Biophilic Design in Architecture

Ankur Gautam University School of Architecture and Planning, GGSIPU, Dwarka, Delhi, India

"I go to Nature to be soothed and healed, and to have my senses put together." – John Burroughs

Abstract *-Physical wellness, comfort and mental wellbeing are important factor in designing a built-form. We often neglect nature in process of design. Nature has no substitute. So, it is very important to consider while designing a building. Humans have evolved their behavioural mechanism & problem solving tactics responding to the stimulus from the surrounding spaces. Architecture, here, has an infinite power to dictate the character and stimuli generation of a space. This stimulus to be positively conceived and delivered physically, psychologically and intellectually to the surroundings, is the core of the Biophilic Hypothesis. This paper discusses the impact of biophilic design on human health and well-being and presents a unified framework for its application in the design of biophilic spaces.

Key words: Biophilia, climate, design, nature, well-being

I. INTRODUCTION

Originating from the ancient Greek (*bios: life; philia: love*), Biophilia describes the love for life and expresses the ethos of maintaining and developing the life of mankind in all dimensions (physical, psychological, social, artistic, moral, etc.). Aiming to provide space for respectful and enriching relationship between human society and natural world, Architects have an opportunity to include this hypothesis into their design process.

II. BIOPHILIA IN ARCHITECTURE

We all know that there is no substitute of nature. Nature should be integral part of design. Closeness to nature in built-environment has a positive impact on the user. The potential of nature and built-environment correlation has not been tapped to the best of its limits.

Nature in built-environment can be incorporated in form of breeze, water features, gardens and aquarium. The strongest Nature in the Space experiences are achieved through the creation of meaningful, direct connections with these natural elements, particularly through diversity, movement and multi-sensory interactions. (Browning, W.D., Ryan, C.O., Clancy, J.O. (2014). 14 Patterns of Biophilic Design)

Nature in the built-environment can be defined in patterns mentioned below:-

P1:	Visual Contact with Nature	P13:	Mystery
P2 :	Non Visual Contact	P14:	Risk/ Peril
P3 :	Non Rhythmic Sensory Stimuli	P15:	Biomimicry
P4:	Thermal & Airflow Variability	P16:	Curiousity & Excitement
P5:	Presence of Water	P17:	Change & Metamorphosis
P6:	Dynamic & Diffuse Light	P18:	Security & Protection
P7:	Connection with Natural system	P19:	Attachment
P8:	Biomorphic Forms & Patterns	P20:	Attraction & Beauty
P9:	Material Connections with nature	P21:	Exploration & Discovery
P10:	Complexity & Order	P22:	Fear & Awe
P11:	Prospect	P23:	Reverence & Spirituality
P12:	Refuge		
		(D) 1	.,.

Figure 1 Patterns of Biophilia.

For example connection with nature in any form direct or indirect reduces the stress level. Giving importance to sounds related to nature like sound of water or bird chirping over urban sounds improves the experiential quality for the user. Nature can be incorporated in direct form or by metamorphic i.e biomimicry way. Which means design forms which are inspired by nature or using textured which are derived from nature. It will make the use feel near natural environment.

Designing Biophilia Theories and Values, in form of a detailed framework is the need of the hour. The relationships incorporated within the structure of framework are based on themes, identified and studied within the literature.

Different variables such as typology of the project, site variables, scale and feasibility, domain of applicability of concept, occupant's culture and demographics, effectiveness and efficacy of patterns, identifiable responses and outcomes, diversity of strategies, duration of exposure and frequency of access are applied at their consequent design stages amalgamate to yield a specific result, unique for each project, best explaining the framework as an effective solution for:

"...problem which occurs over and over again in an environment, and then describes the core path of solution in such a way, that you can use this solution a million times over, without doing it the same way twice"

The proposed framework sought to have an elaborate structuring of modified Biophilic patterns, strategies, as well as the qualitative aspects and variables influencing the relationship between domain of applicability and strategies for exposure to nature, with occupant's health benefits. These in turn, affects the perspective for process of designing experiential spaces.

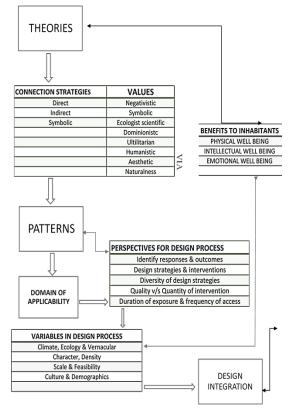
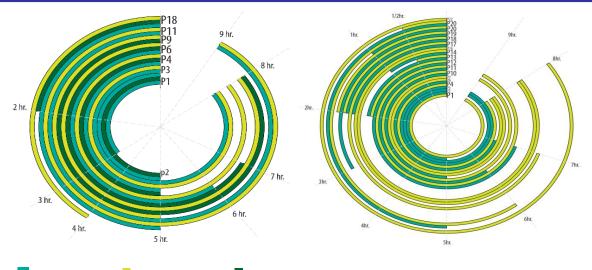



Figure 2 Framework for Design: Inter-relation of the themes arranged in specific order to be followed. III. CASE STUDY

To access the generality of the proposed patterns and variables affecting their applicability, quantifiable subheads have been tested on institution site , depicting the outcome of the designed spaces having Biophilic essence: *Delhi Technical University*, *Bawana Road*, *Delhi*

The exposure to patterns are tested on criteria of site design, degree of exposure and frequency of access (Fig. 3) . The illustration depicts the duration of access of campus spaces in terms of Landscape, Interior and Built spaces and the exposure of patterns in a space. Students are exposed to the benefits of the present patterns for greater duration in open spaces in DTU.

