

Blind Hurdle Stick: Android Integrated Voice based Intimation Via GPS with Panic Alert System

Meghana G

Electronics and Communication Engineering
GSSS Institute of Engineering
and Technology for Women
Mysuru, India

Harshitha Rajshekhar

Electronics and Communication Engineering
GSSS Institute of Engineering
and Technology for Women
Mysuru, India

Harshitha S

Electronics and Communication Engineering
GSSS Institute of Engineering
and Technology for Women
Mysuru, India

Keerthana S V

Electronics and Communication Engineering
GSSS Institute of Engineering
and Technology for Women
Mysuru, India

Archana B (Assistant Professor)

Electronics and Communication Engineering
GSSS Institute of Engineering
and Technology for Women
Mysuru, India

Abstract— Blind Stick is a break-through technology in navigational and reconstructive aids for the blind and visually impaired. It is developed to communicate using voice-based guide for users in order to have easy mobilization. Ordinarily available systems in the out-door environment are expensive and its designing is time consuming. Blind people have extensive drawbacks as they cannot detect the obstacles and dangers. They have little information about data such as landmarks and self-velocity information. This blind Stick provides easier route to blind persons, by designing a cost-effective and more flexible navigation system. This helps them to move independently without any manual help or guidance. There are a few latest technologies which are now available in market to cater the needs yet they have their own particular drawbacks. Hence, one of the competent solutions is to use embedded system. Blind Stick will be a powerful tool and it is very helpful for visually impaired, in achieving fully independent navigation for those with vision loss and blindness to move freely, safely, and independently.

Keywords— Object Location, Visually Impaired, Flexible Navigation System, Voice-Based Assistant, Cost-Effective.

I. INTRODUCTION

A. Background

We should first understand what blindness means to a person. Severity of blindness varies from one person to another as few people are born blind and few of them lose their vision due to some diseases at a later stage. A person who is blind from birth can see nothing not even black because they do not know what black is. All they see is abyss because they have not seen anything ever to have a knowledge of what anything is. Approximately there are about 38 million of

people around the world in developing countries who are blind, among them over 15 million are Indians. Blind people feel they are an outcast from the rest of the society. Because of this inferior feeling blind people are taken back from societal activities and their participation in sports academics is also very limited. As a result, the percentage of blind people who are unemployed is around two thirds of working-age visually impaired folks according to 2006 statistics. In March 2008 article, of Forbes magazine had cited discrimination as one of the biggest obstacles to employment for blind. This in a way can affect the country's economic growth as well. Problems faced by visually impaired people are many, among them many have trouble in maintaining a proper circadian rhythm due to lack of visual input to their brain, critical for reading, writing, navigation and identifying objects. Reading and writing can be accomplished to a great extent through development of Braille language. Physical movement is one of the biggest challenges for visually impaired, travelling or walking down a crowded street may pose difficulty.

B. Problem Statement

Outdoor navigation is a harder task for blind and visually impaired people in the complex urban world. Technologies accessible for navigation of the blind is not sufficient. We developed an android application which can be activated and deactivated through a button provided on the cane. The application guides the user through voice commands from his respective source to his particular destination. The ultrasonic sensor embedded in white cane is used to detect the obstacles along the path and passes the same information to the android application through USB.

The application alerts the user and guides him/her to a safer path. We also develop an app that contains all the information about the user whereabouts, the respective parent/guardian can have access to this information by logging into the app through his respective account.

II. LITERATURE SURVEY

The basic requisite for any system to be developed is to understand the available and existing systems in the respective fields. There is a need to understand the gap between what the user expects and what the system provides. Therefore, a detailed study of various available systems has been done in this section. Traditional Systems

Traditionally the assistive systems available for visually impaired were long cane, white cane, short cane, kiddie cane, guide cane, identification cane and support cane. None of these provided information about the obstacle until the user encountered them physically.

