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ABSTRACT 

  In this paper we introduce a new concept called 

“2-normed almost linear space” and establish some 

of the results of best approximation on normed 

almost linear space in the context  of 2- normed 

almost linear space. 

1 .INTRODUCTION 

In  (1)  Gliceria Godini introduced the concept 

“almost linear space” which is defined as “ A non 

empty set X together with two mappings s: XxX → X 

and m:RxX→ X Where  s(x ,y)=x +y and  m(λ, x) = λ x  

is said to be an almost linear space if it satisfies the 

following properties.                                     

For every x, y, z Є X and for every λ, μ Є R   i) x +y Є X,  

ii) (x + y) +z = x+(y + z) ,iii) x +y = y + x, iv) There exists 

an element 0 ЄX such that x+0=x ,  v) 1 x = x , 

vi) λ(x + y)=λ x+ λ y , vii) 0 x =0 , viii) λ(μ x )=(λ μ)x        

and ix) (λ + μ)x=λ x +μ x for λ ≥0,μ≥0. 

 In (1 & 4) Gliceria Godini also introduced the 

concept “normed almost linear space” which is 

defined as  an almost linear space X together with  III 

. III : X→ R is said to be normed almost linear space if 

it satisfies the following properties 

i) III x III=0  if and only if  x=0, 

ii) III λx III=IλI III x III , 

iii) III x-z III≤IIIx-yIII+IIIy-zIII for every x,y ЄX 

and λ ЄR. 

The concept of linear 2-normed space has been 

initially investigated by S. G𝑎 hler(17) 

 

 

and has been extensively by Y.J.Cho,C.Diminnie, 

R.Freese and many other, which is defined as a linear 

space X over R with dim>1 together with II .II  is 

called Linear 2-normed space if  II . II satisfy the 

following properties 

i) II x, y II>0 and II x , y II=0 if and only if x 

and y are linearly dependent, 

ii) II x , y II=II y , x II , 

iii) II λx ,y II= IλI II x , y II  and 

iv) II x , y+z II=II x , z II + II y ,z II for every 

x,y,z ЄX and λ ЄR. 

In (2 & 3) G.Godini established some results of best 

approximation on normed linear space in the 

context of normed almost linear space. In this paper 

we extend some of the results of best approximation 

on normed almost linear space in to 2-normed 

almost linear space. 

2. PRELIMINARIES 

Definition 2.1. Let X be an almost linear space of 

dimension> 1 and  III .III: X x X → R be a real valued 

function. If III . III satisfy the following properties 

i) III α, β III=0 if and only if α and β are 

linearly dependent, 

ii) III α, β III = III β, α III , 

iii) III aα , β III = IaI III α, β III , 

iv) III α, β-δ III ≤ III α, β-γ III + III α, γ-δ III 

for every α, β, γ, δ Є X and a Є R. 

 then (X,III.III) is called  2-normed 

almost linear space. 
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Definition 2.2. Let X be a 2-normed almost linear 

space over the real field R and G a non empty subset 

of 𝑉𝑥  . For a bounded sub set A of X let us define  

 𝑟𝑎𝑑𝐺 (A) =𝑖𝑛𝑓𝑔𝜖𝐺 𝑠𝑢𝑝𝑎𝜖𝐴  III x , a-g III for every  

x 𝜖 X\𝑉𝑥  and                                                 2.1 

𝑐𝑒𝑛𝑡𝐺(A) =  𝑔0𝜖 G: 𝑠𝑢𝑝𝑎𝜖𝐴 III x , a-𝑔0 III = 𝑟𝑎𝑑𝐺 (A) 

for every x 𝜖 X\𝑉𝑥 .                                       2.2 

𝑇𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑎𝑑𝐺 (A) is called the chebyshev radius 

of A with respect to G and an element  𝑔0𝜖 𝑐𝑒𝑛𝑡𝐺(A) 

is called a best simultaneous approximation or 

chebyshev centre of A with respect to G. 

