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Big data is an evolving term that describes any voluminous 

amount of structured, semi structured and unstructured data 

that has the potential to be mined for information. Big data can 

be structured, unstructured or semi-structured, resulting in 

incapability of conventional data management methods. Data is 

generated from various different sources and can arrive in the 

system at various rates. In order to process these large amounts 

of data in an inexpensive and efficient way, parallelism is used. 

Big Data is a data whose scale, diversity, and complexity require 

new architecture, techniques, algorithms, and analytics to 

manage it and extract value and hidden knowledge from it. 

Hadoop is the core platform for structuring Big Data, and solves 

the problem of making it useful for analytics purposes. Hadoop 

is an open source software project that enables the distributed 

processing of large data sets across clusters of commodity 

servers. It is designed to scale up from a single server to 

thousands of machines, with a very high degree of fault 

tolerance.   
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I INTRODUCTION 

A. Big Data: 

Big data is a term that refers to data sets or combinations of 

data sets whose size, complexity, and rate of growth 

(velocity) make them difficult to be captured, managed, 

processed or analyzed by conventional technologies and tools, 

like as relational databases and desktop statistics or 

visualization packages, within the time necessary to make 

them useful. While the size used to determine whether a 

particular data set is considered big data is not firmly defined 

and continues to change over time, most analysts and 

practitioners currently refer to data sets from ‘30-50’ 

terabytes(10 12 or 1000 gigabytes per terabyte) to multiple 

petabytes (1015 or 1000 terabytes per petabyte). It can be 

decomposed into 3 layers, including Infrastructure Layer, 

Computing Layer, and Application Layer from top to 

bottom[1].  

B. 3 Vs of Big Data  

Volume of data: “Volume refers to amount of data”. Volume 

of data stored in enterprise repositories have grown from 

megabytes and gigabytes to petabytes.   

Variety of data: “Different types of data and sources of data”. 

Data variety exploded from structured and legacy data stored 

in enterprise repositories to unstructured, semi structured, 

audio, video, XML etc.   

Velocity of data:”Velocity refers to the speed of data 

processing”. For time-sensitive processes such as catching 

fraud, big data must be used as it streams into your enterprise 

in order to maximize its value.  

C. Problem with Big Data Processing  

i). Heterogeneity and Incompleteness When humans consume 

information, a great deal of heterogeneity is comfortably 

tolerated. However, machine analysis algorithms expect 

homogeneous data, and cannot understand nuance. In 

consequence, data must be carefully structured as a first step 

in (or prior to) data analysis. Computer systems work most 

efficiently if they can store multiple items that are all identical 

in size and structure. Efficient representation, access, and 

analysis of semi-structured data require further work. 

ii). Scale Of course, the first thing anyone thinks of with Big 

Data is its size. After all, the word “big” is there in the very 

name. Managing large and rapidly increasing volumes of data 

has been a challenging issue for many decades. In the past, 

this challenge was mitigated by processors getting faster, 

following Moore’s law, to provide us with the resources 

needed to cope with increasing volumes of data. But, there is 

a fundamental shift underway now: data volume is scaling 

faster than compute resources, and CPU speeds are static.  

iii). Timeliness The flip side of size is speed. The larger the 

data set to be processed, the longer it will take to analyze. The 

design of a system that effectively deals with size is likely 

also to result in a system that can process a given size of data 

set faster. However, it is not just this speed that is usually 

meant when one speaks of Velocity in the context of Big 

Data. Rather, there is an acquisition rate challenge  

iv). Privacy The privacy of data is another huge concern, and 

one that increases in the context of Big Data. For electronic 

health records, there are strict laws governing what can and 

cannot be done. For other data, regulations, particularly in the 

US, are less forceful. However, there is great public fear 

regarding the inappropriate use of personal data, particularly 

through linking of data from multiple sources. Managing 

privacy is effectively both a technical and a sociological 
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problem, which must be addressed jointly from both 

perspectives to realize the promise of big data.  

v). Human Collaboration In spite of the tremendous advances 

made in computational analysis, there remain many patterns 

that humans can easily detect but computer algorithms have a 

hard time finding. Ideally, analytics for Big Data will not be 

all computational rather it will be designed explicitly to have 

a human in the loop. The new sub-field of visual analytics is 

attempting to do this, at least with respect to the modeling and 

analysis phase in the pipeline. In today’s complex world, it 

often takes multiple experts from different domains to really 

understand what is going on. A Big Data analysis system 

must support input from multiple human experts, and shared 

exploration of results. These multiple experts may be 

separated in space and time when it is too expensive to 

assemble an entire team together in one room. The data 

system has to accept this distributed expert input, and support 

their collaboration.  

