
Blocking Misbehaving Users in

Anonymizing Networks: Nymbles

Ms.S.Abinaya,

IT Department, III-year, Anna University

Vivekanandha college of Engineering for Women,

Tiruchengode,

Tamilnadu, India.

612911205002@vcew.ac.in

 Ms.T.E.Bavisha,

IT Department, III-year, Anna University

Vivekanandha college of Engineering for Women,

Tiruchengode,

Tamilnadu, India.

612911205010@vcew.ac.in

Abstract— Anonymizing networks such as allow

users to access Internet services privately by

using a series of routers to hide the client’s IP

address from the server. The success of such

networks, however, has been limited by users

employing this anonymity for abusive purposes

such as defacing popular websites. Website

administrators routinely rely on IP-address

blocking for disabling access to misbehaving

users, but blocking IP addresses is not practical

if the abuser routes through an anonymizing

network. As a result, administrators block all

known exit nodes of anonymizing networks,

denying anonymous access to misbehaving and

behaving users alike. To address this problem, we

present Nymble, a system in which servers can

“blacklist” misbehaving users, thereby blocking

users without compromising their anonymity.

Our system is thus agnostic to different servers’

definitions of misbehavior — servers can blacklist

users for whatever reason, and the privacy of

blacklisted users is maintained.

Index Terms—Verifier Local Revocation(VLR),

Trusted Third Party(TTP), Transport Control

Protocol/Internet

Protocol(TCP/IP)

I. INTRODUCTION (Heading 1)

Anonymizing networks such as Tor [18] route

traffic through independent nodes in separate

administrative domains to hide a client’s IP address.

Unfortunately, some users have misused such networks

— under the cover of anonymity, users have

repeatedly defaced popular websites such as Wikipedia.

Since web-site administrators cannot blacklist individual

malicious users’ IP addresses, they blacklist the entire

anonymizing network. Such measures eliminate malicious

activity through anonymizing networks at the cost of

denying anonymous access to behaving users. In other

words, a few “bad apples” can spoil the fun for all.

(This has happened repeatedly with Tor.1)

There are several solutions to this problem, each pro-

viding some degree of accountability. In pseudonymous

credential systems [14], [17], [23], [28], users log into

websites using pseudonyms, which can be added to a

blacklist if a user misbehaves. Unfortunately, this

approach results in pseudonymity for all users, and weakens

the anonymity provided by the anonymizing

network..Anonymous credential systems [10], [12] employ

group signatures. Basic group signatures [1], [6], [15]

allow servers to revoke a misbehaving user’s

anonymity by complaining to a group manager. Servers

must query the group manager for every authentication,

and thus lacks scalability. Traceable signatures [26] allow

the group man-ager to release a trapdoor that allows all

signatures generated by a particular user to be traced; such

an approach does not provide the backward unlink ability

[30] that we desire, where a user’s accesses before the

complaint remain anonymous. Backward unlink ability

allows for what we call subjective blacklisting, where

servers can blacklist users for whatever reason since the

privacy of the blacklisted user is not at risk. In contrast,

approaches without backward unlink ability need to pay

careful attention to when and why a user must have

all their connections linked, and users must worry about

whether their behaviors will be judged fairly.

 Fig 1 The Nymble system architecture

 Subjective blacklisting is also better suited to servers

247

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

such as Wikipedia, where misbehaviors such as

questionable edits to a webpage, are hard to define in

mathematical terms. In some systems, misbehavior can

indeed be defined precisely. For instance, double-

spending of an “e-coin” is considered misbehavior in

anonymous e-cash systems [8], [13], following which

the offending user is deanonymized. Unfortunately, such

systems work for only narrow definitions of misbehavior

— it is difficult to map more complex notions of

misbehavior onto “double spending” or related

approaches [32].With dynamic accumulators [11], [31], a

revocation operation results in a new accumulator and

public parameters for the group, and all other existing

users’ credentials must be updated, making it impractical.

Verifier local revocation (VLR) [2], [7], [9] fixes this

shortcoming by requiring the server (“verifier”) to

perform only local updates during revocation.

