymble ticket, the use of different 

nymble tickets across time periods grants the user 

anonymity between time periods. Smaller time periods 

provide users with higher rates of anonymous 

authentication, while longer time periods allow servers 

to rate-limit the number of misbehaviors from a 

particular user before he or she is blocked. For example, 

T could be set to 5 minutes, and W to 1 day (and thus 

L = 288).  
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 Fig 2 Misbehaving user’s life cycle.  

  The linkability window allows for dynamism since 

resources such as IP addresses can get re-assigned and it is 

undesirable to blacklist such resources indefinitely, and it 

ensures forgiveness of misbehavior after a certain period 

of time. We assume all entities are time synchronized 

and can thus calculate the current linkability window 

and time period. An excellent style manual for science 

writers is [7] if the server complains in time period tc about 

a user’s connection in t∗, the user becomes linkable starting 

in tc. The complaint in tc can include nymble tickets from 

only tc−1 and earlier. 

E.  Blacklisting a User 

    If a user misbehaves, the server may link any 

future connection from this user within the current 

linkability window (e.g., the same day). Consider 

Figure 2 as an example: A user connects and 

misbehaves at a server during time period t∗ within 

linkability window w∗. The server later detects this 

misbehavior and complains to the NM in time period 

tc (t∗ < tc ≤ tL) of the same linkability window 

w∗. As part of the complaint, the server presents the 

nymble ticket of the misbehaving user and obtains the 

corresponding seed from the NM. The server is then 

able to link future connections by the user in time 

periods tc, tc + 1, . . . , tL of the same linkability 

window w∗ to the complaint. Therefore, once the server 

has complained about a user, that user is blacklisted 

for the rest of the day, for example (the linkability 

window). Note that the user’s connections in 

t1, t2, . . . , t∗, t∗ + 1, . . . , tc remain unlinkable (i.e., 

including those since the misbehavior and until the 

time of complaint). Even though misbehaving users 

can be blocked from making connections in the 

future, the users’ past connections remain unlinkable, 

thus providing backward unlinkability and subjective 

blacklisting. 

 

F. Notifying the user of Blacklist Status 

    If a user misbehaves, the server may link any 

future connection from this user within the current 

linkability window (e.g., the same day). Consider 

Figure 2 as an example: A user connects and misbehaves 

at a server during time period t∗ within linkability 

window w∗. The server later detects this misbehavior 

and complains to the NM in time period tc (t∗ < tc 

≤ tL) of the same linkability window w∗. Since the 

blacklist is cryptographically signed by the NM, the 

authenticity of the blacklist is easily verified if the 

blacklist was updated in the current time period (only 

one update to the blacklist per time period is 

allowed). If the blacklist has not been updated in the cur-

rent time period, the NM provides servers with “daisies” 

every time period so that users can verify the freshness of 

the blacklist (“blacklist from time period told is fresh 

as of time period tnow”). As discussed in Section 4.3.4, 

these daisies are elements of a hash chain, and provide a 

lightweight alternative to digital signatures. Using 

digital signatures and daisies, we thus ensure that race 

conditions are not possible in verifying the freshness of a 

blacklist. A user is guaranteed that he or she will not be 

linked if the user verifies the integrity and freshness of 

the blacklist before sending his or her nymble ticket. 

III. SECURITY MODEL 

Nymble aims for four security goals. We provide 

informal definitions here; a detailed formalism can be 

found in our technical report [16], which explains how 

these goals must also resist coalition attacks. 

A. Goals and Threats 

An entity is honest when its operations abide by the 

system’s specification. An honest entity can be curious: 

it attempts to infer knowledge from its own information 

(e.g., its secrets, state, and protocol communications). An 

honest entity becomes corrupt when it is compromised 

by an attacker, and hence reveals its information at the 

time of compromise, and operates under the attacker’s 

full control, possibly deviating from the specification. 

