

Big Data and Hadoop

Bhavna Gahlot1, ,

1M.Tech

Department of Computer Science and Engineering

Gitam, Mdu Rohtak

Mr. Ashish Kumar Sharma2
2Assistant Professor

 Department of Computer Science and Engineering and

C.F.I.S,

 Gitam, Mdu

Mr. Jony Birla3
2Assistant Professor

Department of Computer Science and Engineering,

 Gitam, Mdu Rohtak

Big data is an evolving term that describes any voluminous

amount of structured, semi structured and unstructured data

that has the potential to be mined for information. Big data can

be structured, unstructured or semi-structured, resulting in

incapability of conventional data management methods. Data is

generated from various different sources and can arrive in the

system at various rates. In order to process these large amounts

of data in an inexpensive and efficient way, parallelism is used.

Big Data is a data whose scale, diversity, and complexity require

new architecture, techniques, algorithms, and analytics to

manage it and extract value and hidden knowledge from it.

Hadoop is the core platform for structuring Big Data, and solves

the problem of making it useful for analytics purposes. Hadoop

is an open source software project that enables the distributed

processing of large data sets across clusters of commodity

servers. It is designed to scale up from a single server to

thousands of machines, with a very high degree of fault

tolerance.

Keywords - Big Data, Hadoop, Map Reduce, HDFS, Hadoop

Components

I INTRODUCTION

A. Big Data:

Big data is a term that refers to data sets or combinations of

data sets whose size, complexity, and rate of growth

(velocity) make them difficult to be captured, managed,

processed or analyzed by conventional technologies and tools,

like as relational databases and desktop statistics or

visualization packages, within the time necessary to make

them useful. While the size used to determine whether a

particular data set is considered big data is not firmly defined

and continues to change over time, most analysts and

practitioners currently refer to data sets from ‘30-50’

terabytes(10 12 or 1000 gigabytes per terabyte) to multiple

petabytes (1015 or 1000 terabytes per petabyte). It can be

decomposed into 3 layers, including Infrastructure Layer,

Computing Layer, and Application Layer from top to

bottom[1].

B. 3 Vs of Big Data

Volume of data: “Volume refers to amount of data”. Volume

of data stored in enterprise repositories have grown from

megabytes and gigabytes to petabytes.

Variety of data: “Different types of data and sources of data”.

Data variety exploded from structured and legacy data stored

in enterprise repositories to unstructured, semi structured,

audio, video, XML etc.

Velocity of data:”Velocity refers to the speed of data

processing”. For time-sensitive processes such as catching

fraud, big data must be used as it streams into your enterprise

in order to maximize its value.

C. Problem with Big Data Processing

i). Heterogeneity and Incompleteness When humans consume

information, a great deal of heterogeneity is comfortably

tolerated. However, machine analysis algorithms expect

homogeneous data, and cannot understand nuance. In

consequence, data must be carefully structured as a first step

in (or prior to) data analysis. Computer systems work most

efficiently if they can store multiple items that are all identical

in size and structure. Efficient representation, access, and

analysis of semi-structured data require further work.

ii). Scale Of course, the first thing anyone thinks of with Big

Data is its size. After all, the word “big” is there in the very

name. Managing large and rapidly increasing volumes of data

has been a challenging issue for many decades. In the past,

this challenge was mitigated by processors getting faster,

following Moore’s law, to provide us with the resources

needed to cope with increasing volumes of data. But, there is

a fundamental shift underway now: data volume is scaling

faster than compute resources, and CPU speeds are static.

iii). Timeliness The flip side of size is speed. The larger the

data set to be processed, the longer it will take to analyze. The

design of a system that effectively deals with size is likely

also to result in a system that can process a given size of data

set faster. However, it is not just this speed that is usually

meant when one speaks of Velocity in the context of Big

Data. Rather, there is an acquisition rate challenge

iv). Privacy The privacy of data is another huge concern, and

one that increases in the context of Big Data. For electronic

health records, there are strict laws governing what can and

cannot be done. For other data, regulations, particularly in the

US, are less forceful. However, there is great public fear

regarding the inappropriate use of personal data, particularly

through linking of data from multiple sources. Managing

privacy is effectively both a technical and a sociological

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

1

problem, which must be addressed jointly from both

perspectives to realize the promise of big data.

v). Human Collaboration In spite of the tremendous advances

made in computational analysis, there remain many patterns

that humans can easily detect but computer algorithms have a

hard time finding. Ideally, analytics for Big Data will not be

all computational rather it will be designed explicitly to have

a human in the loop. The new sub-field of visual analytics is

attempting to do this, at least with respect to the modeling and

analysis phase in the pipeline. In today’s complex world, it

often takes multiple experts from different domains to really

understand what is going on. A Big Data analysis system

must support input from multiple human experts, and shared

exploration of results. These multiple experts may be

separated in space and time when it is too expensive to

assemble an entire team together in one room. The data

system has to accept this distributed expert input, and support

their collaboration.