Unfortunately, VLR requires heavy computation at the

server that is linear in the size of the blacklist. For

example, for a blacklist with 1,000 entries each

authentication would take tens of seconds,2 a

prohibitive cost in practice.

In contrast, our scheme takes the server about one

millisecond per authentication, which is several thousand

times faster than VLR. We believe these low overheads

will incentivize servers to adopt such a solution when

weighed against the potential benefit of anonymous

publishing (e.g., whistle-blowing, reporting, anonymous

tip lines, activism, and so on.).

II. AN OVERVIEW OF NYMBLE

We now present a high-level overview of the Nymble

system, and defer the entire protocol description and

security analysis to subsequent sections.

A. Resource based Blocking

To limit the number of identities a user can obtain
(called the Sybil attack [19]), the Nymble system binds
nymbles to resources that are sufficiently difficult to
obtain in great numbers. For example, we have used IP
addresses as the resource in our implementation, but our
scheme generalizes to other resources such as email
addresses, identity certificates, and trusted hardware. We
address the practical issues related with resource-based
blocking in Section 8, and suggest other alternatives for
resources. We do not claim to solve the Sybil attack. This
problem is faced by any credential system [19], [27], and we
suggest some promising approaches based on resource-
based blocking since we aim to create a real-world
deployment

B. The Pseudonym Manager

The user must first contact the Pseudonym Manager (PM)

and demonstrate control over a resource; for IP-address

blocking, the user must connect to the PM directly (i.e.,

not through a known anonymizing network), as shown

in Figure 1. We assume the PM has knowledge about

Tor routers. For example, and can ensure that users are

communicating with it directly.6 Pseudonyms are de-

terministically chosen based on the controlled resource,

ensuring that the same pseudonym is always issued for

the same resource. Note that the user does not disclose

what server he or she intends to connect to, and the

PM’s duties are limited to mapping IP addresses (or

other resources) to pseudonyms. As we will explain, the

user contacts the PM only once per link ability window

(e.g., once a day).

C. The Nymble Manager

After obtaining a pseudonym from the PM, the

user connects to the Nymble Manager (NM) through

the anonymizing network, and requests nymbles for

access to a particular server (such as Wikipedia). A

user’s requests to the NM are therefore pseudonymous,

and nymbles are generated using the user’s pseudonym

and the server’s identity. These nymbles are thus specific

to a particular user-server pair. Nevertheless, as long as the

PM and the NM do not collude, the Nymble system

cannot identify which user is connecting to what server;

the NM knows only the pseudonym-server pair, and the

PM knows only the user identity-pseudonym pair.

To provide the requisite cryptographic protection and

security properties, the NM encapsulates nymbles within

nymble tickets. Servers wrap seeds into linking tokens and

therefore we will speak of linking tokens being used

to link future nymble tickets. The importance of these

constructs will become apparent as we proceed.

D. Time

 Nymble tickets are bound to specific time periods.

As illustrated in Figure 2, time is divided into link

ability windows of duration W, each of which is split

into L time periods of duration T (i.e., W = L∗T). We

will refer to time periods and linkability windows

chronologically as t1, t2, . . . , tL and w1, w2, . . .

respectively. While a user’s access within a time period is

tied to a single nymble ticket, the use of different

nymble tickets across time periods grants the user

anonymity between time periods. Smaller time periods

provide users with higher rates of anonymous

authentication, while longer time periods allow servers

to rate-limit the number of misbehaviors from a

particular user before he or she is blocked. For example,

T could be set to 5 minutes, and W to 1 day (and thus

L = 288).

248

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

 Fig 2 Misbehaving user’s life cycle.

 The linkability window allows for dynamism since

resources such as IP addresses can get re-assigned and it is

undesirable to blacklist such resources indefinitely, and it

ensures forgiveness of misbehavior after a certain period

of time. We assume all entities are time synchronized

and can thus calculate the current linkability window

and time period. An excellent style manual for science

writers is [7] if the server complains in time period tc about

a user’s connection in t∗, the user becomes linkable starting

in tc. The complaint in tc can include nymble tickets from

only tc−1 and earlier.