Blacklistability assures that any honest server can 

indeed block misbehaving users. Specifically, if an honest 

server complains about a user that misbehaved in the 

current linkability window, the complaint will be 

successful and the user will not be able to “nymble-

connect,” i.e., establish a Nymble-authenticated 

connection, to the server successfully in subsequent time 

periods (following the time of complaint) of that 

linkability window. 

Rate-limiting assures any honest server that no user 

can successfully nymble-connect to it more than once 

within any single time period. 

Non-frameability guarantees that any honest user 

who is legitimate according to an honest server can 

nymble-connect to that server. This prevents an attacker 

from framing a legitimate honest user, e.g., by getting 

the user blacklisted for someone else’s misbehavior. This 
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property assumes each user has a single unique identity. 

When IP addresses are used as the identity, it is possible 

for a user to “frame” an honest user who later obtains 

the same IP address. Non-frameability holds true only 

against attackers with different identities (IP addresses). 

A user is legitimate according to a server if she has not 

been blacklisted by the server, and has not exceeded the 

rate limit of establishing Nymble-connections. Honest 

servers must be able to differentiate between legitimate 

and illegitimate users. 

Anonymity protects the anonymity of honest users, 

regardless of their legitimacy according to the (possibly 

corrupt) server; the server cannot learn any more 

information beyond whether the user behind (an 

attempt to make) a nymble-connection is legitimate or 

illegitimate. 

B. Trust Assumptions 

We allow the servers and the users to be corrupt and 

controlled by an attacker. Not trusting these entities is 

important because encountering a corrupt server and/or 

user is a realistic threat. Nymble must still attain its goals 

under such circumstances.  

 
 

With regard to the PM and NM, Nymble makes several 

assumptions on who trusts whom to be how for what 

guarantee. We summarize these trust assumptions as a 

matrix in Figure 3. Should a trust assumption become 

invalid, Nymble will not be able to provide the 

corresponding guarantee. For example, a corrupt PM or 

NM can violate Black-list ability by issuing different 

pseudonyms or dentials to blacklisted users.  

A dishonest PM (resp. NM) can frame a user by issuing 

her the pseudonym (resp. credential) of another user who 

has already been blacklisted. To undermine the Anonymity 

of a user, a dishonest PM (resp. NM) can first impersonate 

the user by cloning her pseudonym (resp. credential) 

and then attempt to authenticate to a server—a 

successful attempt reveals that the user has already 

made a connection to the server during the time period. 

Moreover, by studying the complaint log, a curious NM 

can deduce that a user has connected more than once if 

she has been complained about two or more times. As 

already described in Section 2.3, the user must trust that at 

least the NM or PM is honest to keep the user and server 

identity pair private. 

IV. PRELIMINARIES 

A.  Notation 

The notation a ∈R     S represents an element 

drawn uniformly at random from non-empty set S. N0 

is the set of non-negative integers, and N is the set 

N0\{0}. s[i] is the ith element of list s. s||t is the 

concatenation of (the unambiguous encoding of) lists s 

and t. The empty list is denoted by ∅. We sometimes 

treat lists of tuples as dictionaries. For example, if L 

is the list ((Alice,  1234),  (Bob,  5678)), then L [Bob] 

denotes the tuple (Bob,  5678). If A is a (possibly 

probabilistic) algorithm, then A(x) denotes the output 

when A is executed given the input x. a: = b means that b 

is assigned to a. 

B.  Cryptographic Primitives 

 

Nymble uses the following building blocks (concrete 

instantiations are suggested in Section 6): 

· Secure cryptographic hash functions. These are one-

way and collision-resistant functions that resemble 

random oracles [5]. Denote the range of the hash 

functions by H. 

· Secure message authentication (MA) [3]. These 

consist of the key generation (MA.KeyGen) and 

the message authentication code (MAC) 

computation (MA.Mac) algorithms. Denote the 

domain of MACs by M. 

