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Abstract— Anonymizing networks such as allow
users to access Internet services privately by
using a series of routers to hide the client’s IP
address from the server. The success of such
networks, however, has been limited by users
employing this anonymity for abusive purposes
such as defacing popular websites. Website
administrators routinely rely on IP-address
blocking for disabling access to misbehaving
users, but blocking IP addresses is not practical
if the abuser routes through an anonymizing
network. As a result, administrators block all
known exit nodes of anonymizing networks,
denying anonymous access to misbehaving and
behaving users alike. To address this problem, we
present Nymble, a system in which servers can
“blacklist” misbehaving users, thereby blocking
users without compromising their anonymity.
Our system is thus agnostic to different servers’
definitions of misbehavior — servers can blacklist
users for whatever reason, and the privacy of
blacklisted users is maintained.

Index Terms—Verifier Local Revocation(VLR),
Trusted Third Party(TTP), Transport Control
Protocol/Internet

Protocol(TCP/IP)

I.  INTRODUCTION (Heading 1)

Anonymizing networks such as Tor [18] route
traffic  through independent nodes in  separate
administrative domains to hide a client’s IP address.
Unfortunately, some users have misused such networks
— under the cover of anonymity, users have
repeatedly defaced popular websites such as Wikipedia.
Since web-site administrators cannot blacklist individual
malicious users’ IP addresses, they blacklist the entire
anonymizing network. Such measures eliminate malicious
activity through anonymizing networks at the cost of
denying anonymous access to behaving users. In other

Ms.T.E.Bavisha,

IT Department, Il1-year, Anna University
Vivekanandha college of Engineering for Women,
Tiruchengode,

Tamilnadu, India.
612911205010@vcew.ac.in

words, a few “‘bad apples’> can spoil the fun for all.
(This has happened repeatedly with Tor.l)

There are several solutions to this problem, each pro-
viding some degree of accountability. In pseudonymous
credential systems [14], [17], [23], [28], users log into
websites using pseudonyms, which can be added to a
blacklist if a user misbehaves. Unfortunately, this
approach results in pseudonymity for all users, and weakens
the anonymity provided by the anonymizing
network..Anonymous credential systems [10], [12] employ
group signatures. Basic group signatures [1], [6], [15]
allow- servers to revoke a misbehaving user’s
anonymity by complaining to a group manager. Servers
must query the group manager for every authentication,
and thus lacks scalability. Traceable signatures [26] allow
the group man-ager to release a trapdoor that allows all
signatures generated by a particular user to be traced; such
an approach does not provide the backward unlink ability
[30] that we desire, where a user’s accesses before the
complaint remain anonymous. Backward unlink ability
allows for what we call subjective blacklisting, where
servers can blacklist users for whatever reason since the
privacy of the blacklisted user is not at risk. In contrast,
approaches without backward unlink ability need to pay
careful attention to when and why a user must have
all their connections linked, and users must worry about
whether their behaviors will be judged fairly.
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Fig 1 The Nymble system architecture
Subjective blacklisting is also better suited to servers
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such as W.ikipedia, where misbehaviors such as
questionable edits to a webpage, are hard to define in
mathematical terms. In some systems, misbehavior can
indeed be defined precisely. For instance, double-
spending of an <“‘e-coin® is considered misbehavior in
anonymous e-cash systems [8], [13], following which
the offending user is deanonymized. Unfortunately, such
systems work for only narrow definitions of misbehavior
— it is difficult to map more complex notions of
misbehavior onto <“‘double spending®> or related
approaches [32].With dynamic accumulators [11], [31], a
revocation operation results in a new accumulator and
public parameters for the group, and all other existing
users” credentials must be updated, making it impractical.
Verifier local revocation (VLR) [2], [7], [9] fixes this
shortcoming by requiring the server (““verifier’”) to
perform only local updates during revocation.
Unfortunately, VLR requires heavy computation at the
server that is linear in the size of the blacklist. For
example, for a blacklist with 1,000 entries each

authentication would take tens of seconds,2 a

prohibitive cost in practice.