E. Blacklisting a User

 If a user misbehaves, the server may link any

future connection from this user within the current

linkability window (e.g., the same day). Consider

Figure 2 as an example: A user connects and

misbehaves at a server during time period t∗ within

linkability window w∗. The server later detects this

misbehavior and complains to the NM in time period

tc (t∗ < tc ≤ tL) of the same linkability window

w∗. As part of the complaint, the server presents the

nymble ticket of the misbehaving user and obtains the

corresponding seed from the NM. The server is then

able to link future connections by the user in time

periods tc, tc + 1, . . . , tL of the same linkability

window w∗ to the complaint. Therefore, once the server

has complained about a user, that user is blacklisted

for the rest of the day, for example (the linkability

window). Note that the user’s connections in

t1, t2, . . . , t∗, t∗ + 1, . . . , tc remain unlinkable (i.e.,

including those since the misbehavior and until the

time of complaint). Even though misbehaving users

can be blocked from making connections in the

future, the users’ past connections remain unlinkable,

thus providing backward unlinkability and subjective

blacklisting.

F. Notifying the user of Blacklist Status

 If a user misbehaves, the server may link any

future connection from this user within the current

linkability window (e.g., the same day). Consider

Figure 2 as an example: A user connects and misbehaves

at a server during time period t∗ within linkability

window w∗. The server later detects this misbehavior

and complains to the NM in time period tc (t∗ < tc

≤ tL) of the same linkability window w∗. Since the

blacklist is cryptographically signed by the NM, the

authenticity of the blacklist is easily verified if the

blacklist was updated in the current time period (only

one update to the blacklist per time period is

allowed). If the blacklist has not been updated in the cur-

rent time period, the NM provides servers with “daisies”

every time period so that users can verify the freshness of

the blacklist (“blacklist from time period told is fresh

as of time period tnow”). As discussed in Section 4.3.4,

these daisies are elements of a hash chain, and provide a

lightweight alternative to digital signatures. Using

digital signatures and daisies, we thus ensure that race

conditions are not possible in verifying the freshness of a

blacklist. A user is guaranteed that he or she will not be

linked if the user verifies the integrity and freshness of

the blacklist before sending his or her nymble ticket.

III. SECURITY MODEL

Nymble aims for four security goals. We provide

informal definitions here; a detailed formalism can be

found in our technical report [16], which explains how

these goals must also resist coalition attacks.

A. Goals and Threats

An entity is honest when its operations abide by the

system’s specification. An honest entity can be curious:

it attempts to infer knowledge from its own information

(e.g., its secrets, state, and protocol communications). An

honest entity becomes corrupt when it is compromised

by an attacker, and hence reveals its information at the

time of compromise, and operates under the attacker’s

full control, possibly deviating from the specification.

Blacklistability assures that any honest server can

indeed block misbehaving users. Specifically, if an honest

server complains about a user that misbehaved in the

current linkability window, the complaint will be

successful and the user will not be able to “nymble-

connect,” i.e., establish a Nymble-authenticated

connection, to the server successfully in subsequent time

periods (following the time of complaint) of that

linkability window.

Rate-limiting assures any honest server that no user

can successfully nymble-connect to it more than once

within any single time period.

Non-frameability guarantees that any honest user

who is legitimate according to an honest server can

nymble-connect to that server. This prevents an attacker

from framing a legitimate honest user, e.g., by getting

the user blacklisted for someone else’s misbehavior. This

249

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

property assumes each user has a single unique identity.

When IP addresses are used as the identity, it is possible

for a user to “frame” an honest user who later obtains

the same IP address. Non-frameability holds true only

against attackers with different identities (IP addresses).

A user is legitimate according to a server if she has not

been blacklisted by the server, and has not exceeded the

rate limit of establishing Nymble-connections. Honest

servers must be able to differentiate between legitimate

and illegitimate users.

Anonymity protects the anonymity of honest users,

regardless of their legitimacy according to the (possibly

corrupt) server; the server cannot learn any more

information beyond whether the user behind (an

attempt to make) a nymble-connection is legitimate or

illegitimate.

