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 Abstract— In this paper, we present a teaching aid for the 

implementation of fixed-point arithmetic in numerical analysis 

algorithms using the C/C++ programming language. Through the 

examination of four case studies, including the solution of a system 

of equations through LU factorization, determination of the 

definite integral through numerical integration, determination of 

a root through the Newton-Raphson method, and the evaluation 

of a polynomial of order 9, we demonstrate the advantage of fixed-

point arithmetic in reducing computation times when dealing with 

complex numerical calculations. In particular, the case study 

utilizing the Newton-Raphson method illustrates the potential for 

a significant reduction in computation time of more than 100 times 

in comparison to the use of floating point arithmetic. This makes 

the implementation of these algorithms in embedded systems, 

where a math coprocessor is not present a viable option. 

 

Keywords— Fixed-point, computing time, float point, numerical 

analysis, C language. 

 

I.  INTRODUCTION  

In fixed-point arithmetic, operations such as division and 

multiplication are carry out with bit shifts and are treated as any 

normal signed or unsigned integer. This arithmetic is very 

important when there is no math co-processor. For example, pic 

microcontrollers do not have the necessary hardware to handle 

fixed-point arithmetic. The advantage is the speed that is 

obtained when handling data in this format, however accuracy 

is lost [1]. 

Fixed-point arithmetic (FP) is used in applications that do 

not require or cannot have a floating-point arithmetic unit [2]. 

The floating point arithmetic system has disadvantages because 

the operations require higher energy consumption but with 

lower speed of operation compared to the arithmetic fixed point 

[3]. Small processors and low cost embedded systems they do 

not have a unit for handling floating point [4]. 

For example Fixed point arithmetic it is widely used in 

Digital Signal Processing (DSP) [5]. Fixed-point arithmetic’s 

can be carried out using the hardware built for integer 

arithmetic. In [6] a division-free algorithm was presented for 

exponential function using Newton-Raphson improving 

computational speed. In [7] the fixed point calculation is 

presented to evaluate logarithms, it introduces variants of the 

logarithm that inputs a floating point number and outputs the 

fixed point result. In [8] a method for the rapid division of 

integers in software was presented, for its implementation in 

processors with an integrated hardware multiplier. It is based 

on determining the reciprocal of the divisor with Newton-

Raphson, with 16 fixed-point bits. In [9] the architecture of a 

fixed-point arithmetic unit based on the use of integer 

arithmetic operations in a field-programmable gate array 

(FPGA) was proposed. Likewise, [10] presents the user guide 

for a package for fixed-point arithmetic implemented in VHDL 

(Very High Speed Integrated Circuit). 

    This paper is organized as follows. In Section II, we 

introduce the basics fixed-point concept. Implementations of 

four case studies are presented. In section III presents four case 

studies where a fixed point is applied; the first one, 

decomposition to solve a system of 6x6 simultaneous 

equations; the  second one, determination of a definite integral 

using Simpson's rule; the third one, the implementation for 

Newton-Raphson;  and finally, the fourth one, the evaluation of 

a polynomial. The discussion is presented in section IV. Finally, 

a concluding remark is given in Section V.  
  

II. SOME BASICS FIXED-POINT 

      In the implementation of fixed-point arithmetic, fixed 

numbers are treated as integers, but the programmer must keep 

in mind that root point tracking must be carry out during each 

operation [11,12,13]. Figure 1 shows the point radix for 𝑁 = 8 

bit with 𝑄3.4 format. It has 3 bits for integer part and 4 bits for 

fractional part and 1 bit for sign. 

 
Figure 1. Fixed point representation for 𝑄3,4. 
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    In fixed point operations, the following aspects have to be 

considered 

1) The number has a sign or unsigned. 

2) The position of the radix point in signed numbers in 

relation to sign bit. For unsigned numbers, the position of 

the radix point relative to the most significant bit.  The bits 

of numbers of the fractional part to be stored. 