A. Assistive Technology Systems

3D Ultrasonic Stick for Blind [1] This paper goes for developing a stick embedded with three ultrasonic sensors to detect obstacles in three different directions. Disadvantage of this system is that delay to detect the obstacles is more it is between 2- 4 seconds also, delay for GPS is about 30 seconds-1 minutes.

Using Ultrasonic Sensor for Blind and Deaf persons Combines Voice Alert and Vibration Properties [2] The system is designed for both blind and deaf people to navigate. It involves a vibrator to generate vibrations for deaf and voice-based guidance for visually impaired. Disadvantage of this is it consumes more battery power for vibrations.

Use of Ultra-sonic sensors, GPS and GSM technology to implement alert and tracking system for Blind Man [3]. This intended work was successful in providing a low-cost equipment for navigation but it involves too many modules to be integrated.

A Multidimensional Walking Aid for Visually Impaired Using Ultrasonic Network with Voice Guidance [4]. This paper goes for developing a stick embedded with many ultrasonic sensors combined to form a network of sensors to detect obstacles in different directions. Disadvantage of this system is that delay to detect the obstacles is more. It cannot determine the distance of the obstacle to the multidimensional.

Voice Based Guidance and Location Indication System for the Blind Using GSM, GPS and Optical Device Indicator [5] This method involves finding location of the user and obstacles in user's path. The main disadvantage is they developed a new model that was too heavy to hold and inconvenient to carry around. Electronic Guide Cane with Ultrasonic eyes for Visually Impaired [6]. This technology goes for developing a system that can detect obstacles through sensors embedded in cane along with a camera fixed to take images of the path in front of the user each and every second. Disadvantage is more memory space and complexity in processing the images.

An Outdoor Navigation with Voice Recognition Security Application for Visually Impaired [7]. This application detects obstacles and guides the user through voice but the

main disadvantage is that the application is initiated by comparing the user's voice with the sample user's voice collected at the beginning. The voice sample could not be matched against different tones of the user.

Voice Operated Outdoor Navigation System for Visually Impaired Persons [8] This equipment involves detecting obstacles and providing guidance through voice but the disadvantage is use of complex NMEA protocol

Ultrasonic Stick for Blind [9] It involves detecting obstacles using sensors as well as camera and it uses vibrator to give the feedback of obstacles so the disadvantage is consumption of more battery power and memory space.

Voice Based Navigation System for Blind People Using Ultrasonic Sensor [10] This model involves detecting obstacles and providing guidance through voice but the disadvantage is use of complex text to speech and speech to text conversion through E-speak, Google API, Pocket sphinx, Raspberry pi.

III. PROPOSED SYSTEM

Here we design a system that overcomes the drawbacks of all the aforementioned systems. Precisely our system is designed to do the following action sequences, which includes creating the shortest path by taking destination from the user, guiding the user to specified destination, detect the obstacles along his/her way. A Blind guide should be installed on android mobile, which supports GPS. To activate the application, user should just press a button on the stick. The destination spoken by the blind is recorded by mobile and sent to the centralized server along with the source where the blind is at present. GPS in android, locate your current position that is taken as source for blind navigation. After getting the source and destination information GPS forms the path, and application starts speaking out to the blind. Guidance for directions to be taken is given through voice output. The server directs the blind until he reaches the destination. When the blind requests for any instruction, each time a new shortest path is created from the current location to the desired destination so that blind people reach destination even if he diverts from the instructed path. An ultra-sonic sensor is used to find the obstacles anywhere in the path. If any puddle of water is there it will detect and alert the user and also fire sensor will detect fire in the proximity and alert the user. If any obstacle is found, then the sensor will report to the server, and then the server will report to the blind immediately and change his/her path. Application is always in contact with the server and blind's path. Concerned person(s) of the visually impaired can log in to centralized server to track his/her path.

The main features that act as strong points for our system are:

- Easy to use.
- Input or output voice communication for the convenience of the user.
- Warns them if any obstacles found in the path and directs them to a safer path (alternate path).
- Detects fire and alerts the user.
- Detects water and alerts the user.