B. Trust Assumptions

We allow the servers and the users to be corrupt and

controlled by an attacker. Not trusting these entities is

important because encountering a corrupt server and/or

user is a realistic threat. Nymble must still attain its goals

under such circumstances.

With regard to the PM and NM, Nymble makes several

assumptions on who trusts whom to be how for what

guarantee. We summarize these trust assumptions as a

matrix in Figure 3. Should a trust assumption become

invalid, Nymble will not be able to provide the

corresponding guarantee. For example, a corrupt PM or

NM can violate Black-list ability by issuing different

pseudonyms or dentials to blacklisted users.

A dishonest PM (resp. NM) can frame a user by issuing

her the pseudonym (resp. credential) of another user who

has already been blacklisted. To undermine the Anonymity

of a user, a dishonest PM (resp. NM) can first impersonate

the user by cloning her pseudonym (resp. credential)

and then attempt to authenticate to a server—a

successful attempt reveals that the user has already

made a connection to the server during the time period.

Moreover, by studying the complaint log, a curious NM

can deduce that a user has connected more than once if

she has been complained about two or more times. As

already described in Section 2.3, the user must trust that at

least the NM or PM is honest to keep the user and server

identity pair private.

IV. PRELIMINARIES

A. Notation

The notation a ∈R S represents an element

drawn uniformly at random from non-empty set S. N0

is the set of non-negative integers, and N is the set

N0\{0}. s[i] is the ith element of list s. s||t is the

concatenation of (the unambiguous encoding of) lists s

and t. The empty list is denoted by ∅. We sometimes

treat lists of tuples as dictionaries. For example, if L

is the list ((Alice, 1234), (Bob, 5678)), then L [Bob]

denotes the tuple (Bob, 5678). If A is a (possibly

probabilistic) algorithm, then A(x) denotes the output

when A is executed given the input x. a: = b means that b

is assigned to a.

B. Cryptographic Primitives

Nymble uses the following building blocks (concrete

instantiations are suggested in Section 6):

· Secure cryptographic hash functions. These are one-

way and collision-resistant functions that resemble

random oracles [5]. Denote the range of the hash

functions by H.

· Secure message authentication (MA) [3]. These

consist of the key generation (MA.KeyGen) and

the message authentication code (MAC)

computation (MA.Mac) algorithms. Denote the

domain of MACs by M.

· Secure symmetric-key encryption (Enc) [4]. These

consist of the key generation (Enc.KeyGen),

encryption (Enc.Encrypt), and decryption

(Enc.Decrypt) algorithms. Denote the domain of

ciphertexts by Γ.

· Secure digital signatures (Sig) [22]. These consist of

the key generation (Sig.KeyGen), signing (Sig.Sign),

and verification (Sig.Verify) algorithms. Denote the

domain of signatures by Σ.

C. Data Structures

 Nymble uses several important data structures:

seeds evolve throughout a linkability window using

a seed-evolution function f ; the seed for the next time

period (seednext) is computed from the seed for the

current time period (seedcur) as

Seednext = f (seedcur).

The nymble (nymblet) for a time period t is

evaluated by applying the nymble-evaluation function g
to its corresponding

Seed (seedt), i.e.,

nymblet = g (seedt).

The NM sets seed0 to a pseudo-random mapping

of the user’s pseudonym pnym, the (encoded) identity

250

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

Sid of the server (e.g., domain name), the linkability

window w for which the seed is valid, and the

NM’s Secret key seedKeyN. Seeds are therefore specific to

user-server-window combinations. As a consequence, a

seed is useful only for a particular server to link a

particular user during a particular linkability window.

D. Communication Channels

Nymble utilizes three types of communication

channels, namely type-Basic, -Auth and -Anon (Figure 6).