· Secure symmetric-key encryption (Enc) [4]. These 

consist of the key generation (Enc.KeyGen), 

encryption (Enc.Encrypt), and decryption 

(Enc.Decrypt) algorithms. Denote the domain of 

ciphertexts by Γ. 

· Secure digital signatures (Sig) [22]. These consist of 

the key generation (Sig.KeyGen), signing (Sig.Sign), 

and verification (Sig.Verify) algorithms. Denote the 

domain of signatures by Σ. 

C.  Data Structures 

  Nymble uses several important data structures:  

seeds evolve throughout a linkability window using 

a seed-evolution function f ; the seed for the next time 

period (seednext) is computed from the seed for the 

current time period (seedcur) as 
 

Seednext = f (seedcur). 
 

The nymble (nymblet) for a time period t is 

evaluated by applying the nymble-evaluation function g 
to its corresponding  

Seed (seedt), i.e., 
 

nymblet = g (seedt). 
 

The NM sets seed0 to a pseudo-random mapping 

of the user’s pseudonym pnym, the (encoded) identity 
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Sid of the server (e.g., domain name), the linkability 

window w for which the seed is valid, and the 

NM’s Secret key seedKeyN. Seeds are therefore specific to 

user-server-window combinations. As a consequence, a 

seed is useful only for a particular server to link a 

particular user during a particular linkability window. 

 

D. Communication Channels 

 

Nymble utilizes three types of communication 

channels, namely type-Basic, -Auth and -Anon (Figure 6). 

We assume that a public-key infrastructure (PKI) such as 

X.509 is in place, and that the NM, the PM and all the 

servers in Nymble have obtained a PKI credential from 

a well-established and trustworthy CA. (We stress that 

the users in Nymble, however, need not possess a PKI 

credential.) These entities can thus realize type-Basic and 

type-Auth channels to one another by setting up a TLS8 

connection using their PKI credentials. All users can 

realize type-Basic channels to the NM, the PM and any 

server, again by setting up a TLS connection. 

Additionally, by setting up a TLS connection over the 

Tor anonymizing network,9 users can realize a type-Anon 

channel to the NM and any server. 

 
 

 

V. OUR NYMBLE CONSTRUCTION 

A. System steup 

During setup, the NM and the PM interact as follows. 
 

1) The NM executes NMInitState() (see    

Algorithm 10) and initializes its state nmState 

to the algorithm’s output. 

2) The NM extracts macKeyNP from nmState 

and sends it to the PM over a type-Auth 
channel. macKeyNP is a shared secret between the 

NM and the PM, so that the NM can verify the 
authenticity of pseudonyms issued by the PM.  

3) The PM generates nymKeyP by running 

Mac.KeyGen() and initializes its state pmState to  
the pair (nymKeyP , macKeyNP). 

4) The NM publishes verKeyN in nmState in a 

way that the users in Nymble can obtain it and 
verify its integrity at any time(eg during 
registration). 

B. Server Registration 

 

 
To participate in the Nymble system, a server                    

with identity sid initiates a type-Auth channel to the 

NM, and registers with the NM according to the Server 

Registration protocol below. Each server may register at 

most once in any linkability window. 
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1) The NM makes sure that the server has not already 

registered: If (Sid , ·, ·) ∈ nmEntries in its nmState, 

it terminates with failure; it proceeds otherwise. 

2) The NM reads the current time period and 

linkability window as tnow and wnow 

respectively, and then obtains a svrState by running 

(see Algorithm 11) 

NMRegisterServernmState(sid , tnow, wnow). 
 

3) The NM appends svrState to its nmState, sends it 

to the Server, and terminates with success. 

4) The server, on receiving svrState, records it as its 
state, and terminates with success. 

 
In svrState, macKeyNS is a key shared between the 

NM and the server for verifying the authenticity of 
nymble tickets; timelastUpd indicates the time 

period when the blacklist was last updated, which is 
initialized to tnow, the current time period at 

registration. 