In contrast, our scheme takes the server about one
millisecond per authentication, which is several thousand
times faster than VLR. We believe these low overheads
will incentivize servers to adopt such a solution when
weighed against the potential benefit of anonymous
publishing (e.g., whistle-blowing, reporting, anonymous
tip lines, activism, and so on.).

Il. AN OVERVIEW OF NYMBLE

We now present a high-level overview of the Nymble
system, and defer the entire protocol description and
security analysis to subsequent sections.

A. Resource based Blocking

To limit the number of identities a user can obtain
(called the Sybil attack [19]), the Nymble system binds
nymbles to resources that are sufficiently difficult to
obtain in great numbers. For example, we have used IP
addresses as the resource in our implementation, but our
scheme generalizes to other resources such as email
addresses, identity certificates, and trusted hardware. We
address the practical issues related with resource-based
blocking in Section 8, and suggest other alternatives for
resources. We do not claim to solve the Sybil attack. This
problem is faced by any credential system [19], [27], and we
suggest some promising approaches based on resource-
based blocking since we aim to create a real-world
deployment

B. The Pseudonym Manager

The user must first contact the Pseudonym Manager (PM)
and demonstrate control over a resource; for IP-address
blocking, the user must connect to the PM directly (i.e.,
not through a known anonymizing network), as shown
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in Figure 1. We assume the PM has knowledge about
Tor routers. For example, and can ensure that users are

communicating with it directly.6 Pseudonyms are de-
terministically chosen based on the controlled resource,
ensuring that the same pseudonym is always issued for
the same resource. Note that the user does not disclose
what server he or she intends to connect to, and the
PM’s duties are limited to mapping IP addresses (or
other resources) to pseudonyms. As we will explain, the
user contacts the PM only once per link ability window
(e.g., once a day).

C. The Nymble Manager

After obtaining a pseudonym from the PM, the
user connects to the Nymble Manager (NM) through
the anonymizing network, and requests nymbles for
access to a particular server (such as Wikipedia). A
user’s requests to the NM are therefore pseudonymous,
and nymbles are generated using the user’s pseudonym
and the server’s identity. These nymbles are thus specific
to a particular user-server pair. Nevertheless, as long as the
PM and the NM do not collude, the Nymble system
cannot identify which user is connecting to what server;
the NM knows only the pseudonym-server pair, and the
PM knows only the user identity-pseudonym pair.

To provide the requisite cryptographic protection and
security properties, the NM encapsulates nymbles within
nymble tickets. Servers wrap seeds into linking tokens and
therefore we will speak of linking tokens being used
to link future nymble tickets. The importance of these
constructs will become apparent as we proceed.

D. Time

Nymble tickets are bound to specific time periods.
As illustrated in Figure 2, time is divided into link
ability windows of duration W, each of which is split
into L time periods of duration T (i.e., W = L*T ). We
will refer to time periods and linkability windows
chronologically as t1,t2,...,tL_ and w1, w2,
respectively. While a user’s access within a time period is
tied to a single nymble ticket, the use of different
nymble tickets across time periods grants the user
anonymity between time periods. Smaller time periods
provide wusers with higher rates of anonymous
authentication, while longer time periods allow servers
to rate-limit the number of misbehaviors from a
particular user before he or she is blocked. For example,
T could be set to 5 minutes, and W to 1 day (and thus
L = 288).
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Fig 2 Misbehaving user’s life cycle.
The linkability window allows for dynamism since
resources such as IP addresses can get re-assigned and it is
undesirable to blacklist such resources indefinitely, and it
ensures forgiveness of misbehavior after a certain period
of time. We assume all entities are time synchronized
and can thus calculate the current linkability window
and time period. An excellent style manual for science
writers is [7] if the server complains in time period t¢ about

a user’s connection in t*, the user becomes linkable starting
in tc. The complaint in tc can include nymble tickets from

only tc—1 and earlier.