The 𝑄 notation is used to represent fixed point numbers that 

are given as 𝑄𝑚. 𝑛 where m bits for the integer part 𝑛 bits for 

the fractional part. Total number of bits 𝑁 = 𝑚 + 𝑛 + 1  for 

signed numbers. 

   To obtain the value of 𝑁 − bit number in 𝑄𝑚. 𝑛 format, it 

can be calculated by 

 

value = −𝑏𝑁−12
𝑚 + ∑ 𝑏𝑖2

𝑖−𝑛

𝑁−2

𝑖=0

 

                                                                    (1) 

 

   Arithmetic operations we considered 𝑖1 and 𝑓1 as the integer 

parts of the first number and 𝑖2 and 𝑓2 the integer parts of the 

second one. In addition and subtraction require that the numbers 

are aligned, the same numbers of bits in the integer part and in 

the fractional part. 

    In the multiplication of two numbers, one with 𝑛 bits, and 

another with 𝑚 bits, we obtain a number of 𝑛 + 𝑚. Also the 

size of the integer and fractional parts are the sum of the integer 

and fractional parts of both numbers. i.e. 𝑖1 + 𝑖2  and 𝑓1 + 𝑓2 

respectively [13]. 

    In the case of division, the results can be reduced to following 

cases. 

1) The quotient of dividing two unsigned fixed point 

number is given by a number with an integer part   𝑖1 + 𝑓2 

and a fractional part  𝑓1 + 𝑓2. 

2) The quotient of dividing a number with sign and other 

unsigned, we obtain a number with an integer part  𝑖1 + 𝑓2  

and a fractional part  𝑓1 − 𝑓2 . 

3) The quotient of dividing two signed numbers gives a 

numbers with an integer part  𝑖1 + 𝑓2 + 1  and a fractional 

part   𝑓1 − 𝑓2. 

We must be careful when obtaining 𝑓2 > 𝑓1, which leads to a 

negative fractional part. To avoid this, the dividend can be 

shifted to the left. In this way, we can have available at least as 

many fractional bits as the divisor. This leads to the next rule: 

if  𝑓2 > 𝑓1 then convert divisor to 𝑖1, 𝑥, where 𝑥 ≤ 𝑓2 [11, 12, 

13]. To convert from floating-point to fixed point we follow 

these steps 

• Multiply the floating point number by 2  raised to the 

number of desired fractional bits. 

• Round the number to the nearest whole number. 

• If the number is negative take twos complement of the 

value arrived at step 2. Store the rounded x in an integer 

container. 

   In practice fixed point is programmed in some programming 

languages such as C, C++ [14]. This is usually done through 

macros that are defined at the begin of the program [14], [15].  

In the appendix is presented the code in Maple that shows the 

use of (1) to understand how fixed-point arithmetic is 

implemented.  

 

  

III. APPLICATION OF FIXED POINT 

A. Case study 1: LU Decomposition to solve a system of 6x6 

simultaneous equations. 

In this case study we will solve a system 6x6 of linear 

equations through the LU factorization [16,17], given for  (5)   

[
 
 
 
 
 
5 1 1
1 4 6
1 2 2

2 5 2
2 4 3
2 3 1

1 1 2
2 3 1
4 5 3

1 4 3
5 3 5
5 3 3]

 
 
 
 
 

[
 
 
 
 
 
𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6]
 
 
 
 
 

=

[
 
 
 
 
 
3
3
9
10
2
6 ]

 
 
 
 
 

 

 

                     (2) 

    The implementation of (5) in fixed point is given 

 
//////////// Fixed point 

printf( ); 

auto start = std::chrono::steady_clock::now(); 

for(h=0;h<10000;h++) 

 {  

  for(i=0;i<n;i++) 

    for(j=0;j<n;j++) 

       if(i>j) 

         { 

           u[i][j]=floatfix(0); 

           u_f[i][j]=floatflo(u[i][j]); 

         } 

       else if(i==j) 

         { 

           l[i][j]=floatfix(1); 

           l_f[i][j]=floatflo(l[i][j]); 