C. User Registration 

A user with identity uid must register with the PM 

once each linkability window. To do so, the user initiates 

a type-Basic channel to the PM, followed by the User 

Registration protocol described below. 
 

1) The PM checks if the user is allowed to register. In 

our current implementation the PM infers the 

registering user’s IP address from the 

communication channel, and makes sure that the IP 

address does not belong to a known Tor exit node. 

If this is not 

2) Otherwise, the PM reads the current link ability 

window as wnow, and runs with success. 

pnym := 

PMCreatePseudonympmState(uid , wnow). 

The PM then gives pnym to the user, and terminates 
3) The user, on receiving pnym, sets her state usrState to 

(pnym,  ∅), and terminates with success. 

D.  Credential acquisition 

To establish a Nymble-connection to a server, a user 

must provide a valid ticket, which is acquired as part 

of a credential from the NM. To acquire a credential 

for server sid during the current linkability window, a 

registered user initiates a type-Anon channel to the NM, 

followed by the Credential Acquisition protocol below. 
 

1) The user extracts pnym from usrState and sends the 

pair (pnym, sid) to the NM. 

2) The NM reads the current linkability window as 

wnow. It makes sure the user’s pnym is valid: If 

  NMVerifyPseudonymnmState(pnym, wnow) 

returns false, the NM terminates with failure; it 

proceeds otherwise. 

3) The NM runs which returns a credential cred . 

NMCreateCredentialnmState(pnym, sid , wnow),The 

NM sends cred to the user and terminates with success. 

4) The user, on receiving cred , creates usrEntry:  =  

(sid, cred , false), appends it to its state usrState, and 

terminates with success. 

 

 
 

    VI      PERFORMANCE EVALUATIONS 

 

We implemented Nymble and collected various 

empirical performance numbers, which verify the linear 

(in the number of “entries” as described below) time and 

space costs of the various operations and data structures. 

 

A. Implementation and experimental setup 

         We implemented Nymble as a C++ library along 

with Ruby and JavaScript bindings. One could, 

however, easily compile bindings for any of the 

languages (such as Python, PHP, and Perl) supported by 

the Simplified Wrapper and Interface Generator (SWIG) 

for example. We utilize Open SSL for all the 

cryptographic primitives. We use SHA-256 for the 

cryptographic hash functions; HMAC-SHA-256 for the 

message authentication MA; AES-256 in CBC-mode for 

the symmetric encryption Enc; and 2048-bit RSASSA 

-PSA for the digital signatures 

 

252

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings



 
 

       We chose RSA over DSA for digital 

signatures because of its faster verification speed—in 

our system, verification occurs more often than 

signing. 

We evaluated our system on a 2.2 GHz Intel Core 

2 Duo Macbook Pro with 4 GB of RAM. The PM, the 

NM, and the server were implemented as Mongrel 

(Ruby’s version of Apache) servers. The user 

portion was implemented as a Firefox 3 extension 

in JavaScript with XPCOM bindings to the Nymble 

C++ library. For each experiment relating to protocol 

performance, we report the average of 10 runs. The 

evaluation of data-structure sizes is the byte count of 

the marshalled data structures that would be sent over 

the network. 

B. Experimental Result 

The X-axis represents the number of entries in each 

data structure—complaints in the blacklist update 

request, tickets in the credential (equal to L, the 

number of time periods in a linkability window), 

nymbles in the black-list, tokens and seeds in the 

blacklist update response, and nymbles in the 

blacklist. For example, a linkability window of 1 

day with 5 minute time periods equates to L = 

288.11 The size of a credential in this case is about 

59 KB. The size of a blacklist update request with 50 

complaints is roughly 11 KB, whereas the size of a 

blacklist update response for 50 complaints is only about 4KB. 

The size of a blacklist with 500 nymbles is 17 KB. 

      In general, each structure grows linearly as the 

number of entries increases. Credentials and 

blacklist update requests grow at the same rate 

because a credential is a collection of tickets which is 

more or less what is sent. 

