
Big Data Meets Cloud Computing Integration

using the Importance of Virtualization

Prof. Manjunath R. Associate professor

Of Computer science Department and

City engineering college, affiliated to VTU

Karnataka, Bangalore, India

Student Akshatha A. and Sneha R of mtech in

Computer science Department and

City engineering college, affiliated to VTU

Karnataka, Bangalore, India

Abstract— Network traffic is a rich source of information for

security monitoring. However the increasing volume of data

to treat raises issues, rendering holistic analysis of network

traffic difficult. In this paper we propose a solution to cope

with the tremendous amount of data to analyse for security

monitoring perspectives. We introduce an architecture

dedicated to security monitoring of local enterprise networks.

The application domain of such a system is mainly network

intrusion detection and prevention, but can be used as well for

forensic analysis. This architecture integrates two systems,

one dedicated to scalable distributed data storage and

management and the other dedicated to data exploitation.

DNS data, Net Flow records, HTTP traffic and honeypot data

are mined and correlated in a distributed system that

leverages state of the art big data solution. Data correlation

schemes are proposed and their performance are evaluated

against several well-known big data framework including

Hadoop and Spark. Cloud computing is a modern technology

that increase application potentialities in terms of functioning,

elastic resource management and collaborative execution

approach. The central part of cloud computing is

virtualization which enables industry or academic IT

resources through on- demand allocation dynamically. The

resources have different forms such as network, server,

storage, application and client. This paper focus as on how

virtualization helps to improve elasticity of the resources

using cloud computing environment In Big Data.

Keywords— Big data, Cloud computing and Virtualization

I. INTRODUCTION

Cloud computing refers to a collaborative IT (Information

Technology) environment, which is planned with the

intention of measurable and remotely purveying scalable IT

resources for effective and efficient utilization. National

Institute of Standards and Technology (NIST) has given a

definition for Cloud computing which says that ―Cloud

Computing is a model for enabling convenient, on-demand

network access to a shared pool of configurable computing

resources (eg., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with

minimal management effort or service provider

interaction‖. Five essential characteristics of cloud

computing listed by NIST are on-demand self-service,

broad network access, resource pooling, rapid elasticity and

measured service. Mobile cloud computing is the

computing which refers to anytime, anywhere accessibility

to applications and data through internet using mobile

devices. Traditional computing resources are stored in an

individual device and accessed by an authenticated user. In

Cloud computing, resource are stored in centralized manner

and accessed on demand basis. In recent days, mobile

devices and subsequent mobile computing become an

imperative component in cloud computing. Internet made

the possibilities of accessing applications and data from

anywhere at any time. According to Juniper research , the

mobile users and enterprise market for mobile cloud based

applications worth are expected to increase to $9.5 billion

by 2014. Aepona describes that MCC (Mobile Cloud

Computing) as a new paradigm for mobile applications

whereby the data processing and storage are moved from

the mobile devices to powerful and centralized computing

platforms located in clouds. These centralized applications

are then accessed over the wireless connection based on a

thin native client or web browser on the mobile devices.

The detection and prevention of network intrusions is

recurrent security problem. It has been studied for over

thirty years with the first concept of Intrusion Detection

System (IDS) being proposed in 1987 . However it remains

an open research topic due to the constant evolution of

types of data to analyse. In addition, the adaptation of

attackers’ techniques to cope with new means of protection

and firewall policy makes it a continuously evolving field.

Moreover, it raises new challenging issues related to

identifying relevant features for intrusion detection, as well

the means of processing the increasing volume of

heterogeneous security data produced by a network. The

operations of Network Intrusion Detection Systems (NIDS)

rely on network traffic analysis, where Snort] and Suricata

are typical examples. Network traffic from several

protocols (HTTP, SIP, DNS, etc.) is inspected to find

anomalies. These anomalies are defined by rules that rely

on either signatures or anomalous traffic behaviour. If such

anomalies are observed, the system either raises an alert

(IDS) or stops the communication (IPS). Current IDSs

analyse several protocols and data and events observed by

them are correlated by SIEM (Security Information and

Event Management) in order to detect intrusions. One

shortcoming is that current solutions realizing in-depth

packet analysis are not scalable and adaptable to big

network producing high quantity of data.