E. Blacklisting a User

If a user misbehaves, the server may link any
future connection from this user within the current
linkability window (e.g., the same day). Consider
Figure 2 as an example: A user connects and

misbehaves at a server during time period t* within

linkability window w*. The server later detects this
misbehavior and complains to the NM in time period

tc (t* < tc < tL) of the same linkability window

w*. As part of the complaint, the server presents the
nymble ticket of the misbehaving user and obtains the
corresponding seed from the NM. The server is then
able to link future connections by the user in time
periods tc,tc + 1,...,t of the same linkability

window w* to the complaint. Therefore, once the server
has complained about a user, that user is blacklisted
for the rest of the day, for example (the linkability
window). Note that the wuser’s connections in
t1,t2,...,t5t* + 1,...,tc remain unlinkable (i.e.,
including those since the misbehavior and until the
time of complaint). Even though misbehaving users
can be blocked from making connections in the
future, the users® past connections remain unlinkable,
thus providing backward unlinkability and subjective
blacklisting.

F. Notifying the user of Blacklist Status

If a user misbehaves, the server may link any
future connection from this user within the current
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linkability window (e.g., the same day). Consider
Figure 2 as an example: A user connects and mishehaves

at a server during time period t* within linkability
window w*. The server later detects this misbehavior
and complains to the NM in time period tc (t* < tc

< tL) of the same linkability window w®. Since the
blacklist is cryptographically signed by the NM, the
authenticity of the blacklist is easily verified if the
blacklist was updated in the current time period (only
one update to the blacklist per time period is
allowed). If the blacklist has not been updated in the cur-
rent time period, the NM provides servers with <daisies>”
every time period so that users can verify the freshness of
the blacklist (““blacklist from time period told is fresh
as of time period thow”’). As discussed in Section 4.3.4,
these daisies are elements of a hash chain, and provide a
lightweight alternative to digital signatures. Using
digital signatures and daisies, we thus ensure that race
conditions are not possible in verifying the freshness of a
blacklist. A user is guaranteed that he or she will not be
linked if the user verifies the integrity and freshness of
the blacklist before sending his or her nymble ticket.

IIl.  SECURITY MODEL

Nymble aims for four security goals. We provide
informal definitions here; a detailed formalism can be
found in our technical report [16], which explains how
these goals must also resist coalition attacks.

A. Goals and Threats

An entity is honest when its operations abide by the
system’s specification. An honest entity can be curious:
it attempts to infer knowledge from its own information
(e.g., its secrets, state, and protocol communications). An
honest entity becomes corrupt when it is compromised
by an attacker, and hence reveals its information at the
time of compromise, and operates under the attacker’s
full control, possibly deviating from the specification.

Blacklistability assures that any honest server can
indeed block misbehaving users. Specifically, if an honest
server complains about a user that misbehaved in the
current linkability window, the complaint will be
successful and the user will not be able to ““nymble-
connect,”> 1.e., establish a Nymble-authenticated
connection, to the server successfully in subsequent time
periods (following the time of complaint) of that
linkability window.

Rate-limiting assures any honest server that no user
can successfully nymble-connect to it more than once
within any single time period.

Non-frameability guarantees that any honest user
who is legitimate according to an honest server can
nymble-connect to that server. This prevents an attacker
from framing a legitimate honest user, e.g., by getting
the user blacklisted for someone else’s misbehavior. This
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property assumes each user has a single unique identity.
When IP addresses are used as the identity, it is possible
for a user to ““frame>> an honest user who later obtains
the same IP address. Non-frameability holds true only
against attackers with different identities (IP addresses).

A user is legitimate according to a server if she has not
been blacklisted by the server, and has not exceeded the
rate limit of establishing Nymble-connections. Honest
servers must be able to differentiate between legitimate
and illegitimate users.

Anonymity protects the anonymity of honest users,
regardless of their legitimacy according to the (possibly
corrupt) server; the server cannot learn any more
information beyond whether the wuser behind (an
attempt to make) a nymble-connection is legitimate or
illegitimate.

B. Trust Assumptions

We allow the servers and the users to be corrupt and
controlled by an attacker. Not trusting these entities is
important because encountering a corrupt server and/or
user is a realistic threat. Nymble must still attain its goals
under such circumstances.