         } 

       else 

         { 

           l[i][j]=floatfix(0); 

           l_f[i][j]=floatflo(l[i][j]); 

         } 

 for(i=0;i<n;i++) 

    { 

      for(j=0;j<n;j++) 

         { 

          sum=floatfix(0); 

          if(i<=j) 

            { 

             for(k=0;k<n;k++) 

               { 

                if(k!=i)                               

                   sum=sum+FMUL(l[i][k], 

                       u[k][j]); 

                   u[i][j]=a[i][j]-sum; 

                   u_f[i][j]=floatflo(u[i][j]); 

               } 

            } 

          else 

            { 

             for(k=0;k<n;k++) 

               { 

                if(k!=j)                          

                    sum=sum+FMUL(l[i][k], 

                    u[k][j]); 

                 [i][j]=FDIV((a[i][j]-sum),u[j][j]); 

                 l_f[i][j]=floatflo(l[i][j]); 

               } 

              } 

           } 

        } 

 

        y[0]=FDIV(b[0],l[0][0]); 

        y_f[0]=floatflo(y[0]); 

        for(i=1;i<n;i++) 

          { 

           sum=floatfix(0); 

           for(j=0;j<i;j++) 

             { 

              sum=sum+FMUL(y[j],l[i][j]); 

              } 

           y[i]=b[i]-sum; 
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           y_f[i]=floatflo(y[i]); 

          } 

          x[n-1] = (y[n-1]); 

          x[n-1] = FDIV((x[n-1]), (u[n-1][n-1])); 

          x_f[n-1]=floatflo(x[n-1]); 

          for(i=n-2;i>=0;i--) 

            { 

             sum=floatfix(0); 

             for(j=n-1;j>i;j--) 

               sum = sum + FMUL(x[j],u[i][j]); 

             x[i] = (y[i]-sum); 

             x[i] = FDIV((x[i]),u[i][i]); 

             x_f[i]=floatflo(x[i]); 

            } 

    } 

     auto end = chrono::steady_clock::now(); 

  

     printf("The solution are:\n "); 

     printf("Y            X \n"); 

     for(i=0;i<n;i++) 

     { 

      printf("%5.6f\t  %5.6f\t\n",y_f[i],x_f[i]); 

     }  

 

auto elapsed = 

chrono::duration_cast<chrono::microseconds>(end - start); 

cout << "Chrono time " << elapsed.count() << "us." <<endl; 

   

 

B. Case study 2: Determine the definite integral with 

Simpson’s Rule 1/3. 

In this case study we will calculate the numerical integral 

by means of Simpson's Rule 1/3 [16,17] for the function given 

by 

 

𝑓(𝑥) = 6.0333𝑥2 + 2.0333. 
            (3) 

 

The fixed-point implementation for (3) is given for 
 

//Coeficients 

const1_fix=floatfix(6.0333); 

const2_fix=floatfix(2.0333); 

 

// function (3) 

f_fix = FMUL(FMUL(X, X),const1_fix)+ const2_fix    
 

 

C. Case study 3: Determine the numerical root with Newton-

Raphson 

In the first case we will implemented fixed point to 

determine the roots of the function using Newton-Raphson 

[16,17]. 

 

𝑓(𝑥) = 0.3222𝑥5 − 1.678662𝑥3 − 1.559448𝑥. 

  (4) 

 

The fixed-point implementation for (2) and its derivative 

are given by 

 
//constants 

const1=floatfix(0.3222); 

const2=floatfix(1.678662); 

const3=floatfix(1.559448); 

const4=floatfix(1.6110); 

const5=floatfix(5.035986); 

 

/* Defining equation (2) 

f0_fix=   FMUL(FMUL(FMUL(FMUL(FMUL(X,X), X),X),X),const1) -

 FMUL(FMUL(FMUL(X,X), X),const2) +FMUL(X,const3); 

      

/* Derivative of (2) 𝑓𝑑 = 1.6110𝑥4 + 5.035986𝑥2 − 1.559448 */ 
fd_fix= FMUL(FMUL(FMUL(FMUL(X,X), X),X),const4) -

FMUL(FMUL(X,X),const5) +const3; 

 
 

D. Case study 4:  Polynomial evaluation. 

In this case study we are going to evaluate the function 

given by (4) in the interval 0 ≤ 𝑥 ≤ 1 which was obtained in 

[18]. 