- f) SOS button for emergency
- g) Costeffective.

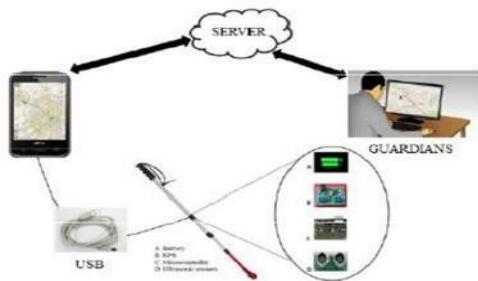


Fig. 1 Overview of Proposed System

IV. SYSTEM DESIGN

System design consists of both hardware and software requirements.

A. Software Requirements

We use android as a platform and java language for coding. Here we develop two applications, one is to guide the user about his path and another one is for his guardians to track his path. Android Mobile Application: An Android Mobile Application blind guide should be installed on android mobile which support GPS, when blind takes his android mobile, the application starts recording his destination which he speaks out. To activate the application, we use proximity sensor of the mobile. The destination spoken by the blind is recorded through mobile and sent to the centralized server along with the source where the blind is at present.

GPS in stick locate your current position that is taken as source for blind navigation, using source and destination position centralized server forms the path through a customer care executive. After getting the source and destination information from the server, the application starts speaking out to the blind. Guide is given as voice output. Blind's current direction will be found out using sensor and spoken out to the blind. Through voice output, the server tells direction to blind until he reaches the destination. Blind is provided an option to repeat the given instruction as well as to get the next instruction. When the blind requests for the next instruction, each time a new shortest path is created from the current location to the desired destination so that blind people can reach destination even if he diverts from the instructed path. If any obstacles found in path, then the application warns blind and changes path.

1) *Server Module*: The Server Module is executed on a desktop PC running Windows. The blind is completely tracked by the server and later their concerned people can see his tracks. An ultrasonic sensor will report to the server, and then the sensor will report to blind as soon. Server checks each time for the ultrasonic sensor reports. So those blinds will be safe. Application is always in contact with the

server and blinds path and given instructions are tracked everywhere. Concerned persons of blind can login to centralized server to watch blind activities and they can track the blinds.

B. Hardware Requirements

User is provided by a stick which consist the following components.

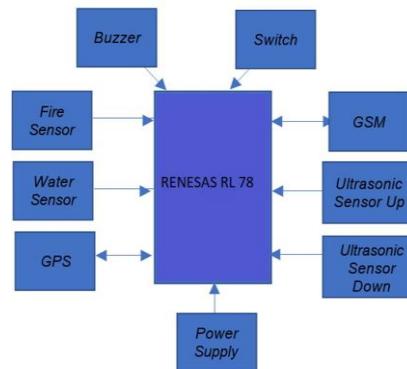


Fig. 2 Block diagram of hardware unit

C. Renesas Microcontroller

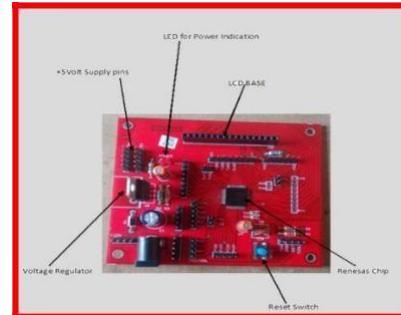


Fig 3: Renesas RL 78

It is a general-purpose register which is 8*32 bits register. It has a rom of 512KB and ram of 32KB it has a chip single power supply, flash memory with a prohibition of block, arrays or writing function the data flash memory is of 8KB, it has a on chip debug function and watch box timer and has 8 or 10 bit resolution AD convertor.

