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Abstract—This study deals with carrier frequency offset 

(CFO) estimation for interleaved orthogonal frequency division 

multiple access (OFDMA) uplink systems. Firstly, the 

gravitational search algorithm (GSA) with the center-symmetric 

(CS) trimmed correlation matrix and the multiple signal 

classification (MUSIC) criterion is presented for the purpose of 

efficient estimation. It has been shown that the estimate 

accuracy of the searching-based estimator strictly depends on 

the number of search grids used during the peaks searching 

process, which is time consuming and the required number of 

search grids is not clear to determine. However, the searching 

grid size is no need to know previously for the proposed GSA-

based approach. Meanwhile, the advantage of inherent 

interleaved OFDMA signal structure also is exploited to conquer 

the problems of local optimization and the effect of ambiguous 

peaks for the proposed estimators. Finally, several simulation 

results are provided for illustration and comparison. 

Keywords— Carrier Frequency Offset; Interleaved OFDMA; 

Gravitational Search Algorithm; Multiple Signal Classification. 

I. INTRODUCTION 

Emerging as a promising technology for next-generation 
wireless communications, the orthogonal frequency division 
multiple access (OFDMA) has drawn a lot of attention due to 
its high bandwidth efficiency and robustness to narrowband 
interference. OFDMA inherits from orthogonal frequency 
division multiplexing the weakness of being sensitive to 
inaccurate frequency references [1]. Inaccurate carrier 
frequency offset (CFO) will disrupt the orthogonality among 
subcarriers and lead to inter-carrier interference as well as 
multiple access interference (MAI), which degrades the 
system performance. In OFDMA uplink systems, every user 
transmits its signal to base station (BS) through different 
channel, thus the received signals at the BS are the mixture of 
all users. Due to the different propagation delays and channel 
attenuations, each user has different time delay and CFO at the 
receiver [2]. The estimation of time delays and CFOs all 
become multiple-parameter estimation problems. So this 
requires an accurate CFOs estimation and compensation 
method which becomes a more crucial task in multiuser 
environments in OFDMA uplink. 

For the interleaved OFDMA uplink systems, a blind CFO 
estimator [2] based on the estimation of signal parameters via 
rotational invariance technique (ESPRIT) exploits the inherent 
signal structure without pilot symbols. For the searching-
based minimum variance distortionless response (MVDR) [1] 
and multiple signal classification (MUSIC) [3] estimators, the 
searching complexity and estimating accuracy strictly depend 

on the number of search grids used during the search, which is 
time consuming and the required number of search grids is not 
clear to determine. Unfortunately, the neighboring peaks 
cannot be distinguished for the MVDR and MUSIC estimators 
under relatively low signal-to-noise ratio (SNR) and large 
active users [4]. This implies that one user’s original peak 
location is pulled into an adjacent user’s range, severely 
distorting the original peak location [4]. It is well known that 
the polynomial root-version estimator has been proposed to 
improve the searching-based estimation [1, 5]. The resolution 
threshold performance of root-MVDR [1] and root-MUSIC 
[4] estimators is better than that of MVDR and MUSIC 
estimators, respectively, but for the noises dominant situation 
the appearance of both methods’ threshold performance is 
opposite. 

Recently, a novel heuristic search algorithm, called 
gravitational search algorithm (GSA), has been proposed 
motivated by the law of gravity and mass interactions [6]. It is 
characterized as a simple concept that is both easy to 
implement and computationally efficient. In GSA, the 
individuals, called agents, are a collection of masses which 
interact with each other based on the Newtonian gravity and 
the laws of motion. All agents move to a new place, the 
direction and distance are determined by their velocities. The 
agents share information using the gravitational force to guide 
the search toward the best location in the search space. By 
changing the velocities over time, the agents are likely to 
move toward the global optima. In this study, the feasibility of 
applying GSA to the MUSIC criterion is investigated for 
accurate CFO estimation of interleaved uplink OFDMA. First, 
in conjunction with the centro-symmetric (CS) trimmed 
correlation matrix [7] and the MUSIC criterion, the estimate 
performance of the centro-symmetric MUSIC (CSMUSIC) 
estimator can be improved under the low SNR case. 
Therefore, with a self-searched GSA and CSMUSIC scheme, 
the proposed CSMUSIC-GSA estimator does not require 
conventional spectral search, and can improve the CFO 
estimate accuracy. At each iteration, every agents can choice 
an appropriate acceleration along every dimension of search 
space according to its own situation. Finally, the proposed 
GSA-based estimators develop the CFO estimation by taking 
advantage of inherent structure of interleaved OFDMA 
signals. By dividing the whole possible CFO range into 
several smaller search ranges, the maximum value of fitness 
function is searched in each smaller range to get each user’s 
CFO. Therefore, the proposed estimators can conquer the 
effect of ambiguous peaks and local optimization. 
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II. BACKGROUND 