II HADOOP: SOLUTION FOR BIG DATA

PROCESSING

“Hadoop” is a Programming framework used to support the

processing of large data sets in a distributed computing

environment. Hadoop was developed by Google’s

MapReduce that is a software framework where an

application break down into various parts. The Current

ApacheHadoop ecosystem consists of the Hadoop Kernel,

Map Reduce, HDFS and numbers of various components like

Apache Hive, Base and Zookeeper. HDFS and Map Reduce

are explained in following points.

III HDFS ARCHITECTURE:

Fig: 1

 The placement of the replicas is paramount to HDFS

reliability and performance. Having the opportunity to

optimize the replica placement scenarios is considered a

feature that distinguishes HDFS from most of the other

distributed file systems. It has to be pointed out though that

the process of optimizing the replica placements requires

tuning and experience. A rack-aware replica placement policy

focuses on improving data reliability, availability, as well as

to optimize network bandwidth utilization. Most HDFS

installations execute in a cluster environment that

encompasses many racks. Inter-rack node communication

travels through switches. In most configurations, the

bandwidth potential among nodes in the same rack is greater

than the network bandwidth among nodes hosted in different

racks. It has to be pointed out that the rack ID for the

DataNodes can be manually defined and maintained. One

policy option would be to place replicas on individual racks,

preventing data loss scenarios when an entire rack fails, while

allowing for aggregate bandwidth usage from multiple racks

while reading data. Such a policy evenly distributes the

replicas in the cluster, nicely focusing on load balancing and

component failure scenarios. However, this policy increases

the cost of write operations, as each write request requires

transferring blocks to multiple racks[2].

For a common case that operates on a replication factor of 3,

the HDFS placement policy is to store 1 replica on a node in

the local rack, another replica on a different node in the same

local rack, and the last replica on a different node in a

different rack. This policy addresses the inter-rack write

traffic scenario discussed above and generally improves the

write performance. The chance of a rack failure is far less

than a node failure and hence, this policy does not impact data

reliability and availability guarantees. However, it does

reduce the aggregate network bandwidth used when reading

data, as a block is placed in only two unique racks rather than

three. With this policy, the replicas of a file do not evenly

distribute across the racks. 2/3 of the replicas are on one rack,

and the other 3rdis evenly distributed across the remaining

racks. This policy improves write performance without

compromising data reliability or read performance. To

minimize network bandwidth consumption and maximize

read latency, HDFS' design objective is to process any read

request from the data replica closest to the read task. Hence, if

there is a replica on the same rack as the read task, that replica

represents the preferred data location for the read request. In

large HDFS environments that may span multiple data

centers, the goal is to operate on a replica that is available in

the local data center where the read task is issued.

IV HADOOP MAP REDUCE ARCHITECTURE:

 The Hadoop Map Reduce MRv1 framework is based on a

centralized master/slave architecture. The architecture utilizes

a single master server (Job Tracker) and several slave servers

(Task Tracker's). Please see Appendix A for a discussion on

the Map Reduce MRv2 framework. The Job Tracker

represents a centralized program that keeps track of the slave

nodes, and provides an interface infrastructure for job

submission. The Task Tracker executes on each of the slave

nodes where the actual data is normally stored. In other

words, the Job Tracker reflects the interaction point among

the users and the Hadoop framework. Users submit Map

Reduce jobs to the Job Tracker, which inserts the jobs into the

pending jobs queue and executes them (normally) on a FIFO

basis. The Job Tracker manages the map and reduce task

assignments with the Task Tracker's. The Task Tracker's

execute the jobs based on the instructions from the Job

Tracker and handle the data movement between the map and

reduce phases, respectively. Any map/reduce construct

basically reflects a special form of a Directed Acyclic Graph

(DAG). A DAG can execute anywhere in parallel, as long as

one entity is not an ancestor of another entity. In other words,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

2

parallelism is achieved when there are no hidden

dependencies among shared states. In the MapReduce model,

the internal organization is based on the map function that

transforms a piece of data into entities of [key, value] pairs.

Each of these elements is sorted (via their key) and ultimately

reaches the same cluster node where a reduce function is used

to merge the values (with the same key) into a single result

(see code below).