Definition 2.3. When A is a singleton say A= {a}, 

 a 𝜖 X\𝐺  then 𝑟𝑎𝑑𝐺 (A) is the distance of a to G, 

denoted by dist(a,G) and defined by  

dist(a,G)=𝑖𝑛𝑓𝑔𝜖𝐺  IIIx,a-gIII for every x𝜖 X\𝑉𝑥      2.3                                                                                

and 𝑐𝑒𝑛𝑡𝐺(A) is the set of all best approximations of 

‘a’ out of G denoted by 𝑃𝐺 (a) and defined by 

𝑃𝐺 (a)={ 𝑔0𝜖 G : IIIx,a-𝑔0III=dist(a,G), 

 for every x 𝜖 X\𝑉𝑥 }                                              2.4   

Definition 2.4.  Let X be a 2-normed almost linear 

space. The set G is said to be proximinal if 𝑃𝐺 (a) is 

nonempty for each a𝜖 X\𝑉𝑥  . 

It is well known that for any bounded subset A of X 

we have  𝑟𝑎𝑑𝐺 (A)= 𝑟𝑎𝑑𝐺 (𝐶0(𝐴))= 𝑟𝑎𝑑𝐺 (𝐴 ) 

𝑐𝑒𝑛𝑡𝐺(A)= 𝑐𝑒𝑛𝑡𝐺 (𝐶0(𝐴))= 𝑐𝑒𝑛𝑡𝐺 (𝐴 ) 

Where 𝐶0(𝐴) stands for the convex hull of A and 𝐴  

stands for the closure of A. 

Definition 2.5. Let X be a 2-normed almost linear 

spaces and ф≠ G ⊂ 𝑉𝑥 . We difine 𝑅𝑥 (G) ⊂ X 

 in the following way 

𝑎𝜖𝑅𝑥 (G) if for each g 𝜖𝐺 𝑡𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑣𝑔  𝜖 𝑉𝑥  such 

that the following conditions are hold 

i) III x, a-g III = III x, 𝑣𝑔-g III  

              for each 𝑣𝑔  𝜖 𝑉𝑥     2.5 

ii) III x, a- 𝑣 III ≥ III x, 𝑣𝑔- 𝑣 III  

for every x 𝜖 X\𝑉𝑥 .     2.6        

We have 𝑉𝑥  ⊂ 𝑅𝑥 (G).  

If 𝐺1 ⊂ 𝐺2 then 𝑅𝑥 (𝐺2) ⊂ 𝑅𝑥 (𝐺1). 

 

 

3. MAIN RESULTS 

Theorem 3.1 Let X be a 2-normed almost linear 

spaces and G a bounded weakly compact subset of 

𝑉𝑥 . Then G is proximinal in X. 

Proof :  Let G be a bounded compact subset of 𝑉𝑥 . 

 By definition of d(a,G), there exist a sequence  

{𝑔𝑛 }, 𝑛 = 1 𝑡𝑜 ∞ in G such that  

lim
𝑛→∞

 III x, a-𝑔𝑛  III = dist (a, G) 

 Since G is bounded for some 휀 > 0 there exist N 

such that  

              III x, a-𝑔𝑛  III ≤ dist(a,G)+  휀   for n≥N. 

                                   ≤ M for every n. 

Where M=max( 𝑀1, 𝑀2), 𝑀1 = 𝑑(a,G)+ 휀 and 

𝑀2=max III x, a-𝑔𝑛 III for n≤N. 

Now III x, 𝑔𝑛 III≤IIIx,a-𝑔𝑛 III+IIIx,aIII 

            ≤M+IIIx,aIII 

This implies that {𝑔𝑛 } 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 and therefore 

converges weakly to g in G. 

Hence we have IIIx,a-g III≤ lim
𝑛→∞

IIIx,a-𝑔𝑛 III = dist(a,G) 

But III x, a-g III ≥  dist(a,G) 

Therefore we have III x, a-g III= dist (a, G) and so ‘g’ 

is a best approximation to ‘a’ from G.               

Thus G is Proximinal in X. 

Definition3.2 Let X be 2-normed almost linear space 

and G a non-empty subset of 𝑉𝑥 . 

