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ABSTRACT

In this paper we introduce a new concept called
“2-normed almost linear space” and establish some
of the results of best approximation on normed
almost linear space in the context of 2- normed
almost linear space.

1.INTRODUCTION

In (1) Gliceria Godini introduced the concept
“almost linear space” which is defined as “ A non
empty set X together with two mappings s: XxX — X
and m:RxX— X Where s(x,y)=x +y and m(A, x) = A x
is said to be an almost linear space if it satisfies the
following properties.

For everyx,y,z € Xand for every A\, LER i)x+yEX,
i) (x +y) +z = x+(y + 2) ,iii) x +y = y + X, iv) There exists
an element 0 €X such that x+0=x, v) 1x=x,

Vi) A(x + y)=A x+ Ay, vii) 0 x =0, viii) A(u x )=(A p)x

and ix) (A + p)x=A x +u x for A >0,u=0.

In (1 & 4) Gliceria Godini also introduced the
concept “normed almost linear space” which is
defined as an almost linear space X together with Il
Il X— Ris said to be normed almost linear space if
it satisfies the following properties

i) Il x 11=0 if and only if x=0,

ii) A HI=IAL X T,

iii) I x-z HI<HIx-yllI+llly-zlll for every x,y €X
and A €R.

The concept of linear 2-normed space has been
initially investigated by S. Gdhler(17)
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and has been extensively by Y.J.Cho,C.Diminnie,
R.Freese and many other, which is defined as a linear
space X over R with dim>1 together with Il .Il is
called Linear 2-normed space if Il . Il satisfy the
following properties

i) IIx,ylI>0and Il x, y [I=0 if and only if x
and y are linearly dependent,

i) Ihx,yll=lly,xIl,

iii) A,y I=1AI 11 x, y Il and

iv) Ilx,y+z =l x, z Il + 1l y,z Il for every
X,¥,z EX and A €R.

In (2 & 3) G.Godini established some results of best
approximation on normed linear space in the
context of normed almost linear space. In this paper
we extend some of the results of best approximation
on normed almost linear space in to 2-normed
almost linear space.

2. PRELIMINARIES

Definition 2.1. Let X be an almost linear space of

dimension> 1 and Il .lll: X x X = R be a real valued
function. If IIl . Ill satisfy the following properties
i) Il a, B II=0 if and only if o and B are
linearly dependent,
ii) Ma,BMI=MB,all,
iii) Naa,Bll=lallla, B,
iv) Ma, -6 <1l a,B-y Il + 1 a, y-6 11

foreverya, B,y, 6 EXanda ER.
then (X IILIN) is called
almost linear space.

2-normed
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Definition 2.2. Let X be a 2-normed almost linear
space over the real field R and G a non empty subset
of I, . For a bounded sub set A of X let us define

radg(A) =infye; Supgea I x, a-g Il for every

x € X\, and 21
cents(A) = go€ G: Supgeq lll X, a-gg Nl =radg;(A)
for every x € X\V,. 2.2

The number rad;(A) is called the chebyshev radius
of A with respect to G and an element gye cent;(A)
is called a best simultaneous approximation or
chebyshev centre of A with respect to G.

Definition 2.3. When A is a singleton say A= {a},

ae X\G then rad;(A) is the distance of a to G,
denoted by dist(a,G) and defined by

dist(a,G)=infy; llix,a-glll for every xe X\V, 2.3

and cent;(A) is the set of all best approximations of
‘a’ out of G denoted by P;(a) and defined by

Pg(a)={ go€ G : llix,a-golll=dist(a,G),

for every x € X\V, } 24
Definition 2.4. Let X be a 2-normed almost linear
space. The set G is said to be proximinal if P;(a) is
nonempty for each ae X\, .

It is well known that for any bounded subset A of X
we have radg(A)=radg;(Cy(A))=rad;(A)

centg(A)= cent;(Cy(A))= cent;(A)

Where C,(A) stands for the convex hull of A and A
stands for the closure of A.

Definition 2.5. Let X be a 2-normed almost linear

spaces and ¢# G C V. We difine R,(G) C X

in the following way

aeR,(G) if for each g €G there exists v, € V, such
that the following conditions are hold

i) Hx, a-g Nl =111'x, v,-g Il

foreach v, e V; 2.5
ii) Hx, a-v HE=Z X, vg- vl

for every x € X\V,. 2.6

We have V, C R,(G).
If G; C G, then R,(G,) C R,(Gy).
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3. MAIN RESULTS

Theorem 3.1 Let X be a 2-normed almost linear
spaces and G a bounded weakly compact subset of
V,. Then G is proximinal in X.

Proof : Let G be a bounded compact subset of V.

By definition of d(a,G), there exist a sequence
{gn},n = 1to oo in G such that
lim Il'x, a-g, Il = dist (a, G)

n—-oo

Since G is bounded for some & >0 there exist N
such that
I'x, a-g, Il < dist(a,G)+ & for n>=N.
< M for every n.