The contribution of this paper are:

• We introduce a new intrusion detection architecture that

correlates several data sources (HTTP, DNS, IP flow, etc.),

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

1

• We propose a solution for processing and storing data

coming from different data storage system in a single

facility,

 • We present data correlation schemes useful for security

monitoring and evaluate these against several state of the

art distributed computing system including Hadoop and

Spark.

II. VIRTUALIZATION FOR CLOUD

Virtualization technology diverts the human’s perspective

for utilizing IT resources from physical to logical. The

goal of virtualization is to collaboratively utilize the IT

resources such as storage, processor and network to

maximum level and to reduce the cost of IT resources

which can be achieved by combining multiple idle

resources into shared pools and creating different virtual

machines to perform various tasks simultaneously. The

resources can be allocated or altered dynamically. User

should be conscious of basic techniques such as emulation,

hypervisor, full, para and hardware assisted virtualization

while using virtualization in cloud computing environment.

Emulation: It is a virtualization technique which converts

the behaviour of the computer hardware to a software

program and lies in the operating system layer which lies

on the hardware. Emulation provides enormous flexibility

to guest operating system but the speed of translation

process is low compared to hypervisor and requires a high

configuration of hardware resources to run the software.

Virtual Machine Monitor or Hypervisor: A software

layer that can monitor and virtualize the resources of a host

machine conferring to the user requirements. It is an

intermediate layer between operating system and hardware.

Basically, hypervisor is classified as native and hosted.

The native based hypervisor runs directly on the hardware

whereas host based hypervisor runs on the host operating

system. The software layer creates virtual resources such

as CPU, memory, storage and drivers.

Para Virtualization: This technique provides special

hyper calls that substitutes the instruction set architecture

of host machine. It relates communication between

hypervisor and guest operating system to improve

efficiency and performance. Accessing resources in para

virtualization is better than the full virtualization model

since all resources must be emulated in full virtualization

model. The drawback of this technique is to modify the

kernel of guest operating system using hyper calls. This

model is only suitable with open source operating systems.

Full Virtualization: Hypervisor creates isolated

environment

Between the guest or virtual server and the host or server

hardware. Operating systems directly access the hardware

controllers and its peripheral devices without cognizant of

virtualized environment and requirement modifications.

III. VIRTUALIZATION TYPES

There are three major types of virtualization such as Server
virtualization, Client virtualization and Storage

virtualization. The architecture and categorization of
virtualization techniques.

FIG 1: TYPES OF VIRTUALIZATION

Server Virtualization: In server virtualization, single

server performs the task of multiple servers by portioning

out the resources of an individual server across multi-

environment. The hypervisor layer allows for hosting

multiple applications and operating systems locally or

remotely. The advantages of virtualization include cost

savings, lower capital expenses, high availability and

efficient use of resources.

Client Virtualization: This client virtualization technology

makes the system administrator to virtually monitor and

update the client machines like workstation desktop, laptop

and mobile devices. It improves the client machines

management and enhances the security to defend from

hackers and cybercriminals. There are three types of client

virtualization . First, remote or server hosted virtualization

which is hosted on a server machine and operated by the

client across a network. Second, local or client hosted

virtualization in which the secured and virtualized

operating environment runs on local machine. Third,

application virtualization that provides multiple ways to

run an application which is not in traditional manner. In

this technique an isolated virtualized environment or

partitioning technique is used to run an application.