Who Whom How What
Servers PM & NM  honest Blacklistability
& Rate-limiting

Users PM & NM  honest Non-frameability
Users PM honest Anonymity
Users NM honest & Anonymity

not curious
Users PM or NM  honest Non-identification

With regard to the PM and NM, Nymble makes several
assumptions on who trusts whom to be how for what
guarantee. We summarize these trust assumptions as a
matrix in Figure 3. Should a trust assumption become
invalid, Nymble will not be able to provide the
corresponding guarantee. For example, a corrupt PM or
NM can violate Black-list ability by issuing different
pseudonyms or dentials to blacklisted users.

A dishonest PM (resp. NM) can frame a user by issuing
her the pseudonym (resp. credential) of another user who
has already been blacklisted. To undermine the Anonymity
of a user, a dishonest PM (resp. NM) can first impersonate
the user by cloning her pseudonym (resp. credential)
and then attempt to authenticate to a server—a
successful attempt reveals that the user has already
made a connection to the server during the time period.
Moreover, by studying the complaint log, a curious NM
can deduce that a user has connected more than once if
she has been complained about two or more times. As
already described in Section 2.3, the user must trust that at
least the NM or PM is honest to keep the user and server
identity pair private.
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IV. PRELIMINARIES

A. Notation

The notation a €R S represents an element
drawn uniformly at random from non-empty set S. NQ
is the set of non-negative integers, and N is the set
No\{O0%}. s[i] is the ith element of list s. s||t is the
concatenation of (the unambiguous encoding of) lists s
and t. The empty list is denoted by @. We sometimes
treat lists of tuples as dictionaries. For example, if L
is the list ((Alice, 1234), (Bob, 5678)), then L [Bob]
denotes the tuple (Bob, 5678). If A is a (possibly
probabilistic) algorithm, then A(X) denotes the output
when A is executed given the input X. a: = h means that b
is assigned to a.

B. Cryptographic Primitives

Nymble uses the following building blocks (concrete
instantiations are suggested in Section 6):

Secure cryptographic hash functions. These are one-
way and collision-resistant functions that resemble
random oracles [5]. Denote the range of the hash
functions by H.

Secure message authentication (MA) [3]. These
consist of the key generation (MA.KeyGen) and
the  message authentication code (MAC)
computation (MA.Mac) algorithms. Denote the
domain of MACs by M.

Secure symmetric-key encryption (Enc) [4]. These
consist of the key generation (Enc.KeyGen),
encryption (Enc.Encrypt), and decryption
(Enc.Decrypt) algorithms. Denote the domain of
ciphertexts by I.

Secure digital signatures (Sig) [22]. These consist of
the key generation (Sig.KeyGen), signing (Sig.Sign),
and verification (Sig.Verify) algorithms. Denote the
domain of signatures by X.

C. Data Structures

Nymble uses several important data structures:

seeds evolve throughout a linkability window using
a seed-evolution function F; the seed for the next time
period (seed next) is computed from the seed for the

current time period (seedcur) as
Seednext = F (seedcur).

The nymble (nymble¢) for a time period t is

evaluated by applying the nymble-evaluation function g
to its corresponding

Seed (seedt), i.e.,
nymblet = g (seedt).

The NM sets seedp to a pseudo-random mapping
of the user’s pseudonym pnym, the (encoded) identity
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Sid of the server (e.g., domain name), the linkability
window w for which the seed is wvalid, and the
NM’s Secret key seedKey . Seeds are therefore specific to
user-server-window combinations. As a consequence, a
seed is useful only for a particular server to link a
particular user during a particular linkability window.
Algorithm 1 PMCreatePseudonym

Input: (uid, w)eEH =N

Persistent state: pmState € Sp

Qutput: pnym € P
I: Extract nymKey . .p from pmState 2: nym:
= MA.Mac (uid||w, nymKeyP}
3: mac: = MA Mac (nym|jw, macKeyNP) 4:
return pnyn: = (nym, mac)