We assume that a public-key infrastructure (PKI) such as

X.509 is in place, and that the NM, the PM and all the

servers in Nymble have obtained a PKI credential from

a well-established and trustworthy CA. (We stress that

the users in Nymble, however, need not possess a PKI

credential.) These entities can thus realize type-Basic and

type-Auth channels to one another by setting up a TLS8

connection using their PKI credentials. All users can

realize type-Basic channels to the NM, the PM and any

server, again by setting up a TLS connection.

Additionally, by setting up a TLS connection over the

Tor anonymizing network,9 users can realize a type-Anon

channel to the NM and any server.

V. OUR NYMBLE CONSTRUCTION

A. System steup

During setup, the NM and the PM interact as follows.

1) The NM executes NMInitState() (see

Algorithm 10) and initializes its state nmState

to the algorithm’s output.

2) The NM extracts macKeyNP from nmState

and sends it to the PM over a type-Auth
channel. macKeyNP is a shared secret between the

NM and the PM, so that the NM can verify the
authenticity of pseudonyms issued by the PM.

3) The PM generates nymKeyP by running

Mac.KeyGen() and initializes its state pmState to
the pair (nymKeyP , macKeyNP).

4) The NM publishes verKeyN in nmState in a

way that the users in Nymble can obtain it and
verify its integrity at any time(eg during
registration).

B. Server Registration

To participate in the Nymble system, a server

with identity sid initiates a type-Auth channel to the

NM, and registers with the NM according to the Server

Registration protocol below. Each server may register at

most once in any linkability window.

251

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

1) The NM makes sure that the server has not already

registered: If (Sid , ·, ·) ∈ nmEntries in its nmState,

it terminates with failure; it proceeds otherwise.

2) The NM reads the current time period and

linkability window as tnow and wnow

respectively, and then obtains a svrState by running

(see Algorithm 11)

NMRegisterServernmState(sid , tnow, wnow).

3) The NM appends svrState to its nmState, sends it

to the Server, and terminates with success.

4) The server, on receiving svrState, records it as its
state, and terminates with success.

In svrState, macKeyNS is a key shared between the

NM and the server for verifying the authenticity of
nymble tickets; timelastUpd indicates the time

period when the blacklist was last updated, which is
initialized to tnow, the current time period at

registration.

C. User Registration

A user with identity uid must register with the PM

once each linkability window. To do so, the user initiates

a type-Basic channel to the PM, followed by the User

Registration protocol described below.

1) The PM checks if the user is allowed to register. In

our current implementation the PM infers the

registering user’s IP address from the

communication channel, and makes sure that the IP

address does not belong to a known Tor exit node.

If this is not

2) Otherwise, the PM reads the current link ability

window as wnow, and runs with success.

pnym :=

PMCreatePseudonympmState(uid , wnow).

The PM then gives pnym to the user, and terminates
3) The user, on receiving pnym, sets her state usrState to

(pnym, ∅), and terminates with success.

D. Credential acquisition

To establish a Nymble-connection to a server, a user

must provide a valid ticket, which is acquired as part

of a credential from the NM. To acquire a credential

for server sid during the current linkability window, a

registered user initiates a type-Anon channel to the NM,

followed by the Credential Acquisition protocol below.

1) The user extracts pnym from usrState and sends the

pair (pnym, sid) to the NM.

2) The NM reads the current linkability window as

wnow. It makes sure the user’s pnym is valid: If

 NMVerifyPseudonymnmState(pnym, wnow)

returns false, the NM terminates with failure; it

proceeds otherwise.

3) The NM runs which returns a credential cred .

NMCreateCredentialnmState(pnym, sid , wnow),The

NM sends cred to the user and terminates with success.

4) The user, on receiving cred , creates usrEntry: =

(sid, cred , false), appends it to its state usrState, and

terminates with success.

 VI PERFORMANCE EVALUATIONS

We implemented Nymble and collected various

empirical performance numbers, which verify the linear

(in the number of “entries” as described below) time and

space costs of the various operations and data structures.