Storage Virtualization: It creates the abstraction of logical

storage from physical storage. Three kinds of data storage

are used in virtualization, they are DAS (Direct Attached

Storage), NAS (Network Attached Storage) and SAN

(Storage Area Network). DAS is the conventional method

of data storage where storage drives are directly attached to

server machine. NAS is the shared storage mechanism

which connects through network. The NAS is used for file

sharing, device sharing and backup storing among

machines. SAN is a storage device that are shared with

different server over a high accelerate network. Hypervisor

is the software package that controls working access to the

physical hardware of host machine. There are two kinds of

hypervisor models as hosted and bare metal / native.

Hosted hypervisor instance operates on top of the host

operating system whereas bare metal based hypervisor

operates directly on the hardware of host machine. Fig 2

shows the comparison between traditional, bare metal and

hosted models.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

2

FIG 2 TRADITIONAL MODEL VS BARE MODEL VS HOSTED

MODEL

Majority of obstacles arises in the acceptance and

development of virtualization and cloud computing are

concerned to the basic management aspects such as data

leakage, virtualization security threats, data remanense

issue, privacy and elastic resource management.

IV. DATA TORAGE AND PROCESSING

We briefly introduced in pevious section that the data

exploited by our system is captured at different points and

stored in various data storage systems (see Figure 1). This

data storage heterogeneity is due to specific requirements

for each kind of data (passive DNS, Dionaea, NetFlow).

During experiments our system was deployed in a 200

employees company having activities related to electronic

payment.

 To give an idea of the amount of data collected per time

period and justify the storage choices here are some values

measured during the testing phase:

• Dionaea honeypot: around 1,000 connection attempts

from 15 different hosts per day.

• NetFlow: average of 9,600,000 flows per day with an

export eve Minute (approximately 450 Megabytes).

 • DNS: around 13 million DNS replies per day

(approximately 1.5 Gigabyte). Dionaea honeypot, with few

daily connections initiated by few attackers does not have

high requirements. In addition over the observation period

some IP addresses seemed to be redundantly connecting

over time. A basic SQLite database is chosen to store the

logged information (IP, port, protocol, uploaded payload,

etc.). Consultation of the SQLite database is fast enough

for this small quantity of data. It is worth noting that even

with a larger network to monitor this amount of data would

not vary a lot. Having a network of 500 machines or 10,000

would not impact the quantity of data logged by a single

honeypot machine deployed in the network. Storing

NetFlow records is more challenging especially if we need

the approach to be scalable. NetFlow are exported using

nfdump every minutes in order to have an almost real time

view of the communications. NetFlow records are stored in

nfcapd format binary files on several distributed servers.

The use of several servers is not mandatory for our

example but the quantity of flows exported by a router

grows with the size of the network it serves. This choice for

Netflow Storage ensures to meet storage scalability require

ments for any network size. However it raises some issues

for data treatment as nfcapd files are binary files. Big data

framework such as Hadoop have an input format for

MapReduce tasks that is usually text based. Even though

Hadoop supports building sequence file format for binary

input/output, nfcapd files would have to be first converted

in a HDFS-specific (Hadoop Distributed File System)

sequence file before being uploaded. This process implies a

high computational over-head which is time consuming

and not acceptable for real-time security monitoring. The

alternative is to develop a new API that directly reads

NetFlow data in the native nfcapd format. Such solution is

proposed in through a binary input format for reading

packet and NetFlow records concurrently in HDFS. This

solution outperforms the previously cited one and is

proved fast, providing a throughput of 14 Gbps in a 200-

node testbed according to experiments performed in . As

for NetFlow, DNS monitoring produces a massive amount

of data as seen in our measurements. In addition this

volume of data grows with the number of users/machines

making DNS queries, i.e. the size of the network.

Contrarily to NetFlow, all data does not need to be stored

for DNS monitoring and only partial information is

extracted from DNS packets in order to avoid information

redundancy and save storage space. Typically, stored

information consists in all possible DNS resource records

for a domain name, the TTL of each, some flags, the

timestamp for first seen and last seen, etc. All DNS packets

do not need to be saved, hence we chose to store DNS

related information in a database.

