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ABSTRACT 

Mining large datasets to extract meaningful hidden patterns has long been an area of research, but existing methods 

still face significant challenges related to computational cost, time, and memory overheads. This paper addresses these 

challenges by introducing a novel approach that bisects large datasets into smaller partitions. For each partition, the 

Bisected Count of elements is calculated, which measures the frequency of patterns within that subset of the divided 

data. After processing the bisected data, the Combined Count of the elements is found by combining the support counts 

from each bisection, resulting in a final, comprehensive support count for the entire dataset. To efficiently perform 

these calculations, the algorithm leverages a bit vector approach, which simplifies the process of determining pattern 

frequencies while reducing memory, time complexity and helps manage large datasets without overwhelming system 

resources. The proposed algorithm BIRA is evaluated against many states of the art existing algorithms, with a focus 

on two critical performance metrics: speed and memory consumption. Experimental results demonstrate that the 

proposed algorithm significantly reduces both time and memory overheads when compared to traditional approaches, 

making it a promising solution for large-scale data mining tasks. 
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INTRODUCTION 

One of the fundamental tasks in data mining, especially in the area of association rule learning, is frequent itemset 

mining (FIM). It entails locating collections of items (or itemsets) that commonly occur together in a dataset. 

These frequent itemsets are crucial for identifying patterns and correlations in data [1], and they may be applied 

to a variety of tasks, including fraud detection, recommender systems, and market basket analysis. 

Concepts in Frequent Itemset Mining 

1. Itemset

An itemset is a collection of one or more items from a dataset. For example, in a market basket context, if a

dataset contains transactions from a grocery store, an itemset could be {bread, milk, butter}.

2. Support Count

Support is a measure that indicates how often an itemset appears in the dataset. Formally, it is the proportion

of transactions that contain the itemset. The support of an itemset is important because it helps identify which

itemsets are frequent.

Example: If {A, B} appears in 60 out of 100 transactions, its support is 60%. 

3. Frequent Itemset

An itemset is considered "frequent" if its support is greater than or equal to a user-defined minimum support

threshold. This threshold determines the frequency level needed for an itemset to be considered useful.

Example: If the minimum support threshold is set at 50%, then an itemset must appear in at least 50% of 

transactions to be deemed frequent. 
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ALGORITHMS FOR FREQUENT ITEMSET MINING 

1. Apriori Algorithm

The Apriori algorithm [1] is one of the earliest and most well-known algorithms for mining frequent

itemsets. It works by identifying frequent individual items in the dataset and expanding them to larger

itemsets as long as those larger itemsets have sufficient support. It uses a "bottom-up" approach and

prunes the search space based on the observation that any subset of a frequent itemset must also be

frequent.

2. SPC – Single pass Count

The Single Pass Counting (SPC) algorithm [2] is a parallelized version of the Apriori algorithm, utilizing

the MapReduce framework to optimize performance. In this implementation, the process of counting the

support for candidate itemsets is distributed across multiple nodes, enabling faster computation by

leveraging parallel processing. The entire SPC algorithm is divided into two distinct phases, which allows

it to efficiently manage the data and operations. By adopting this approach, the SPC algorithm

successfully mitigates several of the inefficiencies and limitations inherent in the traditional Apriori

algorithm, such as its high computational cost and multiple database scans.

3. ECLAT (Equivalence Class Transformation)

ECLAT is another frequent itemset mining algorithm that uses a depth-first search approach and

organizes data into vertical itemset representations, improving performance by avoiding the need to

repeatedly scan the dataset.

4. parECLAT (Parallel Equivalence Class Transformation)

This is an extension of the ECLAT algorithm that leverages parallel processing to improve performance 

when mining frequent itemsets from large datasets. ECLAT, the base algorithm, works by transforming

the dataset into a vertical format and using a depth-first search strategy to efficiently find frequent

itemsets. However, as datasets grow larger, the original ECLAT algorithm can become slow and resource-

intensive. parECLAT [3] aims to solve this issue by distributing the workload across multiple processors

or machines.