Built Landscape Interiors Figure 3 Duration of exposure:: Illustration depicting duration of exposure to a pattern in three different typologies of spaces:

Figure 4 Site map of DTU showing areas analysed

Figure 5 : Venturi effect in DTU

P12	REFUGE	P1 P11 P18	Spaces with weather & climate protection, speech & visual privacy	BUILDING LANDSCAPE	 Providing level difference of spaces Well shaded spaces High height to depth ratio of built space
P13	MYSTERY	P1 P16 P21	Light & shadow : Meandering pathways; Visual disconnect; curving edges	BUILDING LANDSCAPE	 Curving edges those slowly reveal Dramatic shade & shadow Overgrowing, less maintained landscapes obscuring view of the passer by.
P14	RISK/ PERIL	P1	Architectural cantilevers; Experiences perceived to defy gravity	BUILDING LANDSCAPE	 Building heights at least 5 times human height, cantilevered or supported by minor supports
P16	CURIOUSITY & EXCITEMENT	P1	Vibrant colours; Views & vistas; Transitional spaces; Complementary contrasts ; Elevated planes; Hierarchally organized ratios & scales	BUILDING LANDSCAPE	 Landscape with a quality of prospect Visual composition of open built such that open spaces revealed later than built Curving progressing paths towards a space
P17	CHANGE & METAMORPHOSIS	P1	Seasonal varying landscapes ; Diurnal variability of solar patterns	BUILDING LANDSCAPE	Mix plantations of deciduous & evergreen trees
P18	SECURITY & PROTECTION	P1 P12	Spaces with weather & climate protection; Drop or lowered ceiling.	BUILDING LANDSCAPE	□Visual connectivity in a space through various levels □Shaded interactive spaces
P19	ATTACHMENT		Views & vistas ; information richness ; Central focal point	BUILDING LANDSCAPE	
P20	ATTRACTION & BEAUTY	P1 P11 P4 P6	Landscapes; Complementary contrasts ; Spatial harmony	BUILDING LANDSCAPE	Complementary colours of landscape and the surrounding built form Caumaflauging of building into the landscape
P21	EXPLORATION & DISCOVERY	P1	Transitional spaces; Heightened planes ; Shade & shadow ; visual disconnect & perspective	LANDSCAPE	Creating visual perspectives with dark or low lit space at other end

Figure Shaded interactive courtyard

Figure Façade screening through staggered sunshades

Figure Shaded courts

P.NO	PATTERNS	INTER- RELATION	PICTORIAL REPRESENTATION	ATTRIBUTES PRESENT	DOMAIN OF APPLICABILITY	DESIGN CONSIDERATIONS
P1	VISUAL CONTACT	Ρ2		Vegetation; Animals; terrain; soil; moderately designed landscape	LANDSCAPE BUILDING	 Design to support visual connection that can be experienced for at least 5- 20 minutes a day Prioritizing real nature over simulated
P2	NON VISUAL CONTACT	P3 P4	Lagrant Ly without L	Weather ; Natural Ventilation (operable windows) ; herbs & flowers	LANDSCAPE	Connections easily accessed from one or multiple locations Through building openings facing open spaces
Р3	NON- RHYTHMIC SENSORY STIMULI			Cloud movement; Breezes	LANDSCAPE	
P4	THERMAL & AIRFLOW VARIABILITY	P1 P2		Solar heat gain ; Shade & shadow ; Radiant surface material ; vegetation with seasonal densification	BUILDING LANDSCAPE	Orientation of built form to suitably shade the interiors as well as promote self-shading due to adjacent structures
P6	DYNAMIC & DIFFUSE LIGHT	Ρ1		Daylight from multiple angles; Direct sunlight ; Diurnal & Seasonal light	BUILDING	Strategic usage of skylights and translucent materials like fibre-glass sheets, producing diffused lighting to interactive spaces
P7	CONNECTIONS WITH NATURAL SYSTEMS	P1 P2 P6		Simulated daylighting systems; Hedges & flowering vegetation	BUILDING LANDSCAPE	
P10	COMPLEXITY & ORDER	P1 P16		Exposed structure ; Façade material; Floor plan ; Building skyline	BUILDING LANDSCAPE	Structure revealing fractal geometry
P11	PROSPECT	P1 P12 P21		Elevated planes Views including shade trees; Shade shadow	BUILDING LANDSCAPE	 Orienting building; openings, fenestrations optimizing visual access to indoor & outdoor vistas, open interactive spaces. Where high ceilings present, building to be elevated 12"

Figure 6 Case Study- Analysis

IV. SCOPE & RECCOMENDATIONS

Biophilia has a great potential to be explored in Architectural context. The framework proposed has evolved a systematic procedure for conversion to practical recommendations, but lacks the detailed analysis and application of the framework during a design process.

It is crucial for the policy makers, planners and designers to adopt the proposal and modify it according to their respective domains, testing its applicability and generating a modified framework taking it a step closer to practical application. Experiential approach is also a method to test Biophilic Hypothesis. But it requires a high level of case studies, related to different domains of Architectural spaces.

REFERENCE

- Bloomer, K. (2008). The Problem of Viewing Nature Through Glass. In Kellert, S.F., J.H. eerwagen, & M.L. Mador (Eds.). Biophilic Design (253-262). Hoboken, NJ: John Wiley & Sons.
- [2] Browning, W.D., Ryan, C.O., Clancy, J.O. (2014). 14 Patterns of Biophilic Design. New York: Terrapin Bright Green, LLC.
- [3] Kellert, S.F. & B. Finnegan (2011). Biophilic Design: the Architecture of Life (Film). Bullfrog Films.
- [4] Stephen robert Kellert, Dimensions, elements, and attributes of biophilic design, Yale University, Retrieved on: 12 August 2016