II HADOOP: SOLUTION FOR BIG DATA 

PROCESSING 

“Hadoop” is a Programming framework used to support the 

processing of large data sets in a distributed computing 

environment. Hadoop was developed by Google’s 

MapReduce that is a software framework where an 

application break down into various parts. The Current 

ApacheHadoop ecosystem consists of the Hadoop Kernel, 

Map Reduce, HDFS and numbers of various components like 

Apache Hive, Base and Zookeeper. HDFS and Map Reduce 

are explained in following points. 

III HDFS ARCHITECTURE: 

 
Fig: 1 

   The placement of the replicas is paramount to HDFS 

reliability and performance. Having the opportunity to 

optimize the replica placement scenarios is considered a 

feature that distinguishes HDFS from most of the other 

distributed file systems. It has to be pointed out though that 

the process of optimizing the replica placements requires 

tuning and experience. A rack-aware replica placement policy 

focuses on improving data reliability, availability, as well as 

to optimize network bandwidth utilization. Most HDFS 

installations execute in a cluster environment that 

encompasses many racks. Inter-rack node communication 

travels through switches. In most configurations, the 

bandwidth potential among nodes in the same rack is greater 

than the network bandwidth among nodes hosted in different 

racks. It has to be pointed out that the rack ID for the 

DataNodes can be manually defined and maintained. One 

policy option would be to place replicas on individual racks, 

preventing data loss scenarios when an entire rack fails, while 

allowing for aggregate bandwidth usage from multiple racks 

while reading data. Such a policy evenly distributes the 

replicas in the cluster, nicely focusing on load balancing and 

component failure scenarios. However, this policy increases 

the cost of write operations, as each write request requires 

transferring blocks to multiple racks[2].   

For a common case that operates on a replication factor of 3, 

the HDFS placement policy is to store 1 replica on a node in 

the local rack, another replica on a different node in the same 

local rack, and the last replica on a different node in a 

different rack. This policy addresses the inter-rack write 

traffic scenario discussed above and generally improves the 

write performance. The chance of a rack failure is far less 

than a node failure and hence, this policy does not impact data 

reliability and availability guarantees. However, it does 

reduce the aggregate network bandwidth used when reading 

data, as a block is placed in only two unique racks rather than 

three. With this policy, the replicas of a file do not evenly 

distribute across the racks. 2/3 of the replicas are on one rack, 

and the other 3rdis evenly distributed across the remaining 

racks. This policy improves write performance without 

compromising data reliability or read performance. To 

minimize network bandwidth consumption and maximize 

read latency, HDFS' design objective is to process any read 

request from the data replica closest to the read task. Hence, if 

there is a replica on the same rack as the read task, that replica 

represents the preferred data location for the read request. In 

large HDFS environments that may span multiple data 

centers, the goal is to operate on a replica that is available in 

the local data center where the read task is issued.   

 

IV HADOOP MAP REDUCE ARCHITECTURE: 

 The Hadoop Map Reduce MRv1 framework is based on a 

centralized master/slave architecture. The architecture utilizes 

a single master server (Job Tracker) and several slave servers 

(Task Tracker's). Please see Appendix A for a discussion on 

the Map Reduce MRv2 framework. The Job Tracker 

represents a centralized program that keeps track of the slave 

nodes, and provides an interface infrastructure for job 

submission. The Task Tracker executes on each of the slave 

nodes where the actual data is normally stored. In other 

words, the Job Tracker reflects the interaction point among 

the users and the Hadoop framework. Users submit Map 

Reduce jobs to the Job Tracker, which inserts the jobs into the 

pending jobs queue and executes them (normally) on a FIFO 

basis. The Job Tracker manages the map and reduce task 

assignments with the Task Tracker's. The Task Tracker's 

execute the jobs based on the instructions from the Job 

Tracker and handle the data movement between the map and 

reduce phases, respectively. Any map/reduce construct 

basically reflects a special form of a Directed Acyclic Graph 

(DAG). A DAG can execute anywhere in parallel, as long as 

one entity is not an ancestor of another entity. In other words, 
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parallelism is achieved when there are no hidden 

dependencies among shared states. In the MapReduce model, 

the internal organization is based on the map function that 

transforms a piece of data into entities of [key, value] pairs. 

Each of these elements is sorted (via their key) and ultimately 

reaches the same cluster node where a reduce function is used 

to merge the values (with the same key) into a single result 

(see code below).  
 