 

 

 

 
 

 

as a complaint list when the server wishes to update 

its blacklist. In our implementation we use Google’s 

Protocol Buffers to (un)marshal these structures because it 

is cross-platform friendly and language-agnostic. 

Figure 8(a) shows the amount of time it takes the NM 

to perform various protocols. It takes about 9 ms to 

create a credential when L = 288. Note that this protocol 

occurs only once every linkability window for each user 

wanting to connect to a particular server. For blacklist 

updates, the initial jump in the graph corresponds to the 

fixed overhead associated with signing a blacklist. To 

execute the update blacklist protocol with 500 

complaints it takes the NM about 54 ms. However, when 

there are no complaints, it takes the NM on average less 

than a millisecond to update the daisy. 

Figure 8(b) shows the amount of time it takes the 

server and user to perform various protocols. These 

protocols are relatively inexpensive by design, i.e., the 

amount of computation performed by the users and 

servers should be minimal. For example, it takes less 

than 3 ms for a user to execute a security check on a 

blacklist with 500 nymbles. Note that this figure 

includes signature verification as well, and hence the 

fixed-cost overhead exhibited in the graph. It takes 

less than a millisecond for a server to perform 

authentication of a ticket against a blacklist with 500 

nymbles. Every time period (e.g., every 5 minutes), a 

server must update its state and blacklist. Given a 

linking list with 500 entries, the server will spend less 

than 2 ms updating the linking 

list. If the server were to issue a blacklist update request  

with 500 complaints, it would take less than 3 ms for the 

server to update its blacklist. 

                            VII SECURITY ANALYSIS 

Theorem 1: Our Nymble construction has Blacklistability, 

Rate-limiting, Non-frameability and anonymity provided that 

the trust assumption in session 3.2 hold true. and the 

cryptographic primitives used are secure. We summarize 

the proof of Theorem 1. Please refer to our technical 
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report [16] for a detailed version. 

 

A. Blacklistability 
 

An honest PM and NM will issue a coalition of c 

unique users at most c valid credentials for a given 

server. Because of the security of HMAC, only the NM 

can issue valid tickets, and for any time period the 

coalition has at most c valid tickets, and can thus 

make at most c connections to the server in any time 

period regardless of the server’s blacklisting. It suffices 

to show that if each of the c users has been blacklisted in 

some previous time period of the current linkability 

window, the coalition cannot authenticate in the 

current time period k∗. 

Assume the contrary that connection establishment k∗ 

using one of the coalition members’ ticket
∗ 

was           
successful even though the user was blacklisted in a 

previous time period k_. Since connection 

establishments k_ and k∗ were successful, the 

corresponding tickets ticket
_ 

and ticket
∗ 

must be 
valid. Assuming the security of digital signatures and 
HMAC, an honest server can always contact an 
honest NM with a valid ticket and the NM will 
successfully terminate during the blacklist update. 

Since the server blacklisted the valid ticket
_ 

and updates 
its linking list honestly, the ServerLinkTicket 

will return fail on input ticket
∗

, and thus the 

connection k∗ must fail, which is a contradiction. 
 

B. Non-Frameability 
     Assume the contrary that the adversary 

successfully framed honest user i∗ with respect to an 

honest server in time period t∗, and thus user i∗ was 

unable to connect in time period t∗ using ticket
∗ 

even 
though none of  
his tickets were previously blacklisted. Because of the 

security of HMAC, and since the PM and NM are honest, 

the adversary cannot forge tickets for user i∗, and the 

server cannot already have seen ticket
∗

; it must be that 

ticket
∗ 

was linked to an entry in the linking list. Thus 

there exists an entry (seed
∗

,  nymble
∗

) in the server’s link-

ing list, such that the nymble in ticket
∗ 

equals nymble
∗

.  
The server must have obtained this entry in a successful 

blacklist update for some valid ticketb, implying the NM 

had created this ticket for some user i. 