 
𝑓(𝑥) = 3.173281398136𝑥 − 1.70𝑥2 −  1.798192792278𝑥3

−  0.944876267833𝑥4 + 0.317406667211𝑥5

+ 1.081238617931𝑥6  +  0.847127841554𝑥7

− 0.083371054338𝑥8 − 7.85𝑥9.  

         (5) 

The implementation in fixed point for (4) is  
// Constants 
const1_fix=floatfix(3.173281398136); 

const2_fix=floatfix(1.70); 

const3_fix=floatfix(1.798192792278); 

const4_fix=floatfix(0.944876267833); 

const5_fix=floatfix(0.317406667211); 

const6_fix=floatfix(1.081238617931); 

const7_fix=floatfix(0.847127841554); 

const8_fix=floatfix(0.083371054338); 

const9_fix=floatfix(7.85); 

 

// Equation (4) 
y_fix=FMUL(const1_fix,x_fix)- 

FMUL(FMUL(const2_fix,x_fix),x_fix) -

FMUL(FMUL(FMUL(const2_fix,x_fix),x_fix),x_fix) - 

FMUL(FMUL(FMUL(FMUL(const4_fix,x_fix),x_fix),x_fix),x_fix) + 

FMUL( 

FMUL(FMUL(FMUL(FMUL(const5_fix,x_fix),x_fix),x_fix),x_fix),

x_fix) + FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const6_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix)+ FMUL(FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const7_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix) - FMUL(FMUL(FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const8_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix)- FMUL(FMUL(FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const9_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix); 

IV. DISCUSION  

      The computer used for the simulations was an Intel Core 

Pentium(R) Intel® Core™ i7-7700 CPU @ running at 3.60GHz 

× 8 under Linux Ubuntu 18.04.6 LTS, using as compiler the gcc 

7.5.0 with level 3 of optimization. In all case studies, the chrono 

library of the C++ language was used to compare computing 

times in floating point and fixed point implementations. The 

macros used in the executed routines of all the study cases [15] 

are  

 
#define FMUL(a,b) (((a)*(b))>>(FIXED_FRACBITS)) 

#define FDIV(a,b) (((a)<<(FIXED_FRACBITS))/(b)) 

 

In the appendix, the complete code in C++ for case study 

3 is presented. In this code, the macros that are used for different 

operations with fixed-point arithmetic have been implemented. 

    In the first case study, we propose to solve a system of six 

linear equations with six unknowns using the LU factorization 

method. Table I presents a comparison of the solution obtained 

from this system using floating point and fixed point 

representations. It is observed that the computing time for the 

floating point representation is shorter when compared to the 

fixed point representation. 

 
TABLE I. COMPARATIVE ANALYSIS OF COMPUTATION TIMES FOR 

CASE STUDY 1 

 Exact  FP 

𝑥1 -4.131182 -4.261719 

𝑥2 19.395699 19.867188 
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𝑥3 -13.305374 -13.660156 

𝑥4 -11.965590 -12.312500 

𝑥5 8.266665 8.496094 

𝑥6 0.081719 0.125000 

Time 0.99𝜇s 72.227𝜇s 

 

 

In the second case study, the definite integral of a quadratic 

function of the second degree (3) with float point coefficients 

was calculated using the Simpson 1/3 method. The function was 

implemented in a floating point format and a total of 1,000,000 

iterations were conducted in the study. 

 Table II displays the computation times obtained in the 

second case study. It can be observed that the computation time 

using the fixed-point format is shorter than the floating-point 

format. However, it should be noted that an absolute error of 

0.1924 was present in the fixed-point implementation. 