A. Implementation and experimental setup

 We implemented Nymble as a C++ library along

with Ruby and JavaScript bindings. One could,

however, easily compile bindings for any of the

languages (such as Python, PHP, and Perl) supported by

the Simplified Wrapper and Interface Generator (SWIG)

for example. We utilize Open SSL for all the

cryptographic primitives. We use SHA-256 for the

cryptographic hash functions; HMAC-SHA-256 for the

message authentication MA; AES-256 in CBC-mode for

the symmetric encryption Enc; and 2048-bit RSASSA

-PSA for the digital signatures

252

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

 We chose RSA over DSA for digital

signatures because of its faster verification speed—in

our system, verification occurs more often than

signing.

We evaluated our system on a 2.2 GHz Intel Core

2 Duo Macbook Pro with 4 GB of RAM. The PM, the

NM, and the server were implemented as Mongrel

(Ruby’s version of Apache) servers. The user

portion was implemented as a Firefox 3 extension

in JavaScript with XPCOM bindings to the Nymble

C++ library. For each experiment relating to protocol

performance, we report the average of 10 runs. The

evaluation of data-structure sizes is the byte count of

the marshalled data structures that would be sent over

the network.

B. Experimental Result

The X-axis represents the number of entries in each

data structure—complaints in the blacklist update

request, tickets in the credential (equal to L, the

number of time periods in a linkability window),

nymbles in the black-list, tokens and seeds in the

blacklist update response, and nymbles in the

blacklist. For example, a linkability window of 1

day with 5 minute time periods equates to L =

288.11 The size of a credential in this case is about

59 KB. The size of a blacklist update request with 50

complaints is roughly 11 KB, whereas the size of a

blacklist update response for 50 complaints is only about 4KB.

The size of a blacklist with 500 nymbles is 17 KB.

 In general, each structure grows linearly as the

number of entries increases. Credentials and

blacklist update requests grow at the same rate

because a credential is a collection of tickets which is

more or less what is sent.

as a complaint list when the server wishes to update

its blacklist. In our implementation we use Google’s

Protocol Buffers to (un)marshal these structures because it

is cross-platform friendly and language-agnostic.

Figure 8(a) shows the amount of time it takes the NM

to perform various protocols. It takes about 9 ms to

create a credential when L = 288. Note that this protocol

occurs only once every linkability window for each user

wanting to connect to a particular server. For blacklist

updates, the initial jump in the graph corresponds to the

fixed overhead associated with signing a blacklist. To

execute the update blacklist protocol with 500

complaints it takes the NM about 54 ms. However, when

there are no complaints, it takes the NM on average less

than a millisecond to update the daisy.

Figure 8(b) shows the amount of time it takes the

server and user to perform various protocols. These

protocols are relatively inexpensive by design, i.e., the

amount of computation performed by the users and

servers should be minimal. For example, it takes less

than 3 ms for a user to execute a security check on a

blacklist with 500 nymbles. Note that this figure

includes signature verification as well, and hence the

fixed-cost overhead exhibited in the graph. It takes

less than a millisecond for a server to perform

authentication of a ticket against a blacklist with 500

nymbles. Every time period (e.g., every 5 minutes), a

server must update its state and blacklist. Given a

linking list with 500 entries, the server will spend less

than 2 ms updating the linking

list. If the server were to issue a blacklist update request

with 500 complaints, it would take less than 3 ms for the

server to update its blacklist.

 VII SECURITY ANALYSIS

Theorem 1: Our Nymble construction has Blacklistability,

Rate-limiting, Non-frameability and anonymity provided that

the trust assumption in session 3.2 hold true. and the

cryptographic primitives used are secure. We summarize

the proof of Theorem 1. Please refer to our technical

253

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

report [16] for a detailed version.

A. Blacklistability

An honest PM and NM will issue a coalition of c

unique users at most c valid credentials for a given

server. Because of the security of HMAC, only the NM

can issue valid tickets, and for any time period the

coalition has at most c valid tickets, and can thus

make at most c connections to the server in any time

period regardless of the server’s blacklisting. It suffices

to show that if each of the c users has been blacklisted in

some previous time period of the current linkability

window, the coalition cannot authenticate in the

current time period k∗.