 Let 𝑇𝐺be the sub set of X defined in the following 

way. 

a 𝜖 𝑇𝐺  if for each g 𝜖𝐺 and 𝑟𝑖> 0 i=1,2, the relations  

III x , a-g III <  𝑟1 + 𝑟2  and 𝐵𝑋  (𝑎, 𝑟2)∩ G 

 is non-empty implies 𝐵𝑋  (𝑎, 𝑟1)∩  𝐵𝑋  (𝑎, 𝑟2)∩G is  

no-empty. 

We observe that by definition of 𝑇𝐺 , 

G is a subset of 𝑇𝐺 . 

Theorem 3.3 Let X be 2- normed almost linear space 

and G is a non-empty subset of 𝑉𝑥 .Then for each a 𝜖 

𝑇𝐺  we have 𝑃𝐺 (a) is non-empty. 

Proof: Let 𝑔1  𝜖 G and a 𝜖 𝑇𝐺 . 

 Let   𝑟1= 
1

2
 and    𝑟2  = d(a,G)+ 

1

2
  

Then we have III x, a-𝑔1III < 
1

2
 + ( d(a,G) +  

1

2
 ) and  

B ( a,  𝑟2) )∩ G ≠ ф.  
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Since a 𝜖 𝑇𝐺  we get that B(𝑔1 , 𝑟1) ∩ B(a, 𝑟2) )∩ G ≠ ф.  

Let us choose 𝑔2 𝜖 ( B(𝑔1 , 𝑟1) ∩ B(a, 𝑟2) ) ∩ G 

Then III x, 𝑔1-𝑔2III< 
1

2
 and III x, a-𝑔2III<dist(a,G)+ 

1

2
 

Let 𝑟1=
1

22 and 𝑟2=𝑑𝑖𝑠𝑡 𝑎, 𝐺 +
1

22 

Again we have III x, a-𝑔2III<
1

22 + 𝑑𝑖𝑠𝑡 𝑎, 𝐺 +
1

22 and 

B ( a,  𝑟2) ∩ G ≠ ф. 

Since a 𝜖 𝑇𝐺  we have (B(𝑔2, 𝑟1) ∩ B(a, 𝑟2) )∩ G ≠ ф. 

Choose 𝑔3 𝜖 ( B(𝑔2, 𝑟1) ∩ B(a, 𝑟2) )∩ G. We get  

IIIx, 𝑔2-𝑔3III<
1

22 and IIIx, a-𝑔3III < dist(a,G)+ 
1

22 . 

By continuing the above process at ‘n’ stages we get   

III x, 𝑔𝑛 -𝑔𝑛+1III<
1

2𝑛   and 

III x, a-𝑔𝑛+1III<dist(a, G)+ 
1

2𝑛                                      3.1                                                                              

By eq. (3.1) it follows that   lim
𝑛→∞

 III x, a-𝑔𝑛+1III= 

dist(a,G) and {𝑔𝑛 } is a Cauchy sequence.     

Since G is complete {𝑔𝑛 } contains a sub-sequence 

say  {𝑔𝑛
′ } which converges to 𝑔0 in G. 

Now lim III x, a-𝑔𝑛
′  III = dist(a,G) implies  

III x, a-𝑔0III  = dist(a,G). 

Hence 𝑔0 𝜖 𝑝𝐺 (a) implies that 𝑝𝐺 (a) ≠ ф. 

Theorem: 3.4 Let X be  a 2-normed almost linear 

spaces and G ⊂ 𝑉𝑥 . If 𝑉𝑥  𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 with 

respect to G, then for each a 𝜖𝑅𝑥 (G), the set 𝑃𝐺 (a) 

contains atmost one element. If in addition G is 

reflexive then for each a 𝜖𝑅𝑥 (G), the set 𝑃𝐺 (a) is 

singleton. 

Proof: Let a 𝜖𝑅𝑥 (G) and suppose Э 𝑔1, 𝑔2 𝜖 G  such 

that  III  x, a-𝑔𝑖  III = dist(a,G), i=1,2 

Then III  x, a-(
𝑔1+ 𝑔2

2
) III = dist(a,G). 

since a 𝜖𝑅𝑥 (G), for the element (
𝑔1+ 𝑔2

2
) 𝜖 𝐺, 

Э 𝑣0𝜖𝑉𝑥  such that 

III  x, a-(
𝑔1+ 𝑔2

2
) III = III  x, 𝑣0-(

𝑔1+ 𝑔2

2
) III    and  

III  x, a-𝑔1III≥ III  x, 𝑣0-𝑔𝑖  III, i=1,2. 