To meet data storage and availability requirements, DNS

data is extracted from packets and stored in an Apache

Cassandra database. Cassandra is a distributed database

solution for data storage that exhibits high performance in

data access. It is a decentralized database allowing to store

Terabytes of data. In addition, Apache Cassandra integrates

Hadoop management since version 0.6 ensuring easy

interfacing with state of the art solution for big data

processing. This implementation ensures our architecture to

fit to larger network than the one we performed tests on.

V. P ERFORMANCE ANALYSIS

We presented in previous sections an architecture for large

scale monitoring. We described data extraction and storage

as well as theoretical correlation scheme and their

applications. In this section we test the proposed

correlation schemes against

Several big data management systems in order to find the

most suitable for such applications. Two well-known open

source big data frameworks are assessed, the popular

Apache Hadoop ecosystem and the Spark project from

AMP Lap of Berkeley University. We focus on

performance comparisons of five components of these two

frameworks namely Hadoop, Pig, Hive, Shark and Spark.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

3

VI. BIG DATA TOOLS PRESENTATION

We briefly present here the big data tools we used for the

performance assessment of our architecture. For a more

detailed description of these tools

• Hadoop is a distributed batch processing framework to

process and to analyse large scale datasets. It consists of

two primary components, which are HDFS (Hadoop File

System) and MapReduce data processing model [20].

Hadoop employs a master/slave architecture to manage a

cluster.

 • Hive is an open source data warehouse infrastructure

running on top of Hadoop. It proposes a high level

programming language that abstract the implementation of

MapReduce jobs to give an user-friendly interface to

Hadoop. Commands are expressed in the form of SQ Like

Queries, thanks to a language called HiveQL

 • Pig is also a high level distributed programming model

built on top of Hadoop. The main difference between Hive

and Pig is on their purpose. Hive is appropriate for

database users while Pig targets experienced programmers

who are not used to write declarative SQL query.

• Spark: Like Hadoop does, Spark proposes a distribute

data processing solution for data-intensive applications

with the difference that data to process is stored in-

memory. Spark has been proved up to 100 times faster than

Hadoop for specific tasks like iterative jobs.

• Shark is a sub-project of Spark that implements Hadoop’s

Hive on top of Spark such that it is fully compatible with

Hive.

 Experiments and Results The five big data solutions are

tested in four different scenarios relevant for the

computation of the metrics introduced in Section II-B.

Experiments were conducted on a cluster of eight machines

(one master node and seven slave nodes). Each machine

runs a 12.04.4 x86 Ubuntu operating system on an Intel(R)

Core(TM) 2 Duo with 4GB of RAM. The versions of

experimental frameworks are Hadoop-1.2.1, Hive-0.9.0,

Pig0.11.1 Spark-0.6.1 and Shark-0.2.1. The Spark

framework was assigned with 2 GB of memory per node

i.e. 14 GB of working memory in total. The dataset used

consists in 767 MB of network traffic. All the scenarios

were run ten times for each of the five framework.

The four scenarios are the followings:

• Scenario 1: find packets that match a given source IP

address and a given source port.

• Scenario 2: find packets containing a given substring in

their payload.

• Scenario 3: count the number of destination IP per source

IP and order the result.

 • Scenario 4: join two sets according to a common key i.e.

the source IP addresses Scenario 1 corresponds to finding

information according to two IP addresses that is given.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced a new scalable architecture for