A. Signal Model 

Consider the interleaved uplink of an OFDMA system 

with N  subcarriers in which K  active users simultaneously 

communicate with the BS through an independent multipath 

channel. The N  subcarriers are interleaved into Q  ( )Q K  

subchannels, each of which has /P N Q  subcarriers. And, 

each subcarrier is exclusively used by only one user. 

Subchannel 
kq  contains the subcarriers with index 

{ , , ,( 1) }
k k k

q Q q P Q q    and the value of 1 kq k   

with  1,2, ,k Q . After removing the cyclic prefix (CP), 

the received signal of one OFDMA block at BS can be 

expressed as 
1

( ) ( ) ( )
K

kk
y n r n z n


  , 0,  1, , 1n N  ,  

where ( )z n  is the additive white Gaussian noise with zero 

mean and variance 2

z . The discrete channel impulse 

between the kth user and BS is characterized by a 
kL  order 

finite impulse response filter as 

[ (0),  (1),  , ( 1)]T

k k k k kh h h L h . The channel frequency 

response of the kth user is  
1

0
( ) ( )exp( 2 / )

kL

k kl
H v h l j lv N




   for 0,  1, , 1v N   

[2].  Let ( ) /k k kq Q    denote the effective CFO of the 

kth user, ( 0.5,  0.5)k    denote the kth user’s CFO 

normalized by the subcarrier spacing 2 / N , then the 

received signal sample from the kth user is given by  

1

0

22
( ) ( ) ( )exp{ }exp{ }

P
k

k k k

p

nnp
r n X p H p j j

P P

 



  (1) 

where ( )kX p  is a set of P  data streams of the kth user, 

( )kH p  represents the sample from ( )kH v  at 
kv pQ q  . 

The structure of (1) has a special periodic feature with every 

samples, 
1

( ) exp( 2 ) ( )
K

k kk
r n P j r n 


  , where   

(0 1)Q    is an integer. In one OFDMA block, 
1

0{ ( )}N

ny n 


 can thus be arranged into a Q P  matrix 

(0) (1) ( 1)

( ) ( 1) (2 1)

( ) ( 1) ( 1)

y y y P

y P y P y P

y N P y N P y N

 
 

 
 
 
 

    

Y  (2) 

Therefore, Equation (2) in one block can be expressed as 

( ) Y A S Z , where 1 2( ) [ ( ) ( )  ( )]Mθ   A a a a  with 

2 2 ( 1)
( ) [1,  ,  , ]k kj θ j Q θ T

kθ e e
  

a , Z  is a Q P  noise 

matrix, ( ) S D BW  with W  is a P P  inverse discrete 

Fourier transform (IDFT) matrix, and   indicates an 

element-by-element product. 
1 2[    ]T

KB b b b  with 

[ (0) (0),  (1) (1),  ,  ( -1) ( -1)]T

k k k k k k kX H X H X P H Pb  and 

1 2[    ]T

KD d d d  with 
2 / 2 ( 1) /

[1,  ,  , ]k kj θ P j P θ P T

k e e
  

d , 

where ( )T  denotes the transpose operation. Then, the 

ensemble correlation matrix of (2) is 
2{ }H H

sE   R YY AR A I , where { }E   and ( )H  denote 

the expectation and Hermitian operations, respectively. 

{ }H

s ER SS  is the correlation matrix of S  and I  is a 

Q Q  identity matrix. For finite received signal’s samples,  

R  is replaced by the estimated sample average  

1

ˆ (1/ ) ( ) ( )
F HFP


 


 R Y Y  and F  is the total blocks of 

observation. The cost function of the searching-based MVDR 
estimator [1] with the search grid μ  are defined as  

-1 1ˆ( )  [ ( ) ( )]H

MVDRS Max


    a R a  (3) 

where ( )a  is the CFO scanning vector. 