Assume the contrary that connection establishment k∗

using one of the coalition members’ ticket
∗

was
successful even though the user was blacklisted in a

previous time period k_. Since connection

establishments k_ and k∗ were successful, the

corresponding tickets ticket
_

and ticket
∗

must be
valid. Assuming the security of digital signatures and
HMAC, an honest server can always contact an
honest NM with a valid ticket and the NM will
successfully terminate during the blacklist update.

Since the server blacklisted the valid ticket
_

and updates
its linking list honestly, the ServerLinkTicket

will return fail on input ticket
∗

, and thus the

connection k∗ must fail, which is a contradiction.

B. Non-Frameability
 Assume the contrary that the adversary

successfully framed honest user i∗ with respect to an

honest server in time period t∗, and thus user i∗ was

unable to connect in time period t∗ using ticket
∗

even
though none of
his tickets were previously blacklisted. Because of the

security of HMAC, and since the PM and NM are honest,

the adversary cannot forge tickets for user i∗, and the

server cannot already have seen ticket
∗

; it must be that

ticket
∗

was linked to an entry in the linking list. Thus

there exists an entry (seed
∗

, nymble
∗

) in the server’s link-

ing list, such that the nymble in ticket
∗

equals nymble
∗

.
The server must have obtained this entry in a successful

blacklist update for some valid ticketb, implying the NM

had created this ticket for some user i.

If i = i∗, then user i’s seed0 is different from user i∗’s
seed0 so long as the PM is honest, and yet the two seed0’s

evolve to the same seed
∗

, which contradicts the collision-
resistance property of the evolution function. Thus we

have i = i∗. But as already argued, the adversary

cannot forge i∗’s ticketb, and it must be the case that

i∗’s ticketb was blacklisted before t∗, which

contradicts our assumption that i∗ was a legitimate user

in time t∗.

C. Anonymity
 We show that an adversary learns only that
some legitimate user connected or that some illegitimate
user’s connection failed, i.e., there are two anonymity
sets of

legitimate and illegitimate users.

Distinguishing between two illegitimate users We

argue that any two chosen illegitimate users out of

the control of the adversary will react indistinguishably.

Since all honest users execute the Nymble-connection

Establishment protocol in exactly the same manner up until

the end of the Blacklist validation stage (Section 5.5.1), it

suffices to show that every illegitimate user will evaluate

safe to false, and hence terminate the protocol with

failure at the end of the Privacy check stage (Section 5.5.2).

For an illegitimate user (attempting a new connection)

who has already disclosed a ticket during a connection

establishment earlier in the same time period, ticket.

Disclosed for the server will have been set to true and safe

is evaluated to false during establishment k∗. An

illegitimate user who has not disclosed a ticket during

the same time period must already be blacklisted. Thus the

server complained about some previous ticket
∗

of the user.

Since the NM is honest, the user’s nymble
∗

 appears in

some previous blacklist of the server. Since an honest NM

never deletes entries from a blacklist, it will appear in all

subsequent blacklists, and safe is evaluated to false for the

current blacklist. Servers cannot forge blacklists or

present blacklists for earlier time periods (as otherwise

the digital signature would be forgeable, or the hash in

the daisy chain could be inverted).

Distinguishing between two legitimate users The

authenticity of the channel implies that a legitimate

user knows the correct identity of the server and thus

boolean ticket. Disclosed for the server remains false.

Furthermore, UserCheckIfBlacklisted returns

false (assuming the security of digital signatures) and

safe is evaluated to true for the legitimate user.

Now, in the ticket presented by the user, only nymble

and ctxt are functions of the user’s identity. Since the

adversary does not know the decryption key, the CCA2

security of the encryption implies that ctxt reveals no

information about the user’s identity to the adversary.

Finally, since the server has not obtained any seeds for

the user, under the Random Oracle model the nymble

presented by the user is indistinguishable from random

and cannot be linked with other nymbles presented by

the user. Furthermore, if and when the server complains

about a user’s tickets in the future, the NM ensures

that only one real seed is issued (subsequent seeds

corresponding to the same user are random values), and

thus the server cannot distinguish between legitimate

˜

˜

254

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

users for a particular time period by issuing complaints

in a future time period.