PROBLEM STATEMENT 

The main problem while discovering the frequent itemset is scanning the input database repeatedly many 

times [5]. The problem of scanning the input database multiple times to discover frequent itemsets indeed 

leads to significant computational overhead [4]. Frequent itemset mining often involves multiple passes over 

the database [6], consuming both time and resources. Popular algorithms like Apriori and Eclat aim to 

minimize these scans, but they still require multiple passes depending on the dataset's size and structure. 

While many algorithms today aim to reduce the number of database scans, the proposed method goes a step 

further by not even requiring a full scan of the database. Instead, it processes and retrieves the necessary 

elements by scanning only half of the database, leading to increased efficiency. 

PROPOSED APPROACH 

The proposed approach optimizes data retrieval by implementing a bisecting mechanism that 

drastically minimizes the number of database scans or iterations. Rather than scanning the entire 

database, it begins by checking if the input file has not yet reached the end (EOF). It then retrieves the first 

row while simultaneously accessing the EOF row. 

Next, a comparison is made between the upper bound of the data and the value of EOF minus one. If this 

condition is met, it indicates that the midpoint of the dataset has been reached. At this point, the loop 

terminates, ensuring that only half of the database is scanned. 

This technique effectively reduces processing time and computational resources by leveraging the 

bisection process. Instead of performing repetitive scans across the entire database, the approach narrows 

down the data to the necessary portion, halting once the middle of the dataset is reached. By cutting the 

number of iterations in half, it significantly enhances efficiency, making it particularly useful for large 

datasets where frequent scanning is resource-intensive. In summary, this mechanism focuses on optimizing 

retrieval by reducing full database scans, leveraging comparisons between the initial row and EOF, and 

terminating early when the midpoint is reached. The process diagram is shown in the figure 1. 
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Figure 1: Process diagram of the BisectData 

Procedure bisectDataRetrieval(database Dd) 

start = 0 

 end = getEOF(Dd) 

 IF end < 0: 

  RETURN "Database is empty" 

 WHILE [start < end] 

 UpperHalf = database[start] 

 LowerHalf = database[end] 

 IF [start ==(end-start)] 
 Break 

 ELSE: 

 start = start +1 

 Close IF 

     Close While 

End Procedure 

Figure 2: Pseudo code to bisect the database 

EXPLANATION 

1. Initialization: The function initializes two pointers: start (first row) and end (EOF, last row).

2. Empty Check: It checks if the database is empty and returns a message if it is.

3. Bisecting Process: The loop runs while the start pointer is less than the end pointer.

4. Midpoint Calculation: At each iteration, it calculates the midpoint of the dataset and compares the values

at the start and end pointers to see if the midpoint is reached.

5. Pointer Adjustment: Depending on the comparison, the algorithm adjusts the start or end pointer,

reducing the search space.

6. Termination: The loop terminates once the midpoint is reached or the search is narrowed down to a small

portion of the data, effectively cutting the number of scans in half.

Input database Form a loop Retrieve DB [index] 

Retrieve DB[EOF-index] IF [index==EOF-index] 

Break from the loop 

Index++ 

Yes 

No 

The sample input database is shown in the following table 1, which is processed to get the retrieved result 

both the upper half and the lower half of the data separately showcased in the table 2.  
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Table 1: Sample input database 

Table 2: Bisected input database 

Database Structure: There are 10 rows of data, and we are analysing distinct items found in these rows. 

Bisected Count (BC): This term refers to the count of distinct items that is split between two parts of the database: 

• Upper part: Represents one part of the database (could be the first half).

• Lower part: Represents the other part (second half).

The Bisected Count (BC) is the count of items in each of these parts. 

User-defined Support: This is a threshold value that is provided by the user. In this case, the support value is set 

to 4. This value will help in pruning items with low frequency (i.e., less than 4 occurrences). 
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Combined Count (CC): After the BCs for both the upper and lower parts of the database are computed, the 

Combined Count (CC) is calculated by summing the BC from the upper and lower parts for each item. This gives 

the overall frequency of each distinct item in the entire database. 