B. Searching-based MUSIC estimators 

The MUSIC is a noise subspace-based estimator for high 
resolution CFO estimation. Assume that the number of active 
users K  is known. Then, the eigenvalue decomposition 

(EVD) of R  is 
1

Q H H H

i i i s s s z z zi



  R e e E Σ E E Σ E , where 

2

1 2 1K K Q z             are the eigenvalues 

of R  in the descending order. 
ie  are the corresponding 

orthonormal eigenvector associated with 
i  for 

1,  2,  ,  i Q . Moreover, [  ]s zE E E , both 

1 2[    ]s KE e e e  and 1 +2[    ]z K K QE e e e  are 

orthogonal and span the signal subspace and noise subspace 

corresponding to R , respectively.  1 2{ ,  , , }s Kdiag   Σ  

and 1 2{ ,  ,  ,  }z K K Qdiag    Σ . Furthermore, 
sE  spans 

the same signal subspace as that spanned by 
1{ ( )}K

k k a . 

Thus, we have ( )H

z k E a 0  and ( )H

k z a E 0
 
for 

1,  2, ,k K . The cost function of the MUSIC estimator 

with the searching grid μ  defined as [3] is given by 

1( )  [| ( ) ( ) |]H H

MUSIC z zS Max


    a E E a  (4) 

The whole possible range (( 0.5) / ,  ( 0.5) / )Q Q Q   is 

divided into Q  smaller search ranges, and then the search 

rang (( 0.5) / ,  ( 0.5) / )k kq Q q Q   is set for the thk  user 

when kq  belongs to the user k . The maximum value of cost 

function is calculated in each smaller range to get ˆ
kθ  

respectively, rather than finding the K  peaks in the whole 

range. Through K  searches, 1
ˆ{ }K

k kθ   can be obtained. Hence, 

ˆˆ
k k kε Qθ q   for 1,  2,  ,  k K .  

To improve the CFO estimating accuracy, it can be 

further dealing R̂  with a CS trim to mitigate the finite 

sample effect. Let R  denote a sample estimate of R . If we 

assume that R  is a CS matrix [7], i.e., Q Q

R I R I , where 

QI  denotes the “exchange” matrix and  ( )  is the conjugate 

operation. A sample correlation matrix with the above 
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property can be easily obtained by way of performing 
ˆ ˆ0.5( )Q Q

 R R I R I . Therefore, since R  is a Toeplitz 

structure, R  can be expected to be a better estimate of R  

than R̂  is. Here, R  is to replace R̂  for performing EVD. 

Then, the improved noise subspace 
zE  can be obtained. 

Therefore, the CS trim is applied on the MUSIC estimator, 
and then the resulting improved estimator is termed CS-
MUSIC estimator. 

The estimate performances of the searching-based CFO 
estimators are governed by the scanning grid size. Smaller 
grid size can improve estimate accuracy, but the required 
computational load also has relatively larger. For increasing 
estimate performance and searching efficient, this study 
presents the GSA-based optimization to replace the spectral 
searching approach. Therefore, the proposed GSA-based 
estimators with the MUSIC or MVDR criterion can increase 
the estimate accuracy and have robust capability in both of the 
low SNR scenarios. 

III. GSA-BASED CFO ESTIMATION 

GSA is inspired from Newton’s theory and can be 
considered as a collection of agents (candidate solutions) 
whose have masses proportional to their value of fitness 
function. During generations, all masses attract each other by 
the gravity forces between them. A heavier mass has the 
bigger attraction force. Therefore, the heavier masses which 
are probably close to the global optimum attract the other 
masses proportional to their distances. It starts with randomly 

placing all agents in search space. Suppose a system with 
PN  

agents and k

i  represent the position of thi  agent, where k  

denotes the thk  dimension of agent (the thk  active user). 