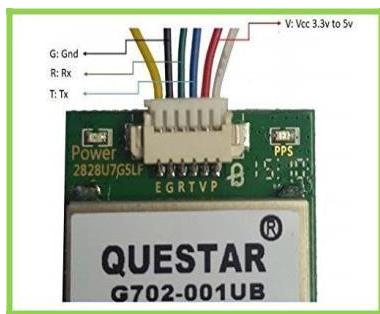
D. ALCD [ALPHANUMERIC LCD 16X2 BIT RESOLUTION]:

Fig 4: ALCD

ALCD is an electronic display module these modules are preferred over 7 segments and other multi-segment LED's these LED's are economical, easy to program, less limitation of displaying special and even custom character. It has command register which stores command instructions given to the LCD to do pre-defined task like initialize it, clear its stream, sets its cursor position and control the display.

E. Ultrasonic sensor:

Fig 5. Ultrasonic Sensor (HC-SR04)


An Ultrasonic-sensor uses the soundwaves to measure the distance to an object. Measurement of distance is done by sending out a sound wave at a specific frequency and waiting for that sound wave to bounce back. By recording the elapsed time between the sound wave generated and the sound wave bouncing back, the distance is calculated between sensor and the object.

F. Global system for mobile [gsm]:

Fig 6: SIM800C GSM Module

The GSM Module used here is SIM800C. It is a Quad-band GSM/GPRS Module which can be embedded easily by customer. The SIM800 delivers GSM/GPRS 850/900/1800/1900MHz performance for SMS, data, voice with low power consumption.

G. Global positioning system[gps]:

Fig 7. GPS module

The GPS QUESTER TTL is a compact all-in-one GPS module solution used for Original Equipment Manufacturer (OEM) products. Each and every time the receiver tracks all satellites in view and provides accurate

satellite positioning data.

H. Fire sensor

Flame Sensors, Smoke Sensors, Fire Alarms form part of a safety equipment that is used to keep our homes and offices safe from fire accidents. Almost all modern houses, malls, apartments, cinema halls, theatres, shops and office buildings are equipped with such safety equipment and it is mandatory in some regions to install fire safety devices. This particular flame sensor is based on YG1006 NPN Photo Transistor. At the front of the module there is a black object called photo transistor.

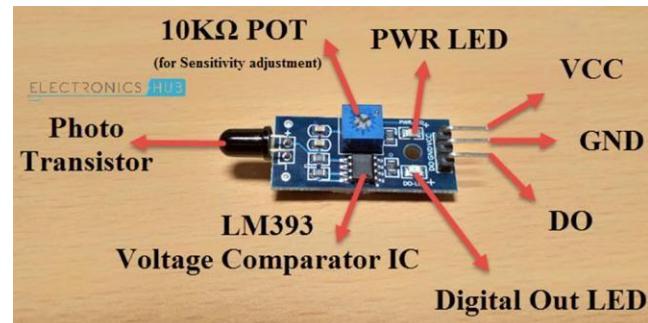


Fig 8: Fire Sensor

I. Water Level Sensor:

This sensor has a series of ten exposed copper traces- five sense traces and five power traces. The purpose of these traces is interlaced so that there is one sense trace between every two power traces. These traces are not connected but are bridged by water when submerged.

Fig 9: Water Sensor

J. Battery:

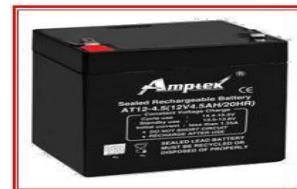


Fig. 10. Battery

A lithium-ion battery or Li-ion battery (abbreviated as LIB) is a rechargeable battery consisting of lithium ions moving from negative electrode to positive electrode during discharging and back when re-charging. These batteries use

an intercalated lithium compound as one electrode material, compared to the metallic lithium used in a non-rechargeable lithium battery. The electrolyte allows for ionic movement and two electrodes constitute the components of a lithium-ion battery cell.

V. IMPLEMENTATION

The software is implemented using java language on android platform. The stick with ultrasonic sensor which is controlled by microcontroller, detects the obstacles. The working process of the above system is shown in flow chart.