Pruning: Once the CC is computed, any items whose combined count is less than the user-defined support (in 

this case, 4) are pruned. This means they are removed from consideration as they do not meet the minimum 

required frequency threshold. 

The resultant of the distinct items is shown in the following table 3. 

Table 3: Bisected count found for upper and lower parts 

Except four elements R1, R3, R5, and R7 all other items are pruned as the combined count CC values is lesser 

than the user defined support count value 5. The final items retained is shown in the table 4. 

Table 4: Final distinct items retained after pruning 
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PROPERTY 1 

“If an element's support count (how many times the element appears) is less than this user-specified 

threshold, it is classified as an infrequent element. These infrequent elements are usually pruned (i.e., 

removed) from further analysis because they don't meet the criteria of being sufficiently frequent in the 

dataset.” [7] 

Table 5: Final items in the database 

The next step, as described, involves creating a bit vector table to represent the pruned database. A bit vector 

table is a binary representation of the transactional data, where each element (item) is represented by either a 1 or 

0: 

• 1 indicates that the element (item) is present in the corresponding transaction (row).

• 0 indicates that the element is not present in the transaction.

Table 4: Binary presentation of the bisected database 

UPPER PART LOWER PART 

ITEMS T1 T2 T3 T4 T5 ITEMS T1 T2 T3 T4 T5 

R1 1 1 0 1 1 R1 1 1 1 1 0 

R3 1 1 0 1 1 R3 1 1 1 1 0 

R5 1 0 1 1 1 R5 1 1 0 1 1 

R7 0 1 0 1 1 R7 1 1 0 0 0 
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PROPERTY 2 

“An itemset may not meet the minimum support threshold in one particular partition (i.e., its support 

count is too low in that part of the dataset). This would cause it to be marked as infrequent locally within 

that partition. When the entire dataset (all partitions) is merged, the combined support count of the itemset 

is calculated by summing its counts across all partitions. This may result in the itemset meeting or 

exceeding the global minimum support threshold, making it a frequent itemset in the merged dataset, 

even if it was infrequent in individual partitions.” [8] 

BIRA ALGORITHM 

Bisection of the Dataset 

o The dataset is split into two parts: the upper part and the lower part.

o This is helpful when dealing with large datasets, as it allows parallel computation and easier

management of data.

Bisected Count (BC) 

o The bisected count (BC) is computed individually for both the upper and lower partitions of the dataset.

o The BC for an item or itemset represents how often the item appears in that particular partition.

o The same operation is performed for both parts to obtain counts.

Combined Count (CC) 

o After computing the BC for both partitions, the combined count (CC) is calculated by summing the

counts from the upper and lower partitions.

o The CC represents the total occurrences of an item or itemset in the entire dataset (i.e., across both

partitions).

Comparison with Minimum Support

o The user-defined minimum support threshold is used to filter itemsets.

o If the combined count (CC) of an item or itemset is greater than or equal to the minimum support, the

item or itemset is considered frequent and is retained for further consideration.

o If the CC is less than the minimum support, the item or itemset is pruned (i.e., discarded) as it is not

frequent enough.

Forming the Next (n+1) Itemsets

o If an itemset meets the minimum support threshold, it is used to form the next level of itemsets (i.e.,

n+1 itemsets), where n is the number of items in the current itemset.

o For example, if the current level has 1-itemsets (individual items), and the itemsets pass the support

threshold, then the algorithm will attempt to form 2-itemsets (combinations of two items).

o The algorithm continues forming larger itemsets (n+1) until no more frequent itemsets can be found,

or all possible combinations are generated.