 
TABLE II. COMPARATIVE ANALYSIS OF COMPUTATION TIMES 

FOR CASE STUDY 2.  
 Area Area in FP Time 𝒎s 

Numerical 4.044 - 87 

Fixed point 3.851562 986 54 

 

In the third case study, the Newton-Raphson algorithm was 

utilized to obtain the root of the function (4), see that the 

function used is of degree 5. The root was calculated by 

implementing the algorithm in both floating point and fixed 

point formats. The number of iterations required to obtain the 

root was found to be 9 in both implementations. An initial value 

of 𝑥 = 6 was utilized, with an acceptable error tolerance of 0.1. 

A total of 100,000 iterations were conducted in the study. 

Table III presents the results obtained from the root 

calculations using both implementations of the Newton-

Raphson algorithm. It can be observed that an error tolerance of 

approximately 0.01 was achieved for both implementations. 

Additionally, it is evident that the computation time for the 

fixed-point implementation was significantly less than that of 

the floating-point implementation. 

 
TABLE III. COMPARATIVE ANALYSIS OF COMPUTATION TIMES 

FOR CASE STUDY 3.  

 Steps Root Root in FP Time 𝝁s 

Numerical 9 2.003563 - 17192 

Fixed point 9 2.013672 1031 136 

 

The fourth case study evaluated a function of degree nine, 

as previously published in [18], within the interval 0 ≤ 𝑥 ≤ 1 

with increments of 0.01. The procedure was conducted 1000 

times and the results indicate that the computation time in 

floating-point format was 41 milliseconds, while it was 

significantly shorter at 1 millisecond using the fixed-point 

format. Table IV presents a selection of y values obtained with 

increments of 𝑥 = 0.05 to demonstrate the accuracy achieved 

with the float-point implementation.  

 
TABLE IV. COMPARATIVE ANALYSIS OF COMPUTATION TIMES 

FOR CASE STUDY 4. 
Value 𝒙 Value 𝒚 Value 𝒚 obtained  

with FP 

0 0 0 

0.05 0.153556 0.15332 

0.1 0.297191 0.296387 

0.15 0.429377 0.429199 

0.2 0.548501 0.547852 

0.25 0.652919 0.652344 

0.3 0.741019 0.742188 

0.35 0.811315 0.813477 

0.4 0.86254 0.867676 

0.45 0.8937565 0.900391 

0.5 0.904447 0.914062 

0.55 0.894607 0.908203 

0.6 0.864772 0.881348 

0.65 0.815991 0.835938 

0.7 0.749705 0.77002 

0.75 0.667469 0.690918 

0.8 0.570507 0.597168 

0.85 0.459009 0.487305 

0.9 0.331136 0.369629 

0.95 0.181636 0.241699 

1 -4.84E-07 0.103027 
 

 

Figure 2 illustrates the absolute error present when utilizing 

the Fixed Point Implementation within the interval  0 ≤ 𝑥 ≤ 1. 

It is observed that the absolute error increases as the value of 𝑥 

approaches 1. This phenomenon is attributed to the increase in 

numerical values of 𝑥, which in turn leads to an increase in the 

numerical values generated in each of the terms in (9) as a result 

of the multiplications of each coefficient with the 

corresponding power of 𝑥 . Furthermore, the computation 

accuracy diminishes as the error is a function of the number of 

bits used to represent the information. To mitigate numerical 

errors, an increase in the number of bits in the fractional part 

would be necessary. 
   

 
Figure 2. Absolut error for case study IV. 

 

 

In the present study, the performance of fixed point and 

floating point implementations were compared across multiple 

case studies. It is worth noting that the computer utilized in 

these experiments was equipped with a mathematical 

coprocessor capable of performing floating point operations. 

The results indicate that in situations where the number of float-

point arithmetic operations is relatively low, the float-point 

implementation tends to exhibit superior performance as 

demonstrated in Table I of the first case study, where operations 

such as multiplication, division, addition, and subtraction were 

performed. However, as the complexity of the arithmetic 

calculations increases, the computing times in float-point 

operations also increase. This phenomenon is observed in case 

study 2, as presented in Table II. Specifically, in this case the 

expression being evaluated was a second degree function with 
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constant coefficients. It is important to note that the use of 

fixed-point arithmetic in this scenario resulted in a reduction of 

computation time, as well as an acceptable error level.  