protecting from and detecting network intrusions

virtualization techniques, virtualization types, hypervisor

techniques and challenges incloud computing system to

reduce IT costs and effective utilization of cloud resources

such as rapid elastic provisioning of virtual machines,

elastic application programming model. In addition, the

virtualization techniques get universal support when users

consider elastic resource management issues and security

issues before moving into cloud. In future, we aim to

develop new policies, framework and techniques to

maintain elastic resources and data availability, as a result,

the performances of cloud services could steps into next

higher level.. This system collects and stores in a

distributive manner honeypot data, DNS data, HTTP traffic

and IP-flow records. Several correlation schemes relying on

this data are introduced and their application, ranging from

intrusion detection to forensic analysis, are listed. Five state

of the art big data frameworks that can fit for such an

architecture are evaluated in four scenarios of data

correlation relevant for security monitoring. Out of this

performance analysis Spark and Shark appear to be the best

performers in all scenarios and thus the best suited to

implement the solution. Even though our architecture

computes score with few delay, it still use off-line analysis

tool with Hadoop and Shark. Future work will consist in

implementing the same system with on-line analysis big

data framework such as Spark Streaming or 0Storm. This

paper discussed various This study paper discussed various

issues pertaining to cloud services which can be used to

design strong frame work for effective elastic resource

management in cloud

REFERENCES

[1] J. P. Anderson, “Computer security threat monitoring and

surveillance,” Fort Washington, Pennsylvania, Tech. Rep., 1980.

[2] D. E. Denning, “An intrusion-detection model,” IEEE Transactions in

Software Engineering, vol. 13, no. 2, Feb. 1987.
[3] M. Roesch, “Snort - lightweight intrusion detection for networks,” in

Proceedings of the 13th USENIX conference on System

administration, ser. LISA ’99, 1999, pp. 229–238.
[4] V. Paxson, “Bro: a system for detecting network intruders in real-

time,” in Proceedings of the 7th conference on USENIX Security

Symposium Volume 7, ser. SSYM’98, 1998.
[5] “Suricata, open source ids/ips/nsm engine.” [Online]. Available:

http://www.suricata-ids.org

[6] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,

“Building a dynamic reputation system for DNS,” in Proceedings of

the 19th Usenix Security Symposium, 2010.

[7] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding
malicious domains using passive DNS analysis,” in Proceedings of

NDSS, 2011.

[8] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B.
Stiller, “An overview of ip flow-based intrusion detection,”

Communications Surveys Tutorials, IEEE, vol. 12, no. 3, pp. 343–

356, Third 2010.
[9] J. François, S. Wang, R. State, and T. Engel, “Bottrack: Tracking

botnets using netflow and pagerank,” in Proceedings of the 10th

International IFIP TC 6 Conference on Networking - Volume Part I,
ser. NETWORKING’11. Berlin, Heidelberg: Springer-Verlag, 2011,

pp. 1–14.

[10] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion
detection signatures using honeypots,” SIGCOMM Comput.

Commun. Rev.,vol. 34, no. 1, pp. 51–56, Jan. 2004

[11] F. Weimer, “Passive dns replication,” in Proceedings of the 17th
Annual FIRST Conference on Computer Security Incident Handling,

2005.

[12] R. Edmonds, “ISC Passive DNS Architecture,” Internet Systems
Consortium, Inc., Tech. Rep., 2012. [Online]. Available: https:

//security.isc.org/Passive DNS/passive-dns-architecture.pdf

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

4

[13] A. Lakshman and P. Malik, “Cassandra: structured storage system on

a p2p network,” in Proceedings of the 28th ACM symposium on
Principles of distributed computing, ser. PODC ’09. New York, NY,

USA: ACM, 2009, pp. 5–5.

[14] “Cisco netflow.” [Online]. Available: http://www.cisco.com/web/go/
netflow

[15] “Dionaea, catches bugs.” [Online]. Available:

http://dionaea.carnivore.it/
[16] S. Marchal, J. Franc¸ois, C. Wagner, R. State, A. Dulaunoy, T. Engel,

[17] P. Mell, T. Grance, ―The NIST Definition of Cloud Computing‖,

National Institute of Standards and Technology, Information
Technology Laboratory, Technical Report Version 15, 2009.

[18] S. Perez, ―Mobile cloud computing: $9.5 billion by 2014‖,

http://exoplanet.eu/catalog.php, 2010.
[19] White Paper, ―Mobile Cloud Computing Solution Brief,‖ AEPONA,

November 2010.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

5

