

BDI: Applications and Architectures

Dr. Smitha Rao M.S, Jyothsna.A.N

Department of Master of Computer Applications

Reva Institute of Technology and Management

Bangalore, India

Abstract

Today Agent Technology is used in designing complex

systems. It is a difficult task to be able to build agents

in a believable way, as their behaviour is led by many

conflicting needs and goals. BDI (Belief-Desire-

Intention) paradigm is a widely used mechanism to

formalize the internal architecture of complex agents.

Using BDI we can design realistic agents which are

also expressive. Though this paradigm is easy to

understand and relate to, it is difficult to build as they

are complex in nature. Agents developed using BDI

paradigm are used in several applications such as Air

Traffic Management, e-Health Applications, Combat

Air Mission Reasoning and Control, Automation of

customer service application etc. Our paper focuses on

the various aspects of BDI paradigm by providing the

case study of an intelligent web spider based on this

architecture.

1. Introduction

Since couple of years Agent technology has been the

buzz word in the minds of many researchers. People

involved in agent research have varied definitions for

the word Agent. The main characteristic of an agent is

that it acts on behalf of others. An agent can be broadly

defined as a logical unit of an application or a self-

contained program which is capable of controlling its

own decision making and acting, based on its

perception of its environment, in pursuit of one or more

goals. An agent based system works in an open

unpredictable environment and is dynamic and flexible.

Agent-oriented methodologies frequently make use of

terms such as goals and tasks but do so in an

inconsistent manner. Two models that have been

widely used in the implementation of autonomous

agents are, the Belief Desire Intention (BDI) model and

the Markov Decision Processes (MDPs) model.

Markov Decision Process is based on Markov‘s

Property. A stochastic process has the Markov property

if the conditional probability distribution of future

states of the process depends only upon the present

state, not on the sequence of events that preceded it. On

the other hand, BDI paradigm is based on folk

psychology. Also known as commonsense psychology,

folk psychology is the natural capacity to explain and

predict the behaviour and mental states of other people.

According to this psychology the best way to describe a

complex system is through providing references to

familiar terms and items. This implies that the core

concepts of an agent framework map easily to the

language people use to describe their reasoning and

actions in everyday conversation.

BDI is a software model developed for

programming intelligent agents. BDI software model

implements the principal aspects of Michael Bratman's

theory of human practical reasoning (also referred to as

Belief- Desire- Intention or BDI)[6]. It is a way of

explaining future-directed intention, and has been

applied as a way of limiting the time spent deliberating

on what to do by eliminating choices inconsistent with

current intentions. BDI agents are situated in a

changing environment, they receive continuous

perceptual input, and take actions to affect their

environment, all based on their internal state. From its

inception in 1980‘s, BDI has not seen considerable

growth till recent times. Today the usage of multi-agent

goal oriented systems show a need for a BDI based

framework. Beliefs, desires, and intentions are the three

primary mental attitudes and they capture the

informational, motivational, and decision components

of an agent, respectively. Beliefs represent the agent's

current knowledge about the world, including

information about the current state of the environment

inferred from perception devices and messages from

other agents, as well as internal information. Desires

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

represent a state which the agent is trying to achieve.

Intentions are the chosen means to achieve the agent's

desires, and are generally implemented as plans and

post-conditions. Thus simply putting it, Beliefs consist

of what the agent believes to be true about the current

state of the world, desires consist of the agent's goals,

and intentions consist of the agent's current plan for

achieving those goals. BDI software model is closely

associated with intelligent agents, but does not carter to

all the facets of intelligent agents like for example inter

agent communication. BDI paradigm has been applied

in our paper to discuss the architecture of an intelligent

Web Spider that scans the web searching for pirated

copies of content like video, image etc.

Organization of the paper is as follows. BDI

applications are presented in Section 2. Architectures

and Languages use in BDI paradigm are presented in

Section 3. The architecture or an intelligent web spider

based on the BDI paradigm is discussed in Section 4.

Finally, conclusions are summarized in Section 5.