Binary Operations 

o The binary operation mentioned likely refers to the bit vector representation you mentioned earlier.

o For example, to check the presence of an item in both the upper and lower partitions, the binary values

(1 for presence, 0 for absence) can be combined using AND operation.

o The combined bit vectors for itemsets can be used to efficiently calculate support counts.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS040435
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 04, April-2025

www.ijert.org
www.ijert.org


ALGORITHM BIRA (DATABASE Dd, SUPPORT Ss) 

Input: Dd (dataset), Support Ss 

Output: Frequent itemsets 

1. Split Dd into two partitions: D_upper and D_lower

2. Initialize frequent_itemsets = []

3. For each item i in D:
Compute BC_upper[i] = count of i in D_upper

 Compute BC_lower[i] = count of i in D_lower 

4. For each item i:

CC[i] = BC_upper[i] + BC_lower[i]

 If CC[i] >= minsup: 

     frequent_itemsets.append({i}) 

 Else: 

 prune item i 

5. Set k = 1

6. While frequent_itemsets of size k is not empty:
Generate candidate itemsets of size (k + 1) from frequent_itemsets of size k

  For each candidate itemset c: 

 Compute BC_upper[c] = count of c in D_upper 

 Compute BC_lower[c] = count of c in D_lower 

 CC[c] = BC_upper[c] + BC_lower[c]   

 If CC[c] >= minsup: 

     Add c to frequent_itemsets for (k + 1) 

 Else: 

   prune itemset c  

 Increment k by 1 

7. Output all frequent_itemsets

End algorithm 

Figure 3: Pseudo code of the BIRA algorithm 

EXPLANATION OF BIRA 

The elements that are retained are permuted with the simple binary AND operation to find the bisected count of 

the both parts as shown in the following section, 
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Initially consider R1 and R3 

The itemsets {R1, R3} and {R1, R3, R5} and are frequent since its counts are higher than the user defined support 

count values. Similarly, for the next permutation R1 and R5 are considered and the calculations are carried out as 

shown in the next section. The other items are fetched to compute the bisected count and then the combined count 

to check whether it can be retained to do the n+1 computation or just pruned away without continuing the n+1 

computation which reduces the overall execution time and saves the overhead cost of computations.  

UPPER PART STATUS 

ITEM T1 T2 T3 T4 T5 BC 

R1 1 1 0 1 1 
& R3 1 1 0 1 1 

R1, R3 1 1 0 1 1 4 

LOWER PART 

R1 1 1 1 1 0 

& R3 1 1 1 1 0 

R1, R3 1 1 1 1 0 4 

COMBINED COUNT CC = BC + BC 8 RETAINED 

UPPER PART 

R1, R3 1 1 0 1 1 

& R5 1 0 1 1 1 

R1, R3, R5 1 0 0 1 1 3 

LOWER PART 

R1, R3 1 1 1 1 0 

R5 1 1 0 1 1 

R1, R3, R5 1 1 0 1 0 3 

COMBINED COUNT CC = BC + BC 6 RETAINED 

UPPER PART 

R1, R3, R5 1 0 0 1 1 

& R7 0 1 0 1 1 

R1, R3, R5, R7 0 0 0 1 1 2 

LOWER PART 

R1, R3, R5 1 1 0 1 0 

& R7 1 1 0 0 0 

R1, R3, R5, R7 1 1 0 0 0 2 

COMBINED COUNT CC = BC + BC 4 PRUNED 
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The itemsets {R1, R5} and {R1, R7} are frequent itemsets. The overall frequent itemsets that are finally 

discovered is shown in the following table 6.  