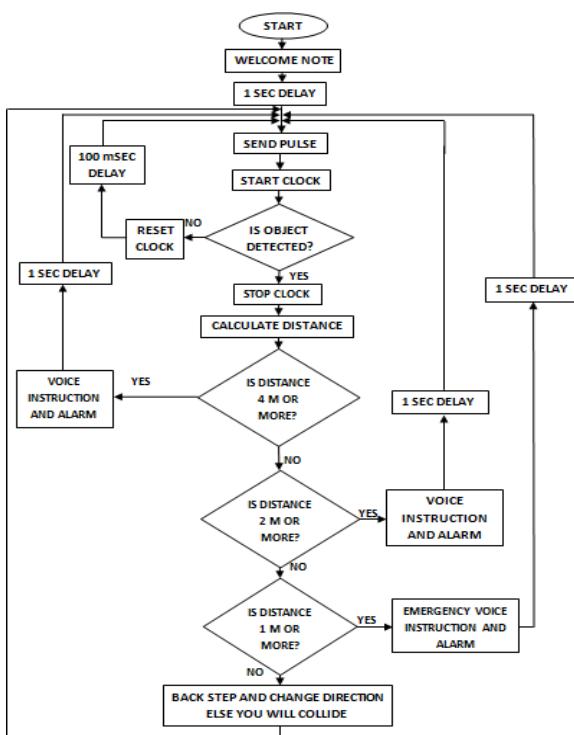


Fig. 11. Flow chart of the proposed work

VI. CONCLUSION & FUTURE ENHANCEMENT

The proposed system helps the visually impaired to move independently and safely. On board sensors like water and fire detects other hazards. SOS Button helps in case of emergency. It can be used in any public places. As it is a voice-based system, the user can provide the destination easily. This system is designed in less time with low cost and low power consumption. The application requires less space and it is dynamic. Compared to other existing system, this system is more efficient. In future this project aims to improve another device that can be either necklace or goggles embedded with ultrasonic sensors that can detect obstacles above the abdomen level so that user can navigate more effectively. Computer vision can be implemented for better object identification.