Algorithm 2 NMVer i fyPseudonym

Input: (pnym, w)eP <N

Persistent state: nmState € Sy

Output: bE {true, false}
1: Extract macKey , from nmState 2:
(nym, mac):= pnym

?
3: return mac = MA.Mac (nym|/w, macKeyNP)

D. Communication Channels

Nymble utilizes three types of communication
channels, namely type-Basic, -Auth and -Anon (Figure 6).
We assume that a public-key infrastructure (PKI) such as
X.509 is in place, and that the NM, the PM and all the
servers in Nymble have obtained a PKI credential from
a well-established and trustworthy CA. (We stress that
the users in Nymble, however, need not possess a PKI
credential.) These entities can thus realize type-Basic and

type-Auth channels to one another by setting up a TLS8
connection using their PKI credentials. All users can
realize type-Basic channels to the NM, the PM and any
server, again by setting up a TLS connection.
Additionally, by setting up a TLS connection over the

Tor anonymizing network,9 users can realize a type-Anon

channel to the NM and any server.
i: h . h @ h .. h @
farge: -—

Fig.5. Given daisy; it is easy to verify the freshness of'the
blacklist by applying h 1 times to obtain target. Only
the NM can compute the next daisy;_ ., in the chain.
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Algorithm 7 NMSi1gnBL

Input: (sid,t,w,target, blist) € H < N? x H = B,, n €N,
Persistent state: nmState € Sy
Output: cert € C
1: Extract macKey,,,signKey,, from keys in nmState 2:
content := sid||t||w|[target|[blist
3: mac:= MA.Mac(content, macKey ) 4:
sig:= Sig.Sign(content, signKey ) 5
daisy := target

& return cert ;= (t,daisy, t, mac,sig)

V. OURNYMBLE CONSTRUCTION

A. System steup
During setup, the NM and the PM interact as follows.

1) The NM executess NMInitState() (see
Algorithm 10) and initializes its state nmState
to the algorithm’s output.

The NM extracts macKeynp from nmState
and sends it to the PM over a type-Auth
channel. macKey \p is a shared secret between the
NM and the PM, so that the NM can verify the
authenticity of pseudonyms issued by the PM.

3) The PM generates nymKeyp by running
Mac.KeyGen() and initializes its state pmState to
the pair (nymKeyp , macKeyNPp)-

The NM publishes verKeypn in nmState in a
way that the users in Nymble can obtain it and
verify its integrity at any time(eg during
registration).

2)

4)

B. Server Registration

Algorithm 8 Veri fyBL
Input: (sid,t,w,blist,cert) € H=N? =B, = (,neN,
Output: b e {true, false}

1: (tg,daisy, tg, mac, sig) := cert 2

if ty=tVty =t, then

3: return false

4: target :=h'% % (daisy)

s: content = sid |[ts||w |[target||blist

6: return Sig.Verify(content, sig, verKey, )

Algorithm 9 NMVer 1 £iyBL
Input: (sid, t,w, blist,cert) € H = N? =< B, = C, n€e Ny
Persistent state: nmState € Sy
Output: b e {true, false}
1-6: Same as lines 1-6 in Ver 1 £fyBL
7: Extract macKey,, from keys in nmState

& return mac = MA.Mac(content, macKey )

To participate in the Nymble system, a server
with identity sid initiates a type-Auth channel to the
NM, and registers with the NM according to the Server
Registration protocol below. Each server may register at
most once in any linkability window.
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1) The NM makes sure that the server has not already
registered: If (Sid, -, -) € nmEntries in its nmState,
it terminates with failure; it proceeds otherwise.

2) The NM reads the current time period and
linkability window as tnow and Wwnow
respectively, and then obtains a svrState by running
(see Algorithm 11)

NMReg 1 sterServernmstate (5id, thow, Wnow)-

3) The NM appends svrState to its nmState, sends it
to the Server, and terminates with success.

4) The server, on receiving svrState, records it as its
state, and terminates with success.

In svrState, macKeypNs is a key shared between the
NM and the server for verifying the authenticity of
nymble tickets; timeJastUpd indicates the time
period when the blacklist was last updated, which is
initialized to tpnow, the current time period at
registration.