Then during all iterations, the gravitational force from agent 

j  on agent i  at a specific iteration time t  is defined as 

follow [6]: 

( ) ( )
( ) ( ( ) ( ))

( )

pi ajk k k

ij j i

ij

M t M t
F G t t t

R t
 




 


 

(5) 

where 1, 2, , Pi j N   and 1, 2, ,k K . 
ajM  is the 

active gravitational mass related to agent j , 
piM  is the 

passive gravitational mass related to agent i , ( )G t  is 

gravitational constant at time t ,   is a small constant, and 

( )ijR t  is the Euclidian distance between two agents i  and j . 

The ( )G t  is calculated as 

0( ) exp{ / }sG t G t N   (6) 

where 
0G  and   are initial value of gravitational constant 

and descending coefficient, respectively, 
sN  is maximum 

number of iterations. The total force that acts on agent i  at 

iteration time t  is calculated as 

1,

( ) ( )
PN

k k

i j ij

j j i

F t rand F t
 

   (7) 

where 
jrand  is a random number in [0,  1] . According to the 

law of motion, the acceleration of an agent is proportional to 
the result force and inverse of its mass, so the acceleration of 
all agents should be calculated as 

( 1) ( ) / ( )k k

i i iiacc t F t M t 

 

(8) 

where 
iiM  is the mass of agent i . The updating formula of 

gravitational and inertial masses of agent i  follows as 

bellow: 

( ) ( )

( ) ( )

k k

i

i k k

Fitness t worst t
m

best t worst t





 

(9) 

where ( )k

iFitness t  is the fitness value of the agent i  at time 

t . Then, ( )kworst t  and ( )kbest t  are defined as follows: 

{1,..., }

{1,..., }

( ) max ( )

( ) min ( )

P

P

k k

j
j N

k k

j
j N

best t Fitness t

worst t Fitness t





 






 

(10) 

For simplify, let 
ai pi ii iM M M M   , and 

1
( ) ( ) / ( )PN

i i jj
M t m t m t


  . The velocity and position of the 

thi  agent for the thk  user are calculated as 

( 1) ( ) ( 1)k k k

i i i ivel t rand vel t acc t    
 

(11) 

( 1) ( ) ( 1)k k k

i i it t vel t    
 

(12) 

where 
irand  is a random number in the interval [0,  1] . 

At first all agents are initialized with random values and 

each agent (0)k

i  is a candidate solution which represents the 

desired impinging angle. After initialization, velocities for all 
agents are defined using (11). Meanwhile the gravitational 
constant, total forces, and accelerations are calculated as (6), 
(7), and (8), respectively. The positions of agents are 
calculated using (12). If the movement of agent exceeds the 
searching space, the position of agent will be re-generalized 
randomly. Also, the fitness function of the desired thk  user 

obeys the CSMUSIC criterion as bellow 

1( ) [ ( ( )) ( ( ))]k H k H k

i i z z iFitness t t t   a E E a

 

(13) 

Finally, the CSMUSIC-GSA estimator will be stopped by 
meeting an end criterion and return the best solution. 
Abbreviations and Acronyms 

IV. SIMULATION RESULTS 

For illustrating the performance of the proposed 

estimators, several simulation results are conducted. For 

comparison, the results of the ESPRIT [2], MUSIC [4], root-

MUSIC [4], MVDR [1], root-MVDR [1], MVDR-GSA, and 

MUSIC-GSA estimators are also provided. It is noted that the 

fitness functions of MVDR-GSA, MUSIC-GSA, and 

CSMUSIC-GSA estimators are (3), (4), and (13), respectively. 
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The parameters in the OFDMA uplink system are 8K  , 

1024N  , 32Q  , and 32P  . All OFDMA signals were 

generated with binary phase-shift-keying (BPSK) modulation 

and the average received signal power from all users is the 

same. Each user transmits signal to BS through independent 

multipath channel. The channel taps ( )kh l  are modeled as 

statistically independent Gaussian random variables with zero 

mean and an exponentially decaying power profile, 
2 ( /5)[ ( ) ] ,l

k lE h l e   0 1kl L   , where 
l  is a normalized 

factor used to set the channel power to unity and 10kL  [2]. 