V HDFS BLOCK REPLICATION

Fig: 2

At startup, the NameNode enters a special (transient) state

that is labeled the safe mode. While in this state, the

NameNode accepts heartbeat and block report messages from

the DataNodes. As already discussed the block report lists the

data blocks that the DataNodes are hosting. Each data block is

linked to a specific (minimum) number of replicas. A data

block is considered fully replicated when the minimum

number of replicas for that particular data block has been

confirmed with the NameNode. After a certain percentage

(this is tunable) of fully replicated data blocks is reached, the

NameNode stalls for another 30 seconds, and afterwards exits

the safemode state. The next task for the NameNode is to

compile a list of data blocks (if any) that still have fewer than

the specified number of replicas available, and to replicate

these data blocks unto some other DataNodes. The

NameNode retains a transaction log to persistently record

every change made to file system metadata. To illustrate,

creating a new file or changing the replication factor for a file

triggers a record insert operation into the editlog. The edit log

file itself is stored in the NameNode's local host file system.

The HDFS namespace is maintained by the NameNode, as the

entire namespace, including the data block file mapping and

file system properties are stored in the HDFS fsimage file.

Similar to the editlog file, the fsimage file is located in the

NameNode's local file system. The NameNode retains an

image of the file system namespace and the block map file in

memory. As the NameNode boots up, the fsimage and editlog

files are read from disk and all the (potential) editlog

transactions are mapped into the fsimage in-memory copy and

then flushed out to a new version of the fsimage file. At that

point, the old editlog file is truncated, as the transactions have

been securely applied to the persistent fsimage file (this

process is labeled as a checkpoint). The fsimage and the

editlog files are considered core HDFS data structures. A

corruption of these files can cause the HDFS instance to

become non-functional. Hence, a NameNode should be

configured so that multiple copies of the two files are being

maintained. In other words, any update to either the fsimage

or editlog triggers a synchronous update to multiple copies of

the 2 files[3]. As most Hadoop/HDFS applications are not

metadata intensive, maintaining several copies of the 2 files is

not considered a significant performance issue. The HDFS

communication protocols are stacked on top of TCP/IP. A

client system basically establishes a TCP connection (via a

configurable port) to the NameNode, utilizing the client

protocol as the communication entity. The DataNodes

communicate with the NameNode via the DataNode protocol.

A remote procedure call (RPC) wrapper encompasses the

client, as well as the DataNode protocols, respectively. By

design, the NameNode never initiates any RPC requests.

Instead, the NameNode only responds to RPC requests that

are issued by either the DataNodes or the clients[4].

 It has to be pointed out that a client request to create a file

does not reach the NameNode instantaneously, as the HDFS

client caches the file data in a temporary local file. Any

application write requests are transparently redirected to this

temporary local file until the size of the local file reaches the

HDFS block size. At that point, the client contacts the

NameNode which adds the file name into the file system

hierarchy and allocates an HDFS data block. Next, the

NameNode responds to the client request by identifying a

DataNode and a target data block. After that, the client flushes

the data block from the temporary local file to the specified

DataNode. When a file is closed, any (potentially) un-flushed

data being held in the temporary local file is transferred to the

DataNode as well. After the “close()” operation, the client

informs the NameNode that the file has been closed. That

indicates to the NameNode to commit the file creation

operation into persistent storage. This client-side caching

architecture was chosen to minimize network congestion and

to optimize network throughput. To illustrate, based on the

discussed write example, the assumption made is that the

HDFS file is configured with a replication factor of 3. As the

local file accumulated enough data for an entire block, the

client retrieves a list from the NameNode that outlines the

DataNodes that will host a replica block. Based on the list, the

client starts transferring data to the first DataNode. The first

DataNode receives the data in small chunks (normally 4KB

blocks), writes each portion of the data block to a local

repository, and then transfers that portion of the data to the

second DataNode on the list. The second DataNode operates

in the same way, and hence transfers its data chunks to the 3d

DataNode on the list. Ultimately, the 3d DataNode receives

the data and writes the data chunks into its local repository. In

other words, depending on the order, a DataNode may

simultaneously be receiving data from a previous node while

sending data to the next DataNode in the pipeline.

VI THE HADOOP SCHEDULERS

 Since the pluggable scheduler framework (similar to the

Linux IO schedulers) was introduced, several different

scheduler algorithms have been designed, developed, and

made available to the Hadoop community. In the next few

paragraphs, the FIFO, the Fair, as well as the Capacity

schedulers are briefly introduced.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

3

-> FIFO reflects the original Hadoop

scheduling algorithm that was integrated into the JobTracker

framework. With FIFO scheduling, a JobTracker basically

just pulls the oldest job from the work queue. The FIFO

scheduling approach has no concept of either job priority or

job size, but is rather simple to implement and efficient to

execute (very low overhead).

-> Originally, the Fair scheduler was

developed by Facebook. The fundamental design objective for

the Fair scheduler revolves around the idea to assign

resources to jobs in a way that (on average) over time, each

job receives an equal share of the available resources. With

the Fair scheduler, there is a certain degree of interactivity

among Hadoop jobs, permitting a Hadoop cluster to better

response to the variety of job types that are submitted over

time. From an implementation perspective, a set of pools is

setup, and the jobs are placed into these pools and so are

made available for selection by the scheduler. Each pool

operates on shares to balance the resource usage among the

jobs in the pools. The heuristic used is that the more shares

the greater the resource usage potential to execute the jobs.