Then dist(a,G) = III  x, 𝑣0-(
𝑔1+ 𝑔2

2
) III 

                          ≤( III  x, 𝑣0-𝑔1 III+ III  x, 𝑣0-𝑔2 III)/2 

           ≤  dist a, G .  

 And so III  x, 𝑣0-𝑔1 III= III  x, 𝑣0-𝑔2 III 

      = III  x, 𝑣0-(
𝑔1+ 𝑔2

2
) III   

Since (𝑣0-𝑔1)-( 𝑣0-𝑔2)= 𝑔2 − 𝑔1  𝜖G and 𝑉𝑥  is strictly 

convex with respect to G  it follows that 𝑔1 = 𝑔2 . 

If G is reflexive then by theorem (3.1)  

G is proximinal in X.   

Definition: 3.5 Let X be a 2-normed almost linear 

spaces and G is subset of 𝑉𝑥 . We shall assign to each 

a𝜖𝑅𝑥 (G) a non-empty subset 𝐷𝐺 (a) is subset of 𝑉𝑥  in 

the following way 

for g𝜖G , let 𝐷𝑔(a) = {𝑣𝑔  : 𝑣𝑔𝜖𝑉𝑥  } satisfying (i) and (ii) 

of definition (2.4). 

Since a𝜖𝑅𝑥 (G), the set 𝐷𝑔(a) is non-empty. 

Lemma 3.6 Let X 𝜖𝑅𝑥 (G), and g𝜖 𝐺. then for each 𝑉𝑔  𝜖  

𝐷𝑔(a) we have  

III  x, a-gIII = III x, 𝑣𝑔 –g III  

                    =𝑠𝑢𝑝𝑏𝜖  𝐷𝐺 (a)III x , b-g III                           3.2                                                                             

Consequently, the set 𝐷𝐺 (a) is the non empty 

bounded subset of 𝑉𝑥 , which is removable with 

respect to G. if a 𝜖𝑉𝑥 , then 𝐷𝑔(a) = {a}. 

Proof:- Let a 𝜖𝑅𝑥 (G), g𝜖G and 𝑣𝑔 𝜖  𝐷𝑔(a) 

By (i) of definition (2.4) we have   

III x, a-gIII = III x, 𝑣𝑔-gIII . 

Let b 𝜖  𝐷𝑔(a). By (ii) of definition (2.4) we have 

 III x, a-gIII ≥ III x, b-gIII. 

 From this it follows that   

III x, 𝑣𝑔-gIII = III x, a-gIII ≥ III x, b-gIII. 

Hence equation (3.2) follows since 𝑣𝑔  𝜖  𝐷𝑔(a). 

Let now a 𝜖𝑉𝑥  is subset of 𝑅𝑥 (G) and 𝑣0𝜖  𝐷𝐺 (a). 

Now by (ii) of definition (2.4) for 𝑣 = a 𝜖𝑉𝑥    

we  have 

          0= III x, a-aIII ≥ III x, 𝑣0-aIII 

This implies a=𝑣0. Hence  𝐷𝐺 (a)={a}. 