REFERENCES

- [1] Osama Bader AL, JeenVinouth "3D Ultrasonic Stick for Blind", International Journal of Latest Trends in Engineering and Technology (IJLTET)
- [2] Mahdi SafaaA., Mushin Asaad H. and Al- MosawiAli Technical Institute, "Using Ultrasonic Sensor for Blind and Deaf persons Combines Voice Alert and Vibration Properties", Research Journal of Recent Sciences
- [3] K.C. Nalavade, FatemaBharmal, TruptiDeore, Ajay Patil, "Use of ultrasonic sensors, GPS and GSM technology to implement alert and tracking system for Blind Man", International Conference of Advance Research and Innovation.
- [4] Olakanmi O. Oladayo, "A Multidimensional Walking Aid for Visually Impaired Using Ultrasonic Sensors Network with Voice Guidance", I.J. Intelligent Systems and Applications, 2014, 08, 53-59 Published Online July 2014 in MECS
- [5] M. Naveen Kumar, K. Usha, "Voice Based Guidance and Location Indication System for the Blind Using GSM, GPS and Optical Device Indicator", International Journal of Engineering Trends and Technology July2013
- [6] B.MohanSitaramaiah, M.Naganaik, " Electronic Guide Cane with Ultrasonic eyes for Visually Impaired" , International Journal of Advanced Technology in Engineering and Science January2015.
- [7] Nandish M S, Mr. ChetanBalaji, Prof. Shantala C P, Mr. ChetanBalaji, "An Outdoor Navigation With Voice Recognition Security Application For Visually Impaired", International Journal of Engineering Trends and Technology Apr2014
- [8] Somnathkoley, Ravi Mishra, "Voice Operated Outdoor Navigation System for Visually Impaired Persons", International Journal of Engineering Trends and Technology 2012
- [9] Ankit Agarwal, Deepak Kumar, Abhishek Bhardwaj, "Ultrasonic Stick for Blind", International Journal Of Engineering And Computer Science, April2015
- [10] Anushree, Chitra.M, "Voice Based Navigation System for Blind People Using Ultrasonic Sensor", International Journal on Recent and Innovation Trends in Computing and Communication.
- [11] A. Nurulnadwan, M.R. Nur-Hazwani, and A.M. Ariffin, "Assistive Courseware for Visually Impaired," (2009). In Proc. IVIC 2009, LNCS 5857, 2009, pp.905-915.
- [12] J.Borenstein and I.Ulrich, "TheGuideCane - Applying Mobile Robot Technologies to Assist the Visually Impaired," IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 31, No. 2, 2001, pp.131-136.
- [13] Faria J Lopes St, FernandesH, Martins P, Barroso J. "Electronic white cane for blind people navigation Assistance", World Automation Congress © 2010 TSIPress.
- [14] J.Almeida,H.Fernandes,V.Filipe and J.Barroso,"Web platform architecture to support the Geographic Information System of the University of Tnis-os-Montes and Alto Douro Campus", Proceedings of the 2009 International Conference on New Trends in Information and Service Science, Beijing, 2009, pp.1112-1117.
- [15] J. Carvalho, P. Martins, H. Paredes, A. Costa, A. Vasconcelos, A. Reis, J. Barroso and J.Bulas-Cruz, "WI-FI User Location Systems", European University Information Systems, Grenoble, 2007, pp.26-29.
- [16] http://www.harmonyindia.org/hportal/VirtualPageView.jsp?Page_id=15184
- [17] Kuei-Chun Liu, Ching-Hung Wu, Shau-Yin Tseng, Yin-Te Tsai, "Voice Helper: A Mobile Assistive System for Visually Impaired Persons", 2015 IEEE International Conference on Computer and InformationTechnology
- [18] GuntaChomchalerm, JitsuphaRattanakajornsak, UnchaleeSamsrisookDamras W ongsawang, W orapanKusakuniran, "Braille Dict-Dictionary Application for the Blind on Android Smartphone", 2014 Third ICT International Student ProjectConference
- [19] Anna Pitera, Dariusz Bober, and Jacek Kesik, "Image Edges Locator Dedicated to Visually Impaired People – an Experimental Application for Mobile Devices", the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced ComputingSystems
- [20] N.H. Ismail, Zarina Tukiran,N.N. Shamsuddin, E.I.S Saadon, "Android-based Home Door Locks Application via Bluetooth for Disabled People", 2014 IEEE International Conference on ControlSystem

- [21] Dianne T.V. Pawluk, Member, IEEE, Richard J. Adams, Senior Member, IEEE, and Ryo Kitada, "Designing Haptic Assistive Technology for Individuals Who Are Blind or Visually Impaired" 2015 IEEE transactions on haptics, vol. 8
- [22] KabalanChaccour, Student Member, IEEE, Jean Eid, "Multisensor guided walker for visually impaired elderly people", 2015 International Conference on Advances in BiomedicalEngineering
- [23] G. Cerri1, A. De Leo, V. Di Mattia, G. Manfredi, V. MarianiPrimiani, V. Petrini, M. Pieralisi, P. Russo, L. Scalise, "The Electromagnetic Technology for Safe Mobility of Visually Impaired People", 2014 22nd Mediterranean Conference on Control and Automation University of Palermo. June 16-19, 2014. Palermo, Italy
- [24] Namita Agarwal, AnoshIyer, Sonalakshi Naidu,Snedden Rodrigues, "Electronic Guidance System For The Visually Impaired -A Framework", 2015 International Conference on Technologies for SustainableDevelopment
- [25] B. Mustapha, A. Zayegh1, R.K. Begg, "Reliable Wireless Obstacle Detection System for Elderly and Visually Impaired People with Multiple Alarm Units", 2014 IEEE 2014 International Conference on Computer, Communication, and ControlTechnology