By default, all pools are setup with equal shares, but

configuration based pool share adjustments can be made

based on job types. The number of concurrent active jobs can

be constrained to minimize congestion and to allow the

workload to be processed in a timely manner. To ensure

fairness, each user is assigned to a pool. Regardless of the

shares that are assigned to the pools, if the system is

underutilized (based on the current workload), the active jobs

receive the unused shares (the shares are split among the

current jobs). For each job, the scheduler keeps track of the

compute time. Periodically, the scheduler examines the jobs

to calculate the delta between the actual compute time

received and the compute time that the job should have

received. The results reflect the deficit matrix for the tasks. It

is the scheduler's responsibility to schedule the task with the

greatest deficit.

-> Originally, the Capacity

scheduler was developed by Yahoo. The design focus for the

Capacity scheduler was on large cluster environments that

execute many independent applications. Hence, the Capacity

scheduler provides the ability to provide a minimum capacity

guarantee, as well as to share excess capacity among the

users. The Capacity scheduler operates on queues. Each queue

can be configured with a certain number of map and reduce

slots. Further, each queue can be assigned a guaranteed

capacity while the overall capacity of the cluster equals to the

sum of all the individual queue capacity values. All the

queues are actively monitored and in scenarios where a queue

is not consuming its allocated capacity potential, the excess

capacity can be temporarily allocated to other queues.

Compared to the Fair scheduler, the Capacity scheduler

controls all the prioritizing tasks within a queue. In general,

higher priority jobs are allowed access to the cluster resources

earlier than lower priority jobs. With the Capacity scheduler,

queue properties can be adjusted on-the-fly, and hence do not

require any disruptions in the cluster usage/processing [1].

While not considered a scheduler per se, Hadoop also

supports the scheme of provisioning virtual cluster

environments (within physical clusters). This concept is

labeled HadoopOn Demand (HOD). The HOD approach

utilizes the Torque resource manager for node allocation to

size the virtual cluster. Within the virtual environment, the

HOD system prepares the configuration files in an automated

manner, and initializes the system based on the nodes that

comprise the virtual cluster. Once initialized, the HOD virtual

cluster can be used in a rather independent manner. A certain

level of elasticity is build into HOD, as the system adapts to

changing workload conditions. To illustrate, HOD

automatically de-allocates nodes from the virtual cluster after

detecting no active jobs over a certain time period. This

shrinking behavior allows for the most efficient usage of the

overall physical cluster assets.hadoop on demand is

considered as a valuable option for deploying Hadoop clusters

within a cloud infrastructure.

VII CONCLUSIONS

 The additional studies executed on the Hadoop cluster

showed that a rather large data set (high space density) is

required for the discussed akNN methodology to operate

efficiently and effectively. Scaling k in the benchmark sets

disclosed a rather substantial processing cost increase that is

mainly due to executing additional, larger MapReduce records

in the S3 and S4 processing cycles. In a nutshell though,

Hadoop’sMapReduce and HDFS infrastructure provides

straightforward and robust techniques that operate on

commodity (inexpensive) HW, and does provide high data

availability features to the user community. For (very) large,

unstructured datasets, Hadoop provides the IT performance

infrastructure necessary to deliver results in a timely fashion.

These technical challenges must be addressed for efficient and

fast processing of Big Data. The challenges include not just

the obvious issues of scale, but also heterogeneity, lack of

structure, error-handling, privacy, timeliness, provenance, and

visualization, at all stages of the analysis pipeline from data

acquisition to result interpretation. These technical challenges

are common across a large variety of application domains,

and therefore not costeffective to address in the context of one

domain alone.

ACKNOWLEDGEMENT

I am very grateful to Mr. Ashish Kumar Sharma and Mr. Jony

Birla Assistant Professor in department of CSE, for their

support to write this paper.

I am also very thankful to Dr. NeetuSharma,the head of

department of computer science in Ganga Insititute of

technology and management for her motivation and support

during the paper.

REFERENCE:
[1] S.VikramPhaneendra&E.Madhusudhan Reddy “Big Data- solutions for

RDBMS problems- A survey” In 12th IEEE/IFIP Network Operations

& Management Symposium.
[2] HDFS: http://hadoop.apache.org/hdfs/

[3] Hadoop: http://hadoop.apache.org/

[4] F. N. Afrati, J. D. Ullman, "Optimizing joins in a map-reduce
environment".

[5] http://www.datanubes.com/mediac/HadoopArchPerfDHT.pdf.

[6] http://searchcloudcomputing.techtarget.com/definition/big-data-Big-D

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICADEMS - 2017 Conference Proceedings

Volume 5, Issue 03

Special Issue - 2017

4