D.Across multiple linkability windows

With multiple linkability windows, our Nymble

construction still has Accountability and

Nonframeability because each ticket is valid for and

only for a specific linkability window; it still has

Anonymity because pseudonyms are an output of a

collision-resistant function that takes the linkability

window as input.

 VIII CONCLUSIONS

We have proposed and built a comprehensive credential

system called Nymble, which can be used to add a layer

of accountability to any publicly known anonymizing

network. Servers can blacklist misbehaving users while

maintaining their privacy, and we show how these prop-

erties can be attained in a way that is practical, efficient,

and sensitive to needs of both users and services.

We hope that our work will increase the mainstream

acceptance of anonymizing networks such as Tor, which

has thus far been completely blocked by several services

because of users who abuse their anonymity.

REFERENCE

[1] E. Bresson and J. Stern. Efficient Revocation in Group

Signatures. In Public Key Cryptography, LNCS 1992,

pages 190–206. Springer, 2001.

[2] J. Camenisch and A. Lysyanskaya. An Efficient

System for Non-transferable Anonymous

Credentials with Optional Anonymity

Revocation. In EUROCRYPT, LNCS 2045, pages 93–

118. Springer, 2001.

[3] J. Camenisch and A. Lysyanskaya. Dynamic

Accumulators and Application to Efficient

Revocation of Anonymous Credentials. In CRYPTO,

LNCS 2442, pages 61–76. Springer, 2002.

[4] J. Camenisch and A. Lysyanskaya. Signature Schemes

and Anonymous Credentials from Bilinear Maps.

In CRYPTO, LNCS 3152, pages 56–72. Springer,

2004.

[5] D. Chaum. Blind Signatures for Untraceable

Payments. In CRYPTO, pages 199–203, 1982.

[6] D. Chaum. Showing Credentials without

Identification Transferring Signatures between

Unconditionally Unlinkable Pseudonyms. In

AUSCRYPT, LNCS 453, pages 246–264. Springer,

1990.

[7] D. Chaum and E. van Heyst. Group Signatures. In

EUROCRYPT, pages 257–265, 1991.

[8] C. Cornelius, A. Kapadia, P. P. Tsang, and S. W.

Smith. Nymble: Blocking Misbehaving Users in

Anonymizing Networks. Technical Report

TR2008-637, Dartmouth College, Computer Science,

Hanover, NH, December 2008..

 [9] L. Nguyen. Accumulators from Bilinear

Pairings and Applications. In CT-RSA, LNCS

3376, pages 275–292. Springer, 2005.

[10] I. Teranishi, J. Furukawa, and K. Sako. k-

Times Anonymous Authentication (Extended

Abstract). In ASIACRYPT, LNCS 3329, pages 308–

322. Springer, 2004.

[11] P. P. Tsang, M. H. Au, A. Kapadia, and S. W.

Smith. Blacklistable Anonymous Credentials:

Blocking Misbehaving Users Without TTPs. In

CCS ’07: Proceedings of the 14th ACM conference

on Computer and communications security, pages 72–81,

New York, NY, USA, 2007. ACM.

[12] P. P. Tsang, M. H. Au, A. Kapadia, and S. W.

Smith. PEREA: Towards Practical TTP-Free

Revocation in Anonymous Authentication. In

ACM Conference on Computer and Communications

Security, pages 333–344. ACM, 2008.

[13] C. Cornelius, A. Kapadia, P. P. Tsang, and S. W.

Smith. Nymble: Blocking Misbehaving Users in

Anonymizing Networks. Technical Report

TR2008-637, Dartmouth College, Computer Science,

Hanover, NH, December 2008.

[14] I. Damgard. Payment Systems and Credential

Mechanisms with Provable Security Against

Abuse by Individuals. In CRYPTO, LNCS 403,

pages 328–335. Springer, 1988.

[15] R. Dingledine, N. Mathewson, and P. Syverson.

Tor: The Second-Generation Onion Router. In

Usenix Security Symposium, pages 303–320, Aug.

2004.

255

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