ITEMSET COUNT ITEMSET COUNT 

R1, R3 8 R3, R5 6 

R1, R3, R5 6 R3, R7 5 

R1, R5 6 

R1, R7 5 

Table 6: Finally discovered frequent itemsets 

UPPER PART STATUS 

ITEM T1 T2 T3 T4 T5 BC 

R1 1 1 0 1 1 

& R7 0 1 0 1 1 

R1, R7 0 1 0 1 1 3 

LOWER PART 

R1 1 1 1 1 0 

& R7 1 1 0 0 0 

R1, R7 1 1 0 0 0 2 

COMBINED COUNT CC 5 RETAINED 

UPPER PART STATUS 

ITEM T1 T2 T3 T4 T5 BC 

R1 1 1 0 1 1 

& R5 1 0 1 1 1 

R1, R5 1 0 0 1 1 3 

LOWER PART 

R1 1 1 1 1 0 

& R5 1 1 0 1 1 

R1, R5 1 1 0 1 0 3 

COMBINED COUNT CC 6 RETAINED 

UPPER PART 

R1, R5 1 0 0 1 1 

& R7 0 1 0 1 1 

R1, R5, R7 0 0 0 1 1 2 

LOWER PART 

R1, R5 1 1 0 1 0 

R7 1 1 0 0 0 

R1, R5, R7 1 1 0 0 0 2 

COMBINED COUNT CC 4 PRUNED 
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RESULTS AND DISCUSSION 

The BIRA algorithm was implemented in Java on a Windows 11 personal computer equipped with a 2.66GHz 

Intel I7 processor, a 1TB DISK, and 16GB of RAM. The evaluation was performed using datasets such as Connect 

and Accident along with few synthetic datasets generated from IBM quest tool to check the efficiency regarding 

the memory consumption and execution time consumption. The experiments were conducted using varying 

minimum support values and the results are shown in the following figure. 

Figure 4: Execution time comparison with varying support values 

Figure 5: Memory usage comparison with varying support values on real dataset 
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Figure 6: Memory usage comparison with varying support values on synthetic dataset 

From the above figures, it is quite clear that the SPC performed reasonably well when compared with the parEclat 

algorithm and the proposed BIRA outperformed the other two algorithms by a good margin with respect to time 

and memory consumption.  

As the dataset size increased during execution, both the SPC algorithm and the proposed BIRA algorithm 

continued to perform efficiently, maintaining reasonable processing times and completing their tasks successfully. 

In contrast, the parEclat algorithm faced considerable challenges. It struggled to handle the larger dataset and 

ultimately failed to complete the execution. Due to this failure, it was not possible to measure parEclat’s memory 

usage, highlighting its limitations in scalability and memory management when dealing with large datasets. This 

underscores the advantage of algorithms like SPC and the proposed approach in handling larger data volumes 

more effectively. 

The proposed BIRA algorithm exhibited a significant performance advantage, surpassing the existing algorithms 

by 30 to 40%. It consistently outperformed all other algorithms in terms of both execution time and processing 

speed. This notable improvement highlights the algorithm’s efficiency in handling computational tasks, making it 

a more effective solution compared to its counterparts. The enhanced speed and reduced execution time allowed 

the proposed algorithm to complete tasks more quickly and efficiently, positioning it as a superior option for 

performance-critical applications. 

The tid-list strategy employed by the parEclat algorithm proved to be considerably less effective compared to the 

proposed algorithm and the SPC algorithm. In terms of performance, parEclat fell notably behind these two 

algorithms, struggling to keep up with their speed and efficiency. This disparity underscores the limitations of the 

tid-list approach in parEclat, making it less competitive when compared to the more advanced methods used in 

the proposed and SPC algorithms. As a result, parEclat was unable to match the overall performance and 

capabilities demonstrated by the other two algorithms. 

CONCLUSION 

This paper introduces the BIRA algorithm, which effectively resolves several key shortcomings present in existing 

algorithms. The experimental results clearly demonstrate that the BIRA algorithm generates a significantly smaller 

number of candidates due to its advanced and efficient pruning mechanism. By minimizing the number of 

candidates, the algorithm is able to reduce the overall runtime and memory usage, which in turn leads to a 

considerable improvement in execution speed. These enhancements make the BIRA algorithm far more efficient 

and capable of handling larger datasets than traditional algorithms. As a result, BIRA stands out as a more robust 

and scalable solution, offering superior performance in both computational efficiency and resource management. 
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