In the third case study, a fifth-degree function was 

evaluated using the Newton-Raphson method to determine one 

of its roots. The results indicate that the computation time using 

a fixed point was significantly lower compared to the use of 

floating point. This trend continues in the fourth case study, 

where a polynomial of a different degree was evaluated, with a 

notable reduction in computation time when using a fixed point 

approach.  However, it is important to note that in all of the case 

studies, an error was observed in the implementation of fixed 

point algorithms. This highlights the need for careful 

consideration and implementation in order to effectively use 

fixed point in numerical analysis. Additionally, it is important 

to note that the use of fixed point may not always be the most 

appropriate method and that other techniques, such as floating 

point, should also be considered in the analysis. 

However, it is important to note that in all the case studies 

presented in this article, an error occurred when implementing 

a fixed point. Despite this, the results of the case studies show 

that the use of fixed point can provide significant performance 

gains in certain situations. As such, it is crucial to carefully 

evaluate the trade-offs between computation time and 

numerical accuracy when deciding to implement fixed point in 

numerical analysis algorithms. The results obtained show a 

reduction in computation times, for which fixed-point 

arithmetic is useful and applicable to embedded systems, 

especially those that lack a mathematical processor. 

Furthermore, the article presented a teaching aid for the 

implementation of fixed point in numerical analysis algorithms 

such as the Newton-Raphson method, where a speed increase 

of more than 100 times was achieved compared to that obtained 

with float-point. In this work the computing times were 

measured using the C language, however it is possible to 

measure computing time using Fortran [19-22]. 
 

V. CONCLUDING REMARKS 

In this study, the implementation of fixed point arithmetic 

in four numerical analysis algorithms was presented: the 

solution of a system of equations through LU factorization, the 

determination of a definite integral through numerical 

integration, the determination of a root through the Newton-

Raphson method, and the evaluation of a ninth-order 

polynomial. The results of these case studies demonstrate the 

advantages of fixed point implementation in terms of 

computation time when dealing with complex numerical 

calculations. The aim of this article is to provide readers with a 

clear understanding of fixed point implementation through 

simple and reproducible examples. As a future research 

direction, it would be beneficial to implement these algorithms 

on embedded systems, such as PIC microcontrollers, to further 

evaluate the advantages of fixed point implementation in real-

world applications. 
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APPENDIX  

A. Code 1. Program in Maple 
#Code written by the authors 

#Code Maple for understand Fixed Point 

#The follow code presents a method for understanding fixed-

point numbers in Qm.n  

restart; 

#Let Q(1, 6); 

Digits:=9; 

 

#implementation of formula 1, see text. Q1,6; 

V := -b[N-1]*2^m+sum(b[i]*2^(i-n), i = 0 .. N-2); 

#NN := m+n+1; 

NN := 1+6+1; 

 

 

# Example 1 

value := expand(subs(N = 8, m = 1, n = 6, V)); 

b[7] := 0; 

b[6] := 1; 

b[5] := 1; 

b[4] := 0; 

b[3] := 1; 

b[2] := 0; 

b[1] := 1; 

b[0] := 1; 

evalf(value); 

 

 

################################## 

#Let Q(1, 6) 

#Example 2 

value := expand(subs(N = 8, m = 3, n = 4, V)); 

b[7] := 0;  

b[6] := 1; 

b[5] := 1;  

b[4] := 0; 

b[3] := 1; 

b[2] := 0; 

b[1] := 1; 

b[0] := 1; 

evalf(value); 

 

 

 

B. Code 2. Program in C++ 

/*Complete code for the implementation in fixed-point for 

the study case number 3*/ 

 

//Libraries 

#include<stdio.h> 

#include<stdlib.h> 

#include<math.h> 

#include<iostream> 

#include<chrono> 

#include<unistd.h> 

using namespace std; 