C. User Registration

A user with identity uid must register with the PM
once each linkability window. To do so, the user initiates
a type-Basic channel to the PM, followed by the User
Registration protocol described below.

1) The PM checks if the user is allowed to register. In
our current implementation the PM infers the
registering  user’s IP  address from  the
communication channel, and makes sure that the 1P
address does not belong to a known Tor exit node.
If this is not

2) Otherwise, the PM reads the current link ability

window as wnow, and runs with success.

pnym :=
PMCreatePseudonympmsState (Uid, Wnow).
The PM then gives pnym to the user, and terminates
3) The user, on receiving pnym, sets her state usrState to
(pnym, ©), and terminates with success.

D. Credential acquisition

To establish a Nymble-connection to a server, a user
must provide a valid ticket, which is acquired as part
of a credential from the NM. To acquire a credential
for server sid during the current linkability window, a
registered user initiates a type-Anon channel to the NM,
followed by the Credential Acquisition protocol below.

1) The user extracts pnym from usrState and sends the
pair (pnym,sid) to the NM.

2) The NM reads the current linkability window as
wnow . It makes sure the user’s pnym is valid: If

NMVer i FyPseudonymnmstate (Pnym, Wnow)
returns false, the NM terminates with failure; it
proceeds otherwise.

3) The NM runs which returns a credential cred.
NMCreateCredential nmState (pnym,sid, wnow),The
NM sends cred to the user and terminates with success.
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4) The user, on receiving cred, creates usrEntry: =
(sid, cred, false), appends it to its state usrState, and
terminates with success.

Type Initiator Responder Link
Basic - Authenticated Confidential
Auth  Authenticated Authenticated Confidential
Anon  Anonymous  Authenticated Confidential

Fig. 6. Dafferent types of channels utilized in Nymble.

Algorithm 10 NMIni tState

Qutput: nmState € Sy
1: macKey, .= Mac.KeyGen() 2
macKey,; = Mac.KeyGen() 3
seedKey,, = Mac.KeyGen()
4: (encKey,,. decKey, ) := Enc.KeyGen() s
(signKeyy, verKeyy ) = Sig.KeyGen()
6: keys := (macKey,,, macKey,, , seedKey,
7: encKey,, . decKey,, .signKey,, . verKey ) &
nmEntries := @
9: return nmState = (keys, nmEntries)

VI  PERFORMANCE EVALUATIONS

We implemented Nymble and collected various
empirical performance numbers, which verify the linear
(in the number of <“entries”> as described below) time and
space costs of the various operations and data structures.

A. Implementation and experimental setup

We implemented Nymble as a C++ library along
with Ruby and JavaScript bindings. One could,
however, easily compile bindings for any of the
languages (such as Python, PHP, and Perl) supported by
the Simplified Wrapper and Interface Generator (SWIG)
for example. We utilize Open SSL for all the
cryptographic primitives. We use SHA-256 for the
cryptographic hash functions; HMAC-SHA-256 for the
message authentication MA; AES-256 in CBC-mode for
the symmetric encryption Enc; and 2048-bit RSASSA
-PSA for the digital signatures
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Fig.7. The marshaled size of warious Nymble data
structures. The X-axis refers to the number of entries—
complaints in the blacklist update request, tickets in the
credential, tokens and seeds in the blacklist update re-
sponse, and nymbles in the blacklist.

We chose RSA over DSA for digital
signatures because of its faster verification speed—in
our system, verification occurs more often than
signing.