Theorem:3.7  Let X be  a 2- normed almost linear 

spaces, ф ≠   𝐺1     ⊂   G ⊂ 𝑉𝑥  and let a 𝜖𝑅𝑥 (G) we 

have 

dist(a,𝐺1)=𝑟𝑎𝑑𝐺1
(𝐷𝐺 (a))                            3.3                                                                                                                   

and 𝑃𝐺1
 𝑎 =  𝐶𝑒𝑛𝑡𝐺1

(𝐷𝐺 (a))                                     3.4                               

Proof:- Let g𝜖𝐺1, since a𝜖𝑅𝑥 (G) and 𝐺1 ⊂ G by 

lemma(3.6)We have 

III x, a-𝑔1III = 𝑠𝑢𝑝𝑏𝜖  𝐷𝐺(a)III x, b-𝑔1III 

Now taking the infimum in both sides over all 𝑔1  𝜖 G 

We get 𝑖𝑛𝑓𝑔𝜖𝐺1  IIIx,a-gIII = 𝑖𝑛𝑓𝑔𝜖𝐺1  𝑠𝑢𝑝𝑏𝜖  𝐷𝐺 (a)III b-gIII 

By definition   𝑟𝑎𝑑𝐺  (A) we have 

  𝑟𝑎𝑑𝐺  (A) =𝑖𝑛𝑓𝑔𝜖G 𝑠𝑢𝑝𝑎𝜖𝐴  III x, a-g III for every 

 x 𝜖 X\𝑉𝑥                                                                           3.5 
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By definition dist(a,G)=𝑖𝑛𝑓𝑔𝜖G IIIx,a-gIII     3.6 

  Now by equations ( 3.5 & 3.6)  

  we get dist(a, 𝐺1) = 𝑟𝑎𝑑𝐺1
(𝐷𝐺 (a)). 

          Then it follows that     𝑃𝐺1
 𝑎 =  𝐶𝑒𝑛𝑡𝐺1

(𝐷𝐺 (a)). 

Theorem 3.8  Let G be  a one dimensional chebyshev 

sub-space of 𝑉𝑥  . Then  𝑃𝐺 (a) is a singleton for each 

a 𝜖𝑅𝑥 (G) . 

Proof: Clearly G is proximinal in X, since G is one 

dimensional sub-space of 𝑉𝑥 . 

  Let now a 𝜖𝑅𝑥 (G) and suppose there exist 

   𝑔1, 𝑔2𝜖 𝑃𝐺 (a),    𝑔1 ≠ 𝑔2. 

            For  (
𝑔1+ 𝑔2

2
) 𝜖 𝐺, 𝑙𝑒𝑡  𝑣0𝜖𝑉𝑥  such that     

III  x, a-(
𝑔1+ 𝑔2

2
) III = III  x, 𝑣0-(

𝑔1+ 𝑔2

2
) III   

III x, a- 𝑣 III ≥ III x , 𝑣0-vIII  for each    𝑣  𝜖  𝑉𝑥   

Since  (
𝑔1+ 𝑔2

2
) 𝜖  𝑃𝐺 (a),    

It follows that  

            dist(a, G) =   III  x, 𝑣0-(
𝑔1+ 𝑔2

2
) III  

                             ≤ III  x, 𝑣0-𝑔1 III+ III  x, 𝑣0-𝑔2 III 

                             ≤ (  III  x, a-𝑔1 III+ III  x, a-𝑔2 III  ) /2 

                           = d(a,G). 

      And so  III  x, 𝑣0-(
𝑔1+ 𝑔2

2
) III  = III  x, 𝑣0- 𝑔𝑖 III , i=1,2. 

             Since dim G = 1, we must have 𝑔1, 𝑔2𝜖 𝑃𝐺 (𝑣0), 

a contradiction 

             Hence    𝑔1 = 𝑔2  implies  𝑃𝐺 (a) is a singleton.     

   

Theorem 3.9 Let X be a 2-normed almost linear 

space such that    𝑉𝑥  is Banach space and the                       

norm of    𝑉𝑥  is uniformly kadec-klee (UKK) and let 

G ⊂  𝑉𝑥  be a W-compact ,convex set. Then for each 

a 𝜖𝑅𝑥 (G) the set 𝑃𝐺 (a) is compact and convex. 

Proof:  Clearly G is proximinal in X. 

Let now a 𝜖𝑅𝑥 (G). If  𝑃𝐺 (a) is not compact then ther 

exist a sequence {𝑔𝑛 } ⊂ 𝑃𝐺 (a) with 

Sep {𝑔𝑛 } ≥ 휀 for some 휀 > 0. 

Since 𝑃𝐺 (a) is W-compact, may assume that 

𝑔𝑛 → g 𝜖 𝑃𝐺 (a). 