As indices of evaluation, the mean square error (MSE) and 

the input SNR of the thk  user were defined as 
Π 2

1 1
ˆMSE (1/ ) ( )

K

k kk
M ε ε 

 
     and 

2 2SNR 20log [ ( ) ]/k zE r n  , where Π  is the number of Monte 

Carlo runs. For all simulations, the CFOs are 

{ 0.4041, 0.3355, 0.0407, 0.1175,     

0.1254, 0.2193, 0.3612, 0.4091} . For searching-based 

estimators, the proper searching grids are set to 410μ   in 

the scenario range [0 dB,  30 dB]  [4]. In GSA, the 

gravitational constant ( )G t  is set using (6), where 
0 =100G ,  

=20 , and a small constant 
-3 = 5 10  . All GSA start with 

random initializations and are terminated if the maximum 

iteration (the total age of system) 
sN  is reached. Each of the 

simulation results presented is after one OFDMA block 

processed and is the average of 310   runs with 

independent noise samples for each run. 
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Fig. 1.  MSE versus the number of iterations. 

 

We investigate the effects of parameters { ,  }p sN N  on the 

MSE performance with SNR as parameters. Fig. 1 depicts 

MSE versus the number of iterations sN  for GSA-based 

estimators under the number of agents (particles) 12pN  , 

whereas Fig. 2 depicts MSE versus the number of agents pN  

for GSA-based estimators under the number of iterations 

80sN  . It also demonstrates that the performance of the 

GSA-based estimators heavily depend on the selected the 

number of iterations and the number of agents. In the 

scenario range [0 dB,  30 dB] , the proper choices of the 

number of particles and the number of iterations for GSA-

based estimators are 12pN   and 80sN  , respectively. It 

also demonstrates that both of large agent and iteration 

numbers have better estimation resolution. The total required 

complex multiplications (CM) of the estimators contain the 

CM of computing fitness (objective) function and the CM of 

search (iteration) procedure. For computing the fitness 

function, the CM of the GSA-based and searching-based 

estimators are equal. However, the proposed advantage is the 

reduction of computational complexity by reducing the 

number of the search while maintaining comparable 

performance. According to [4], a proper choice is 410μ   in 

the scenario range [0 dB,  30 dB] . Assume that all the 

searching grid of searching-based estimators are 410μ  , 

then the number of searching 
1 10001F  . But, the calculating 

fitness function number of the CSMUSIC-GSA is only 

960p sN N  . However, the required 
pN  and 

sN  of the 

GSA-based estimators are less than those of the searching-

based estimators for all SNR cases, respectively. It is clearly 

that the proposed GSA-based estimators have high searching 

efficiency.  
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Fig. 2.  MSE versus the number of agents. 

 

1 2 3 4 5 6 7 8 9 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Number of Blocks

M
S

E

 

 

ESPRIT

root-MVDR

root-MUSIC

MVDR

MUSIC

CSMUSIC

MUSIC

MVDR-GSA

MUSIC-GSA

CSMUSIC-GSA

 
Fig. 3. MSE versus the number of blocks. 
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Fig. 3 shows the results of MSE versus the number of 

blocks under SNR=15dB . Clearly, increasing the number of 

blocks induces the performance improvement for all 

estimation methods. It shows that all GSA-based approaches 

have the same convergence speed. Fig. 4 presents MSE of the 

CFO estimation versus SNR. By using the correlation matrix 

with a CS trim to mitigate the finite sample effect, the 

CSMUSIC estimator has better performance improvement 

especially under the low SNR case. However, the statistical 

behavior of the root-MVDR estimator for a single data block 

appears difficult to establish. Observe that the accuracy of the 

CFO estimation of the searching-based estimators is 

governed by the search grid size whereas all GSA-based 

estimators do not suffer from this limitation. Again, these 

figures are presented to verify the efficiency of the proposed 

estimators. 
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Fig. 4.  MSE versus SNR. 

V. CONCLUSIONS 

This study has presented GSA-based searching CFO 
estimation methods with the MVDR/MUSIC criterion, named 
as the MVDR-GSA, MUSIC-GSA, and CSMUSIC-GSA 
estimators, to achieve the CFO estimate accuracy under a 
single data block. By dividing the whole possible CFO range 
into Q  smaller search ranges, the maximum value of fitness 

function is calculated in each smaller range to get each user’s 
CFO. Therefore, the convergence of GSA to the global 
maximum is confirmed. 
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