2. BDI Applications

BDI agents have been used with considerable

success to model humans and create human-like

characters in simulated environments. One of the

reasons for growing success of agent-based technology

is that it has been shown to be quite useful in the

development of various types of applications, including

air-traffic control, autonomous spacecraft control,

health care services, industrial control systems etc. One

of the popular frameworks based on BDI paradigm is

PRS (Procedural Reasoning System). PRS has been

deployed in many major industrial applications such as

fault diagnosis on the space shuttle [1], air traffic

management, business process control [2] etc. Some of

the successful implementations of PRS are Oasis and

SWARMM. Oasis (Optimal Aircraft Sequencing using

Intelligent Scheduling) was tested successfully at

Sydney Airport in 1995. It was a system for air traffic

management that could handle the flow of aircrafts

arriving at an airport. The system dealt with issues like

aircraft scheduling, comparing actual progress with

established sequences of aircraft, estimating delays, and

notifying controllers of was to correct deviations. The

prototype implementation of Oasis comprised of

several different kinds of agents, like aircraft agents,

coordinator agents etc., each of these agents were based

around PRS.

SWARMM(Smart Whole AiR Mission Model) has

been used as the basis of an agent-based simulation

system developed for Australia‘s Defence Science and

Technology Organization, to simulate air mission

dynamics and pilot reasoning. SWARMM was built

using dMARS (distributed Multi Agent Reasoning

System) which is one of the implementations of PRS.

DSTO (Defence Science and Technology Organization)

of Australian Department of Defence used SWARMM

for defence studies. DSTO later replaced dMARS with

JACK intelligent agents.

Norwegian-based Statoil, which is one of the

world‘s largest suppliers of crude oil and natural gas,

has developed software to support oil trading and

operations management, using JACK. Intelligent agents

are being applied to solve optimization, planning and

process control issues in Statoil's trading and operation

areas.

More recent work has been the application of

dMARS to represent different roles in an organization

in more general business software for running call

centres and internet services.

3. Architecture and Languages

Since the mid 1980s, many control architectures for

practical reasoning agents have been proposed [4].

Programming a BDI-based agent amounts to specifying

its initial state in terms of beliefs(information),

goals(objectives), and plans(means). In programming

terminology, the beliefs, goals, and plans can be

considered as data structures specifying the state of the

agent program. The execution of a BDI-based agent,

which is supposed to modify the state of the agent

program, is based on a cyclic process called

deliberation cycle (sense-reason-act cycle). Each

iteration of this process starts with sensing the

environment (i.e., receive events and messages),

reasoning about its state (i.e., update the state with

received events and messages, and generate plans to

either achieve goals or to react to events), and

performing actions (i.e., perform actions of the

generated plans). The various agent architectures

highlighted in this paper are PRS (Procedural

Reasoning System) and variants such as

AgentSpeak(L), JASON, JAM, dMARS, and JACK

Intelligent Agents.

3.1. PRS

The earliest implementation of BDI paradigm was

Procedural Reasoning System (PRS). It was developed

by George and Lansky [3].This architecture has

progressed from an experimental LISP version to a

fully fledged C++ implementation known as the

distributed Multi-Agent Reasoning System (dMARS),

which has been applied in perhaps the most significant

multi-agent applications to date [5]. PRS is a

framework for constructing real-time reasoning systems

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

that can perform complex tasks in dynamic

environments. PRS was developed for embedded

application in dynamic and real-time environments.

Various members of the PRS family of BDI agent

systems differ from one another in terms of their

implementation and features but they are all based on

similar interpretation of BDI. The internal structure of

PRS is composed of database (beliefs), goal intention

structure, KA (Knowledge Area), library plans,

interpreter (reasoned) etc. An application of PRS was

also used as monitoring and fault detection system for

the reaction control system on the NASA space shuttle.

3.2. AgentSpeak (L)

In the area of agent-oriented programming

languages, AgentSpeak (L) has been one of the most

influential abstract languages based on the BDI

paradigm. AgentSpeak (L) programming language was

introduced in [7].It has a neat notation and is a

computationally efficient extension of logic

programming to BDI agents [8, 9]. An AgentSpeak

agent is defined by a set of beliefs giving the initial

state of the agent‘s belief base, which is a set of ground

atomic formula, and a set of plans which form its plan

library. A plan also has a body, which is a sequence of

basic actions or goals that the agent has to achieve

when the plan is triggered. AgentSpeak distinguishes

two types of goals: achievement goals and test goals.

An achievement goal states that the agent wants to

achieve a state of the world where the associated

atomic formula is true. A test goal states that the agent

wants to test whether the associated atomic formula is

one of its beliefs.

An AgentSpeak agent is a reactive planning system.

The events it reacts to are related either to changes in

beliefs due to perception of the environment, or to

changes in the agent‘s goals that originate from the

execution of plans triggered by prior events. In its

original definition [7], AgentSpeak was just an abstract

programming language. It was used for the

formalization of ideas behind BDI architecture using

modal logics.