 

 

//******* Macros FIXED-POINT ****************// 

//////// Fractional bits  

#define   FIXED_FRACBITS 11 

typedef int fixedp; 

 

// Convert to fixed point  

#define shortfix(x)   ((fixedp)((x) << (FIXED_FRACBITS))) 

#define intfix(x)     ((fixedp)((x) << (FIXED_FRACBITS))) 

#define longfix(x)    ((fixedp)((x) << (FIXED_FRACBITS))) 

#define floatfix(x)   ((fixedp)((x) * (1 << 

(FIXED_FRACBITS)))) 

#define doublefix(x)  ((fixedp)((x) * (1 << 

(FIXED_FRACBITS)))) 

 

//// Convert to floating point  ///////////// 
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#define shortflo(x)    ((short)((x) >> (FIXED_FRACBITS))) 

#define intflo(x)      ((int)((x) >> (FIXED_FRACBITS))) 

#define longflo(x)     ((long)((x) >> (FIXED_FRACBITS))) 

#define floatflo(x)    ((float)(x) / (1 << 

(FIXED_FRACBITS))) 

#define doubleflo(x)   ((double)(x) / (1 << 

(FIXED_FRACBITS))) 

 

////////// Another option ///////////////////////// 

/* Basic operations between two numbers a and b at a fixed 

point in q format returning in q format q */ 

#define FADD(a,b) ((a)+(b)) 

#define FSUB(a,b) ((a)-(b)) 

#define FMUL(a,b) (((a)*(b))>>(FIXED_FRACBITS)) 

#define FDIV(a,b) (((a)<<(FIXED_FRACBITS))/(b)) 

 

// Variables into fixed-point 

fixedp x_fix, y_fix, const1_fix, const2_fix, const3_fix, 

const4_fix,const5_fix,const6_fix,const7_fix,const8_fix,cons

t9_fix,const10_fix,const11_fix; 

 

 

int main(void) 

 { 

   float x=0,y=0; 

   int contador;    

   x_fix=floatfix(x); 

   y_fix=floatfix(y);  

        

   const1_fix=floatfix(3.173281398136); 

   const2_fix=floatfix(1.70); 

   const3_fix=floatfix(1.798192792278); 

   const4_fix=floatfix(0.944876267833); 

   const5_fix=floatfix(0.317406667211); 

   const6_fix=floatfix(1.081238617931); 

   const7_fix=floatfix(0.847127841554); 

   const8_fix=floatfix(0.083371054338); 

   const9_fix=floatfix(7.85);   

   const10_fix=floatfix(1.0);  

   const11_fix=floatfix(0.01);  

 

   // Clock 

   auto start = chrono::steady_clock::now(); 

 

   for(contador=1;contador<1000;contador++) 

    { 

     for(x_fix=0; x_fix<=const10_fix;   

                                 x_fix=x_fix+const11_fix) 

      { 

       y_fix= FMUL(const1_fix,x_fix)- 

FMUL(FMUL(const2_fix,x_fix),x_fix) -

FMUL(FMUL(FMUL(const2_fix,x_fix),x_fix),x_fix) - 

FMUL(FMUL(FMUL(FMUL(const4_fix,x_fix),x_fix),x_fix),x_fix) 

+ FMUL( 

FMUL(FMUL(FMUL(FMUL(const5_fix,x_fix),x_fix),x_fix),x_fix),

x_fix) + FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const6_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix)+ FMUL(FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const7_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix) - FMUL(FMUL(FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const8_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix)- FMUL(FMUL(FMUL(FMUL( 

FMUL(FMUL(FMUL(FMUL(const9_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix);     

      } 

}  

  

   auto end = chrono::steady_clock::now(); 

 

cout << "Elapsed time in ms: "<<  

   chrono::duration_cast<chrono::milliseconds>(end –  

   start).count() << " ms"<< endl; 

   cout << "el valor  usando PFIJO es"<<floatflo(y_fix)  

   <<endl; 

  return 0; 

} 
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