Where M=max( M;, M;), M; =d(a,G)+ &and
My=max Ill x, a-g,, Il for n<N.
Now Il x, g, I1<1lx,a-g, I+1H1x,alll

<M-llIx,alll
This implies that {g,}is bounded and therefore
converges weakly to g in G.

Hence we have llIx,a-g llI< lim llIx,a-g,, Il = dist(a,G)

n-—-oo

But Ill x, a-g Il = dist(a,G)

Therefore we have Il x, a-g lll=dist (a, G) and so ‘g’
is a best approximation to ‘a’ from G.

Thus G is Proximinal in X.

Definition3.2 Let X be 2-normed almost linear space
and G a non-empty subset of V.

Let T;be the sub set of X defined in the following
way.

a € T; if for each g €G and ;> 0i=1,2, the relations
lx,a-glll< r; + 1, and By (a, ;)N G

is non-empty implies By (a, ;)N By (a,1,)NG is
no-empty.

We observe that by definition of T,

G is a subset of T.

Theorem 3.3 Let X be 2- normed almost linear space
and G is a non-empty subset of V,.Then for each a €
T; we have P;(a) is non-empty.

Proof: Let g; e Gand a€e T;.

Let n= % and 7, =d(a,G)+ %

Then we have lll x, a-g4 11l < % +(d(a,G) + %) and
B(a, ) )NG=d.
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Since a € T; we get that B(g, 1) N B(a, 1) )N G # ¢.
Let us choose g, € (B(gy,71) NB(a, ) )N G

Then Il x, gl-gzlll<%and I x, a-gzlll<dist(a,G)+%
Let r1=2i2 and r,=dist(a, G) + zlz

Again we have Il x, a-g, llI< ziz + dist(a,G) + le and
B(a, n)NG=*d.

Since a € T; we have (B(g,,11) N B(a, 13) )N G # ¢.

Choose g; € (B(g,,11) N B(a, 1) )N G. We get

X, g-g5llI< 2 and lllx, a-g51ll < dist(a,G)+ 5; .

By continuing the above process at ‘n’ stages we get
11X, gy-gn+11I< 5 and

Il X, a-g,, 41 lll<dist(a, G)+ Zi 3.1
By eq. (3.1) it follows that nl_lg)l M x, a-gp41lll=
dist(a,G) and {g,, } is a Cauchy sequence.

Since G is complete {g,} contains a sub-sequence
say {g,’l} which converges to g, in G.

Now lim Il x, a-g; Il = dist(a,G) implies

%, a-golll = dist(a,G).

Hence g, € p;(a) implies that pg(a) # ¢.

Theorem: 3.4 Let X be a 2-normed almost linear
spaces and G C V.. If V, is strictly convex with
respect to G, then for each a €R,(G), the set Pg(a)
contains atmost one element. If in addition G is
reflexive then for each a€eR,(G), the set P;(a) is
singleton.

Proof: Let a €R,(G) and suppose 3 g;, g, € G such
that Ill x, a-g; Ill = dist(a,G), i=1,2

Then IIl x, a-(‘gl;—gz) 11l = dist(a, G).

since a €R,(G), for the element (glJ;—gz) €aG,

3 vy€el, such that

I x, a-(E22) =1 x, vo-(P22) - and
I x, a-g{ =1l x, vy-g; N, i=1,2.
Then dist(a,G) = Il x, vo-(‘gl:—gz) I
<( N x, vy-gq M+ 11 X, vy-g, 111)/2
< dist(a, G).
And so Il x, vg-gq =11l X, vg-g, Il
=11l x, vo-(gl;—gz)m

Since (vy-g1)-(v9-g2)=9g2> — g1 €G and V is strictly
convex with respect to G it follows that g; = g,.
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If G is reflexive then by theorem (3.1)

G is proximinal in X.

Definition: 3.5 Let X be a 2-normed almost linear
spaces and G is subset of V. We shall assign to each
aeR,(G) a non-empty subset D (a) is subset of ; in
the following way

for geG, let Dy(a) = {v, : v €V, } satisfying (i) and (ii)
of definition (2.4).
Since a€R,(G), the set D, (a) is non-empty.
Lemma 3.6 Let X €R, (G), and ge G. then for each , €
D, (a) we have
- x, a-glit =1l x, v, =g 1l
=SUPpe pg (a)lIl X, b-g 11 3.2
Consequently, the set D;(a) is the non empty
bounded subset of V., which is removable with
respect to G. if a €V, then Dg(a) ={a}.
Proof:- Let a €R,(G), geG and v, € D, (a)
By (i) of definition (2.4) we have
x, a-glll =111 x, v -glll .
Letb e Dg(a). By (ii) of definition (2.4) we have
I'x, a-glll = 11 x, b-glIl.
From this it follows that
HIx, vg-glll = 111 x, a-gll = 11l x, b-glIl.
Hence equation (3.2) follows since v, € D,(a).
Let now a €V, is subset of R, (G) and vye Dg;(a).
Now by (ii) of definition (2.4) for v = a €V,
we have
0= Il x, a-alll = 1l x, vy-alll
This implies a=v,. Hence D (a)={a}.