V HDFS BLOCK REPLICATION 
 

 
 

Fig: 2 
 

At startup, the NameNode enters a special (transient) state 

that is labeled the safe mode. While in this state, the 

NameNode accepts heartbeat and block report messages from 

the DataNodes. As already discussed the block report lists the 

data blocks that the DataNodes are hosting. Each data block is 

linked to a specific (minimum) number of replicas. A data 

block is considered fully replicated when the minimum 

number of replicas for that particular data block has been 

confirmed with the NameNode. After a certain percentage 

(this is tunable) of fully replicated data blocks is reached, the 

NameNode stalls for another 30 seconds, and afterwards exits 

the safemode state. The next task for the NameNode is to 

compile a list of data blocks (if any) that still have fewer than 

the specified number of replicas available, and to replicate 

these data blocks unto some other DataNodes. The 

NameNode retains a transaction log to persistently record 

every change made to file system metadata. To illustrate, 

creating a new file or changing the replication factor for a file 

triggers a record insert operation into the editlog. The edit log 

file itself is stored in the NameNode's local host file system. 

The HDFS namespace is maintained by the NameNode, as the 

entire namespace, including the data block file mapping and 

file system properties are stored in the HDFS fsimage file. 

Similar to the editlog file, the fsimage file is located in the 

NameNode's local file system. The NameNode retains an 

image of the file system namespace and the block map file in 

memory. As the NameNode boots up, the fsimage and editlog 

files are read from disk and all the (potential) editlog 

transactions are mapped into the fsimage in-memory copy and 

then flushed out to a new version of the fsimage file. At that 

point, the old editlog file is truncated, as the transactions have 

been securely applied to the persistent fsimage file (this 

process is labeled as a checkpoint). The fsimage and the 

editlog files are considered core HDFS data structures. A 

corruption of these files can cause the HDFS instance to 

become non-functional. Hence, a NameNode should be 

configured so that multiple copies of the two files are being 

maintained. In other words, any update to either the fsimage 

or editlog triggers a synchronous update to multiple copies of 

the 2 files[3]. As most Hadoop/HDFS applications are not 

metadata intensive, maintaining several copies of the 2 files is 

not considered a significant performance issue. The HDFS 

communication protocols are stacked on top of TCP/IP. A 

client system basically establishes a TCP connection (via a 

configurable port) to the NameNode, utilizing the client 

protocol as the communication entity. The DataNodes 

communicate with the NameNode via the DataNode protocol. 

A remote procedure call (RPC) wrapper encompasses the 

client, as well as the DataNode protocols, respectively. By 

design, the NameNode never initiates any RPC requests. 

Instead, the NameNode only responds to RPC requests that 

are issued by either the DataNodes or the clients[4].   

 It has to be pointed out that a client request to create a file 

does not reach the NameNode instantaneously, as the HDFS 

client caches the file data in a temporary local file. Any 

application write requests are transparently redirected to this 

temporary local file until the size of the local file reaches the 

HDFS block size. At that point, the client contacts the 

NameNode which adds the file name into the file system 

hierarchy and allocates an HDFS data block. Next, the 

NameNode responds to the client request by identifying a 

DataNode and a target data block. After that, the client flushes 

the data block from the temporary local file to the specified 

DataNode. When a file is closed, any (potentially) un-flushed 

data being held in the temporary local file is transferred to the 

DataNode as well. After the “close()” operation, the client 

informs the NameNode that the file has been closed. That 

indicates to the NameNode to commit the file creation 

operation into persistent storage. This client-side caching 

architecture was chosen to minimize network congestion and 

to optimize network throughput. To illustrate, based on the 

discussed write example, the assumption made is that the 

HDFS file is configured with a replication factor of 3. As the 

local file accumulated enough data for an entire block, the 

client retrieves a list from the NameNode that outlines the 

DataNodes that will host a replica block. Based on the list, the 

client starts transferring data to the first DataNode. The first 

DataNode receives the data in small chunks (normally 4KB 

blocks), writes each portion of the data block to a local 

repository, and then transfers that portion of the data to the 

second DataNode on the list. The second DataNode operates 

in the same way, and hence transfers its data chunks to the 3d 

DataNode on the list. Ultimately, the 3d DataNode receives 

the data and writes the data chunks into its local repository. In 

other words, depending on the order, a DataNode may 

simultaneously be receiving data from a previous node while 

sending data to the next DataNode in the pipeline.   

 

VI THE HADOOP SCHEDULERS 

 Since the pluggable scheduler framework (similar to the 

Linux IO schedulers) was introduced, several different 

scheduler algorithms have been designed, developed, and 

made available to the Hadoop community. In the next few 

paragraphs, the FIFO, the Fair, as well as the Capacity 

schedulers are briefly introduced.    
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-> FIFO reflects the original Hadoop 

scheduling algorithm that was integrated into the JobTracker 

framework. With FIFO scheduling, a JobTracker basically 

just pulls the oldest job from the work queue. The FIFO 

scheduling approach has no concept of either job priority or 

job size, but is rather simple to implement and efficient to 

execute (very low overhead).   