We evaluated our system on a 2.2 GHz Intel Core
2 Duo Macbook Pro with 4 GB of RAM. The PM, the
NM, and the server were implemented as Mongrel
(Ruby’s version of Apache) servers. The user
portion was implemented as a Firefox 3 extension
in JavaScript with XPCOM bindings to the Nymble
C++ library. For each experiment relating to protocol
performance, we report the average of 10 runs. The
evaluation of data-structure sizes is the byte count of
the marshalled data structures that would be sent over
the network.
B. Experimental Result
The X-axis represents the number of entries in each
data structure—complaints in the blacklist update
request, tickets in the credential (equal to L, the
number of time periods in a linkability window),
nymbles in the black-list, tokens and seeds in the
blacklist update response, and nymbles in the
blacklist. For example, a linkability window of 1
day with 5 minute time periods equatesto L =

288.11 The size of a credential in this case isabout
59 KB. The size of a blacklist update request with 50
complaints is roughly 11 KB, whereas the size of a
blacklist update response for 50 complaints is only about 4KB.
The size of a blacklist with 500 nymbles is 17 KB.

In general, each structure grows linearly as the
number of entries increases. Credentials and
blacklist update requests grow at the same rate
because a credential isa collection of tickets which is
more or less what is sent.
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Blacklist updates take several milliseconds and credentials can be
generated in 9 ms for the suggested parameter of L=288
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Fig.8. Nymble’s performance at (a) the NM and (b) the user
and the server when performing various protocols.

as a complaint list when the server wishes to update
its blacklist. In our implementation we use Google’s
Protocol Buffers to (un)marshal these structures because it
is cross-platform friendly and language-agnostic.

Figure 8(a) shows the amount of time it takes the NM
to perform various protocols. It takes about 9 ms to
create a credential when L = 288. Note that this protocol
occurs only once every linkability window for each user
wanting to connect to a particular server. For blacklist
updates, the initial jump in the graph corresponds to the
fixed overhead associated with signing a blacklist. To
execute the update blacklist protocol with 500
complaints it takes the NM about 54 ms. However, when
there are no complaints, it takes the NM on average less
than a millisecond to update the daisy.

Figure 8(b) shows the amount of time it takes the
server and user to perform various protocols. These
protocols are relatively inexpensive by design, i.e., the
amount of computation performed by the users and
servers should be minimal. For example, it takes less
than 3 ms for a user to execute a security check on a
blacklist with 500 nymbles. Note that this figure
includes signature verification as well, and hence the
fixed-cost overhead exhibited in the graph. It takes
less than a millisecond for a server to perform
authentication of a ticket against a blacklist with 500
nymbles. Every time period (e.g., every 5 minutes), a
server must update its state and blacklist. Given a
linking list with 500 entries, the server will spend less
than 2 ms updating the linking
list. If the server were to issue a blacklist update request
with 500 complaints, it would take less than 3 ms for the
server to update its blacklist.

VII SECURITY ANALYSIS
Theorem 1: Our Nymble construction has Blacklistability,
Rate-limiting, Non-frameability and anonymity provided that
the trust assumption in session 3.2 hold true. and the
cryptographic primitives used are secure. We summarize
the proof of Theorem 1. Please refer to our technical
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report [16] for a detailed version.

A. Blacklistability

An honest PM and NM will issue a coalition of ¢
unique users at most ¢ valid credentials for a given
server. Because of the security of HMAC, only the NM
can issue valid tickets, and for any time period the
coalition hasat most ¢ valid tickets, and can thus
make at most c connections to the server in any time
period regardless of the server’s blacklisting. It suffices
to show that if each of the c users has been blacklisted in
some previous time period of the current linkability
window, the coalition cannot authenticate in the
current time period k*,

Assume the contrary that connection establishment k*
using one of the coalition members’ ticket™ was
successful even though the user was blacklisted in a
previous time period k—. Since connection
establishments k— and k™ were successful, the
corresponding tickets ticket— and ticket™ must be
valid. Assuming the security of digital signatures and
HMAUC, an honest server can always contact an

honest NM with a valid ticket and the NM will
successfully terminate during the blacklist update.

Since the server blacklisted the valid ticket— and updates
its linking list honestly, the ServerL inkT icket

will return fail on input ticket™, and thus the
connection k* must fail, which is a contradiction.