Since a 𝜖𝑅𝑥 (G), for g 𝜖 G there exist  𝑣𝑔  𝜖  𝑉𝑥  such 

that III x, a-g III  =  III x, 𝑣𝑔  -g III and III x, a-𝑔𝑛  III and 

III x, a-𝑔𝑛  III→  III x, 𝑣𝑔-𝑔𝑛  III ,n=1,2,3,…. 

Here r = III x, g-𝑣0  III ≥ 𝑠𝑢𝑝𝑛𝜖  𝑁  III x, 𝑔𝑚−𝑣𝑔  III 

Choose δ such that δ (
ℇ

𝑟  
) >0   then  

𝑟−1 III x, 𝑔𝑛−𝑣𝑔  III ≤ 1. 

𝑟−1(𝑔𝑛−𝑣𝑔 ) →  𝑟−1(g−𝑣𝑔) and  

Sep { 𝑟−1(𝑔𝑛−𝑣𝑔) }  ≥ 𝑟−1ℇ. 

 Hence by uniformly kadec-klee (UKK) we obtain that  

𝑟−1 III x, g−𝑣𝑔 III ≤ 1-𝛿 

 a contradiction. Hence 𝑃𝐺 (a) is a compact. 

Definition 3.10 Let X be  a 2- normed almost linear 

spaces and  ф≠ G ⊂ 𝑉𝑥 , the pair (a, G)  is said to 

have the property  (P) if for every r>0 and any ℇ>0  

here is a δ(ℇ)>0 and a function f: G X G→G such that 

for every |θ|< δ(ℇ) we have f(𝑔1  , 𝑔2 ) 𝜖 𝐵𝑋 (𝑔1 , ℇ) 

and  𝐵𝑋 (𝑔1 ,r+δ(ℇ)) ∩ 𝐵𝑋 (𝑔2  , 𝑟 + 𝜃 ) 

⊂  𝐵𝑋(f(𝑔1 , 𝑔2 ), 𝑟 + 𝜃 )) 

Theorem 3.11 Let X be  a 2- normed almost linear 

spaces and  G a complete subset of 𝑉𝑥 . If pair(a, G) 

has the property (P), then G is proximinal in X. 

Proof:-  

For r=𝑟𝑎𝑑𝐺 (A), , ℇ=
1

2
 find the corresponding δ 

1

2
) 

Then there is a point 𝑔1  𝜖 G with A⊂ B(𝑔1,r+ δ 
1

2
)) 

Assume now that for an n 𝜖 N, the points  

𝑔1 , 𝑔2 , , ,  ,  𝑔𝑛  𝜖 G 

And the number δ 
1

2
 , δ 

1

4
 , , , , , ,  δ 

1

2𝑛) with the 

property δ(
1

2𝑖) ≤
1

2𝑖 , A⊂ B(𝑔1,r+ δ 
1

2𝑖 )) i=1,2,3, , , n.                            

III x,  𝑔𝑖 − 𝑔𝑖+1 III  ≤
1

2𝑖 , i=1,2, , , ,  n-1 have already 

been constructed. 

Now for r and  
1

2𝑛+1 find the corresponding  δ 
1

2𝑛+1)  

 It is easy to see that it is possible to choose 

δ 
1

2𝑛+1  < min δ 
1

2𝑛), 
1

2𝑛+1 )  

There is a point b 𝜖 G with A⊂ B(b,r+ δ 
1

2𝑛+1)) 

Using the fact that (a,G) has the property (P)  

we obtain  A⊂ B(𝑔𝑛 ,r+ δ 
1

2𝑛)) ∩ B(b,r+ δ 
1

2𝑛+1))  

⊂ B(𝑔𝑛+1, r+ δ 
1

2𝑛+1))  where   𝑔𝑛+1=f(𝑔𝑛 ,b). 

Then we get  III x, 𝑔𝑛 − 𝑔𝑛+1 III ≤
1

2𝑛  

By continue the above process we get a cauchy 

sequence {  𝑔𝑛  } in G. 

Now let the above sequence has the limit  𝑔0.  

This implies  𝑔0 𝜖 𝑐𝑒𝑛𝑡𝐺 (A).   

Hence G is proximinal in X .                                                     
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