 

-> Originally, the Fair scheduler was 

developed by Facebook. The fundamental design objective for 

the Fair scheduler revolves around the idea to assign 

resources to jobs in a way that (on average) over time, each 

job receives an equal share of the available resources. With 

the Fair scheduler, there is a certain degree of interactivity 

among Hadoop jobs, permitting a Hadoop cluster to better 

response to the variety of job types that are submitted over 

time. From an implementation perspective, a set of pools is 

setup, and the jobs are placed into these pools and so are 

made available for selection by the scheduler. Each pool 

operates on shares to balance the resource usage among the 

jobs in the pools. The heuristic used is that the more shares 

the greater the resource usage potential to execute the jobs. 

By default, all pools are setup with equal shares, but 

configuration based pool share adjustments can be made 

based on job types. The number of concurrent active jobs can 

be constrained to minimize congestion and to allow the 

workload to be processed in a timely manner. To ensure 

fairness, each user is assigned to a pool. Regardless of the 

shares that are assigned to the pools, if the system is 

underutilized (based on the current workload), the active jobs 

receive the unused shares (the shares are split among the 

current jobs). For each job, the scheduler keeps track of the 

compute time. Periodically, the scheduler examines the jobs 

to calculate the delta between the actual compute time 

received and the compute time that the job should have 

received. The results reflect the deficit matrix for the tasks. It 

is the scheduler's responsibility to schedule the task with the 

greatest deficit.   

 

-> Originally, the Capacity 

scheduler was developed by Yahoo. The design focus for the 

Capacity scheduler was on large cluster environments that 

execute many independent applications. Hence, the Capacity 

scheduler provides the ability to provide a minimum capacity 

guarantee, as well as to share excess capacity among the 

users. The Capacity scheduler operates on queues. Each queue 

can be configured with a certain number of map and reduce 

slots. Further, each queue can be assigned a guaranteed 

capacity while the overall capacity of the cluster equals to the 

sum of all the individual queue capacity values. All the 

queues are actively monitored and in scenarios where a queue 

is not consuming its allocated capacity potential, the excess 

capacity can be temporarily allocated to other queues. 

Compared to the Fair scheduler, the Capacity scheduler 

controls all the prioritizing tasks within a queue. In general, 

higher priority jobs are allowed access to the cluster resources 

earlier than lower priority jobs. With the Capacity scheduler, 

queue properties can be adjusted on-the-fly, and hence do not 

require any disruptions in the cluster usage/processing [1].   

 

While not considered a scheduler per se, Hadoop also 

supports the scheme of provisioning virtual cluster 

environments (within physical clusters). This concept is 

labeled HadoopOn Demand (HOD). The HOD approach 

utilizes the Torque resource manager for node allocation to 

size the virtual cluster. Within the virtual environment, the 

HOD system prepares the configuration files in an automated 

manner, and initializes the system based on the nodes that 

comprise the virtual cluster. Once initialized, the HOD virtual 

cluster can be used in a rather independent manner. A certain 

level of elasticity is build into HOD, as the system adapts to 

changing workload conditions. To illustrate, HOD 

automatically de-allocates nodes from the virtual cluster after 

detecting no active jobs over a certain time period. This 

shrinking behavior allows for the most efficient usage of the 

overall physical cluster assets.hadoop on demand is 

considered as a valuable option for deploying Hadoop clusters 

within a cloud infrastructure.   
 

VII CONCLUSIONS 

 The additional studies executed on the Hadoop cluster 

showed that a rather large data set (high space density) is 

required for the discussed akNN methodology to operate 

efficiently and effectively. Scaling k in the benchmark sets 

disclosed a rather substantial processing cost increase that is 

mainly due to executing additional, larger MapReduce records 

in the S3 and S4 processing cycles. In a nutshell though, 

Hadoop’sMapReduce and HDFS infrastructure provides 

straightforward and robust techniques that operate on 

commodity (inexpensive) HW, and does provide high data 

availability features to the user community. For (very) large, 

unstructured datasets, Hadoop provides the IT performance 

infrastructure necessary to deliver results in a timely fashion.   

These technical challenges must be addressed for efficient and 

fast processing of Big Data. The challenges include not just 

the obvious issues of scale, but also heterogeneity, lack of 

structure, error-handling, privacy, timeliness, provenance, and 

visualization, at all stages of the analysis pipeline from data 

acquisition to result interpretation. These technical challenges 

are common across a large variety of application domains, 

and therefore not costeffective to address in the context of one 

domain alone. 
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