B. Non-Frameability
Assume  the contrary that the  adversary

successfully framed honest user i* with respect to an
honest server in time period t*, and thus user i* was

unable to connect in time period t* using ticket™ even
though none of

his tickets were previously blacklisted. Because of the
security of HMAC, and since the PM and NM are honest,
the adversary cannot forge tickets for user i*, and the
server cannot already have seen ticket™; it must be that
ticket™ was linked to an entry in the linking list. Thus
there exists an entry (seed ™, nymble™) in the server’s link-

ing list, such that the nymble in ticket™ equals nymble™.

The server must have obtained this entry in a successful
blacklist update for some valid ticketp, implying the NM

had created this ticket for some user i.

If i =™, then user i’s seedg is different from user i*’s
seedQ so long as the PM is honest, and yet the two seed(Q’s
evolve to the same seed ™, which contradicts the collision-
resistance_property of the evolution function. Thus we
have i = i*. But as already argued, the adversary
cannot forge i*’s ticketp, and it must be the case that

i*’s ticketp was Dblacklisted before t*, which

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
NCICCT" 14 Conference Proceedings

contradicts our assumption that i* was a legitimate user
in time t*.

C. Anonymity

We show that an adversary learns only that
some legitimate user connected or that some illegitimate
user’s connection failed, i.e., there are two anonymity
sets of
legitimate and illegitimate users.

Distinguishing between two illegitimate users We
argue that any two chosen illegitimate users out of
the control of the adversary will react indistinguishably.
Since all honest users execute the Nymble-connection
Establishment protocol in exactly the same manner up until
the end of the Blacklist validation stage (Section 5.5.1), it
suffices to show that every illegitimate user will evaluate
safe to false, and hence terminate the protocol with
failure at the end of the Privacy check stage (Section 5.5.2).
For an illegitimate user (attempting a new connection)
who has already disclosed a ticket during a connection
establishment earlier in the same time period, ticket.
Disclosed for the server will have been set to true and safe

is evaluated to false during establishment k™. An
illegitimate user who has not disclosed a ticket during
the-.same time period must already be blacklisted. Thus the

server complained about some previous ticket™ of the user.

Since the NM is honest, the user’s nymble™ appears in
some previous blacklist of the server. Since an honest NM
never deletes entries from a blacklist, it will appear in all
subsequent blacklists, and safe is evaluated to false for the
current blacklist. Servers cannot forge blacklists or
present blacklists for earlier time periods (as otherwise
the digital signature would be forgeable, or the hash in
the daisy chain could be inverted).

Distinguishing between two legitimate users The
authenticity of the channel implies that a legitimate
user knows the correct identity of the server and thus
boolean ticket. Disclosed for the server remains false.
Furthermore, UserCheck I ¥B lack I i sted returns
false (assuming the security of digital signatures) and
safe is evaluated to true for the legitimate user.

Now, in the ticket presented by the user, only nymble
and ctxt are functions of the user’s identity. Since the
adversary does not know the decryption key, the CCA2
security of the encryption implies that ctxt reveals no
information about the user’s identity to the adversary.
Finally, since the server has not obtained any seeds for
the user, under the Random Oracle model the nymble
presented by the user is indistinguishable from random
and cannot be linked with other nymbles presented by
the user. Furthermore, if and when the server complains
about a user’s tickets in the future, the NM ensures
that only one real seed is issued (subsequent seeds
corresponding to the same user are random values), and
thus the server cannot distinguish between legitimate
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users for a particular time period by issuing complaints
in a future time period.

D.Across multiple linkability windows

With multiple linkability windows, our Nymble
construction still has Accountability and
Nonframeability because each ticket is wvalid for and
only for a specific linkability window; it still has
Anonymity because pseudonyms are an output of a
collision-resistant function that takes the linkability
window as input.

VIl CONCLUSIONS

We have proposed and built a comprehensive credential
system called Nymble, which can be used to add a layer
of accountability to any publicly known anonymizing
network. Servers can blacklist misbehaving users while
maintaining their privacy, and we show how these prop-
erties can be attained in a way that is practical, efficient,
and sensitive to needs of both users and services.

We hope that our work will increase the mainstream
acceptance of anonymizing networks such as Tor, which
has thus far been completely blocked by several services
because of users who abuse their anonymity.
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