3.3. JASON

Jason is the first fully-fledged interpreter for a much

improved version of AgentSpeak. Jason initially stood

for `Java-based AgentSpeak interpreter used with SACI

for multi-agent distribution over the internet. A Jason

based multi-agent system can be distributed over a

network effortlessly. The main difference between the

language interpreted by Jason and the original

AgentSpeak (L) language is that, wherever an atomic

formula was allowed in the original language, in Jason,

a literal is used instead. The implementations that are

currently available for agent communication in Jason

are largely inspired by KQML. Jason is distributed with

an Integrated Development Environment (IDE) which

provides a GUI for editing a MAS configuration file as

well as AgentSpeak code for the individual agents.

Jason is implemented in Java (thus multi-platform) and

is available Open Source, distributed under GNU

LGPL. While using Jason there is no issue with

portability, but very little consideration has been given

so far to standards compliance and interoperability.

3.4. JAM

JAM is a hybrid intelligent agent architecture that is

based upon the theories and ideas of the PRS,

Structured Circuit Semantics (SCS) [11], and Act plan

Interlingua [12, 10]. JAM provides rich and extensive

plan, procedural representations, utility-based

reasoning over multiple simultaneous goals, that are

both goal and event driven. Each JAM agent is

composed of five primary components: a world model,

a plan library, an interpreter, an intention structure, and

an observer. A JAM agent‘s behaviour is motivated by

specifying top level goals. Goals can be given to the

agent in a text form. JAM provides many programming

actions and constructs. JAM agents facilitate building

applications requiring mobility through the usage of

checkpoint capabilities. There are a number of

predefined primitive actions included with JAM agent

distribution; including those providing debugging

support and agent mobility.

3.5. dMARS

Distributed Multi-Agent Reasoning System

(dMARS) dMARS is a C++ implementation of PRS. In

dMARS, agents use plans to implement the BDI model.

Each agent has a plan library, which is a set of plans,

specifying courses of action that may be undertaken by

an agent in order to achieve its intentions. An agent‘s

plan library represents its procedural knowledge, i.e.

the knowledge of how to bring about states of affairs.

dMARS agents monitor both the world and their own

internal state. Any

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 1. Architecture of our BDI based intelligent Web Spider

events that are perceived are placed on an event queue.

3.6. JACK

JACK is based on BDI paradigm and was built for

simulations, in particular defence simulations. It is

based on Java with a few syntactic extensions, and

when compiled compiles to Java code [5]. JACK

Intelligent Agents were initially developed in 1997 by

ex-members of the Australian Artificial Intelligence

Institute. JACK Intelligent Agents is a commercial

multi-agent platform that has been under active

research and development. JACK platform has been

extended number of times since its inception. Most of

the extensions, such as JACK Teams and CoJACK

were developed in collaboration with AOS. JACK

applications consist of a collection of autonomous

agents that take input from the environment and

communicate with other agents. This provides system

builders with a very powerful form of encapsulation.

Each agent is defined in terms of its goals, knowledge

and social capability, and is then left to perform its

function autonomously within the environment it is

embedded in. As it is entirely written in java, JACK is

highly portable and runs on anything from PDAs to

high-end, multi-CPU servers. Its Java foundation

means that JACK can run with multiple threads across

multiple CPUs, has platform-independent GUIs, and is

easily integrated with third-party libraries.

4. Case Scenario of Intelligent Web Spider

Web Spiders or web crawlers are automated

computer programs that methodically crawl through the

World Wide Web gathering required information in an

orderly manner. Many search engines, use crawling or

spidering as a means of providing up-to-date or current

data. Spiders create a copy of all the visited pages for

later processing by a search engine that will index the

downloaded pages to provide fast searches. Crawlers

can also be used for automating maintenance tasks on

Web sites, to gather specific types of information from

Web pages etc. We have considered an intelligent web

spider based on BDI concept that scans the web,

searching for pirated copies of watermarked images.

Watermarking is done in an invisible fashion which is

used to identify the pirated copies and solve copyright

issues. The architecture of our BDI based web spider is

shown in Figure 1. Web Spider draws its beliefs from a

dynamic belief base. The desires of the spider agent are

categorized as various goals. These goals could be

independent or could be part of larger goals. Intentions

of the Web Spider are plans which are part of the plan

library.

Beliefs:

This is the informative component of the system like

the list of the valid users, license details, watermark

details with required id information, characteristics of

the environment like IP address of the hosts visited by

the spider etc. The belief base is updated appropriately

after each plan is executed. For example if an action of

detecting watermark in a file in one of sites results in a

failure then the belief base would be updated with the

IP address of the host as a potential black listed or

rouge site containing pirated copies. Such a dynamic

feature provided to the belief base would enhance the

action plan of the spider in its consecutive scan of the

host IPs.