Theorem:3.7 Let X be a 2- normed almost linear

spaces, b#* G; < G C V, and let a eR,(G) we
have

dist(a,G;)=rad;, (D¢ (a)) 33
and Pg, (a) = Centg, (Dg(a)) 3.4

Proof:- Let geGq, since aeR,(G) and G; C G by
lemma(3.6)We have

%, a-g1 11l = Suppe p @)1 %, b-g1 1l

Now taking the infimum in both sides over all g; € G
We get infy.q, llIx,a-gll = infy ¢, SUbpe pg @)l b-glll
By definition rad; (A) we have

radg (A) =infyec SUpPgea Il , a-g 1l for every

x € X\V, 3.5
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By definition dist(a,G)=inf,.c llix,a-glll 3.6
Now by equations ( 3.5 & 3.6)
we get dist(a, G;) = radg, (D¢ (a)).
Then it follows that  P;, (a) = Centg, (Dg(a)).

Theorem 3.8 Let G be a one dimensional chebyshev
sub-space of V, . Then Pg;(a) is a singleton for each
aeR,(G).

Proof: Clearly G is proximinal in X, since G is one
dimensional sub-space of V.

Let now a €R,(G) and suppose there exist
g1, 92€ Pc(a), g1 # go-

For (91+ng) € G, let vyeV, such that
I x, a-(E22) =1 x, vo-(2222) 1

'x,a-v Il =1lx,vy-vill foreach v e I,
Since (Wng)e P;(a),
It follows that
dist(a, G) = Il x, 170-(91:—92) I
< x, vg-g1 N+ 111 X, v9-g, 1l
< (Nl x,a-gg N+ 111 x,a-g, 1l ) /2
=d(a,qG).

+
And so Il x, vo-(glz—gz)u

I =11 X, vp- gl i=1,2.
Since dim G = 1, we must have g4, g,€ P¢(vg),
a contradiction

Hence g, = g, implies P;(a) is a singleton.

Theorem 3.9 Let X be a 2-normed almost linear
space such that V., is Banach space and the
norm of V, is uniformly kadec-klee (UKK) and let

G C V, be a W-compact ,convex set. Then for each
a €R,(G) the set P;(a) is compact and convex.

Proof: Clearly G is proximinal in X.

Let now a €eR,(G). If P;(a) is not compact then ther

exist a sequence {g, } C Pg(a) with

Sep {g,n} = € for some € > 0.

Since P;(a) is W-compact, may assume that

9n 7 BE PG (a)

Since a €R,(G), for g € G there exist v, € V; such
that lll x, a-g Il = 1l x, vy g lll and Ill x, a-g, Il and

x, a-g, = X, Vy-Gn I1,n=1,2,3,....

Herer=1l1x, g-vy Il = suppe y 1 X, g —vy
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Choose § such that (=) 0 then

r7HX, g, —v, < 1.
r Hgn—vy) = 7 (g—1,) and
Sep{r~'(g,—v,)} =rE.

Hence by uniformly kadec-klee (UKK) we obtain that
X, g—v,lll < 1-6

a contradiction. Hence P;(a) is a compact.

Definition 3.10 Let X be a 2- normed almost linear

spaces and ¢# G C V,, the pair (3, G) is said to
have the property (P) if for every r>0 and any €>0
here is a §(€)>0 and a function f: G X G=G such that
for every |0]< 6(€) we have f(g1,9,) € Bx(g1, €)
and By(gq ,r+6(€)) N By(g, ,7 +6)

C By(flg1,92),7+0))

Theorem 3.11 Let X be a 2- normed almost linear

spaces and G a complete subset of V,. If pair(a, G)
has the property (P), then G is proximinal in X.
Proof:-

For r=rad;(A),, €=% find the corresponding 8(%)
Then there is a point g; € G with AC B(g,,r+ 8(%))
Assume now that for an n € N, the points

91,9255, gn €G

And the number 8(3), 8(G), ., ,, 8(3;) with the

property 8(%) < %,AC B(gq.r+ 6(% ))i=123,,,n.
mx, gi—gix1 M < %, i=1,2,,,, n-1 have already
been constructed.

Now for r and zn% find the corresponding 8(#)
It is easy to see that it is possible to choose
8 () < min(8(57), 377)

There is a point b € G with AC B(b,r+ 8(2,1%))
Using the fact that (a,G) has the property (P)

we obtain AC B(g,,,r+8(;;)) N B(b,r+ 8(557)

1
C B(gn+lf r+ S(ZnT)) where gn+1=f(gnlb)-
Thenwe get Il X, g, — Gns1 NI < zi"

By continue the above process we get a cauchy
sequence{ g, }inG.

Now let the above sequence has the limit g,.

This implies gq € cents(A).

Hence G is proximinal in X .
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