If i = i∗, then user i’s seed0 is different from user i∗’s  
seed0 so long as the PM is honest, and yet the two seed0’s 

evolve to the same seed
∗

, which contradicts the collision-  
resistance property of the evolution function. Thus we 

have i = i∗. But as already argued, the adversary 

cannot forge i∗’s ticketb, and it must be the case that 

i∗’s ticketb was blacklisted before t∗, which 

contradicts our assumption that i∗ was a legitimate user 

in time t∗. 
 

C. Anonymity 
            We show that an adversary learns only that 
some legitimate user connected or that some illegitimate 
user’s connection failed, i.e., there are two anonymity 
sets of 

legitimate and illegitimate users. 

Distinguishing between two illegitimate users We 

argue that any two chosen illegitimate users out of 

the control of the adversary will react indistinguishably. 

Since all honest users execute the Nymble-connection 

Establishment protocol in exactly the same manner up until 

the end of the Blacklist validation stage (Section 5.5.1), it 

suffices to show that every illegitimate user will evaluate 

safe to false, and hence terminate the protocol with 

failure at the end of the Privacy check stage (Section 5.5.2). 

For an illegitimate user (attempting a new connection) 

who has already disclosed a ticket during a connection 

establishment earlier in the same time period, ticket. 

Disclosed for the server will have been set to true and safe 

is evaluated to false during establishment k∗. An 

illegitimate user who has not disclosed a ticket during 

the same time period must already be blacklisted. Thus the 

server complained about some previous ticket
∗ 

of the user. 

Since the NM is honest, the user’s nymble
∗

 appears in 

some previous blacklist of the server. Since an honest NM 

never deletes entries from a blacklist, it will appear in all 

subsequent blacklists, and safe is evaluated to false for the 

current blacklist. Servers cannot forge blacklists or 

present blacklists for earlier time periods (as otherwise 

the digital signature would be forgeable, or the hash in 

the daisy chain could be inverted). 

Distinguishing between two legitimate users The 

authenticity of the channel implies that a legitimate 

user knows the correct identity of the server and thus 

boolean ticket. Disclosed for the server remains false. 

Furthermore, UserCheckIfBlacklisted returns 

false (assuming the security of digital signatures) and 

safe is evaluated to true for the legitimate user. 

Now, in the ticket presented by the user, only nymble 

and ctxt are functions of the user’s identity. Since the 

adversary does not know the decryption key, the CCA2 

security of the encryption implies that ctxt reveals no 

information about the user’s identity to the adversary. 

Finally, since the server has not obtained any seeds for 

the user, under the Random Oracle model the nymble 

presented by the user is indistinguishable from random 

and cannot be linked with other nymbles presented by 

the user. Furthermore, if and when the server complains 

about a user’s tickets in the future, the NM ensures 

that only one real seed is issued (subsequent seeds 

corresponding to the same user are random values), and 

thus the server cannot distinguish between legitimate 

˜ 

˜ 
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users for a particular time period by issuing complaints 

in a future time period. 

 

D.Across multiple linkability windows 
 

With multiple linkability windows, our Nymble 

construction still has Accountability and 

Nonframeability because each ticket is valid for and 

only for a specific linkability window; it still has 

Anonymity because pseudonyms are an output of a 

collision-resistant function that takes the linkability 

window as input. 

 
 

          VIII CONCLUSIONS 
 

We have proposed and built a comprehensive credential 

system called Nymble, which can be used to add a layer 

of accountability to any publicly known anonymizing 

network. Servers can blacklist misbehaving users while 

maintaining their privacy, and we show how these prop-

erties can be attained in a way that is practical, efficient, 

and sensitive to needs of both users and services. 

We hope that our work will increase the mainstream 

acceptance of anonymizing networks such as Tor, which 

has thus far been completely blocked by several services 

because of users who abuse their anonymity. 
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