Desires:

These are various goals meant to be achieved by the

spider. These could be independent goals like scan a

particular host for watermarked contents or could

include sub goals like extract watermark, match the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

extracted watermark with the data from belief base etc.

Further goals would include creating an itinerary for

the spider to travel, scanning the host to gather

information of the visited environment etc. Each goal is

designed keeping in view the desires of the web spider.

Goals that make up the desires of the agent should not

be conflicting. Conflicting goals would result in

ambiguity regarding the choice of proper plan of action.

Intentions:

Each goal associated with a desire would require a

course of action to be taken to achieve the target.

Intentions represent the currently chosen course of

action (the output of the most recent call to selection

plan of action). Plans thus formed exist in the plan

library. Examples for plans for a web spider would

include; implementation of watermark detection

algorithm, access to the belief base to verify the

validity of the watermark, updating the belief base, plan

library as well as the goals to create a more effective

open system.

5. Conclusions

Agents are an emerging technology that has the

potential to take over traditional methods for designing,

and implementing complex software systems. The

Belief Desire-Intention (BDI) agent paradigm has

proven to be one of the major approaches to building

intelligent agent systems in the industry. Typical BDI

agent-oriented programming languages rely on user-

provided plan libraries to achieve goals based on

beliefs. BDI based systems are extremely flexible and

responsive to the environment, and as a result are well

suited for complex applications with real-time

reasoning and control requirement. In a hybrid network

environment BDI provides a better framework to

develop intelligent automated agents.

6. References

[1] F. Ingrand, M. Georgeff, and A. Rao, ‖An architecture for

real-time reasoning and system control‖, IEEE Expert, vol. 7,

no. 6, pp. 34–44, 1992.

[2] M. P.Georgeff and A. S. Rao, ―A profile of the Australian

AI Institute‖, IEEE Expert, vol. 11, no. 6, pp. 89–92, 1996.

[3] M. P. Georgeff and A. L. Lansky, ‗‗Reactive reasoning

and planning,‘‘ in Proceedings of the Sixth National

Conference on Artificial Intelligence (AAAI-87), Seattle,

WA, 1987, pp. 677–682.

[4] M. Wooldridge and N. R. Jennings, ‗‗Intelligent agents:

Theory and practice,‘‘ Knowl. Eng. Rev., vol. 10, no. 2, pp.

115–152, 1995.

[5] P.Busetta, R. R¨onnquist, A. Hodgson, and A. Lucas.

Light-Weight Intelligent Software Agents in Simulation.

Technical Report 3, Agent Oriented Software, October, 1999.

[6] M.E. Bratman, D. J. Israel, and M. E. Pollack, ―Plans and

resource-bounded practical reasoning,‖ Computational

Intelligence, vol. 4, pp. 349–355, 1988.

[7] A. S. Rao. AgentSpeak(L): BDI agents speak out in a

logical omputable language. In W. Van de Velde and J.

Perram, editors, Proceedings of the Seventh Workshop on

Modelling Autonomous Agents in a Multi-Agent World

(MAAMAW‘96), 22–25January, Eindhoven, The

Netherlands, number 1038 in Lecture Notes in Artificial

Intelligence, pages 42–55, London, 1996. Springer-Verlag.

[8] M. Wooldridge. Reasoning about Rational Agents. The

MIT Press, Cambridge, MA, 2000.

[9] M.P.Singh, A. S. Rao, and M. P. Georgeff. Formal

methods in DAI:Logicbased representation and reasoning. In

G. Weiß, editor,Multiagent Systems—A Modern Approach to

Distributed Artificial Intelligence, chapter 8, pages 331–376.

MIT Press, Cambridge, MA, 1999.

[10] K.L.Myers and D. E. Wilkins. The Act Formalism,

Version 2.2. SRI International Artificial Intelligence Center

Technical Report, Menlo Park, CA, 1997.

[11] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. UM-

PRS: An Implementation of the Procedural Reasoning

System for Multirobot Applications. In Conference on

Intelligent Robotics in Field, Factory, Service, and Space

(CIRFFSS‘94), 842-849, Houston, Texas, 1994.

[12] D. E. Wilkins and K. L. Myers. A Common Knowledge

Representation for Plan Generation and Reactive Execution.

In Journal of Logic and Computation, vol. 5, number 6, 731-

761, 1995.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

