
Basic Implementation of Fixed-Point Arithmetic in

Numerical Analysis
M.A. Sandoval-Hernández1, G.C. Velez-López2, H. Vázquez-Leal3,4,*, U.A. Filobello-Nino3, G. J. Morales-Alarcón5,

E. De-Leo-Baquero1, A.C. Bielma-Pérez1, C.E Sampieri-González3, J.E. Pérez-Jácome Friscione3, A.D. Contreras-

Hernández3, O. Álvarez-Gasca3, J. Sánchez-Orea3, L. Cuellar-Hernández3.
1 Centro de Bachillerato Tecnológico Industrial y de Servicios No. 190, Av. 15 Col. Venustiano Carranza 2da Sección,

Boca del Río, 94297, Veracruz, México.
2Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. María Tonantzintla,

72840, Puebla, México.
 3Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N,

 Xalapa, 91000, Veracruz, México.
4Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico, Av. Rafael Murillo Vidal No. 1735,

 Cuauhtémoc, Xalapa, 91069, Veracruz, México.
5 Instituto de Psicología y Educación, Universidad Veracruzana, Agustín Melgar 2,

 Col. 21 de Marzo, Xalapa, 91010 Veracruz, México.

 Abstract— In this paper, we present a teaching aid for the

implementation of fixed-point arithmetic in numerical analysis

algorithms using the C/C++ programming language. Through the

examination of four case studies, including the solution of a system

of equations through LU factorization, determination of the

definite integral through numerical integration, determination of

a root through the Newton-Raphson method, and the evaluation

of a polynomial of order 9, we demonstrate the advantage of fixed-

point arithmetic in reducing computation times when dealing with

complex numerical calculations. In particular, the case study

utilizing the Newton-Raphson method illustrates the potential for

a significant reduction in computation time of more than 100 times

in comparison to the use of floating point arithmetic. This makes

the implementation of these algorithms in embedded systems,

where a math coprocessor is not present a viable option.

Keywords— Fixed-point, computing time, float point, numerical

analysis, C language.

I. INTRODUCTION

In fixed-point arithmetic, operations such as division and

multiplication are carry out with bit shifts and are treated as any

normal signed or unsigned integer. This arithmetic is very

important when there is no math co-processor. For example, pic

microcontrollers do not have the necessary hardware to handle

fixed-point arithmetic. The advantage is the speed that is

obtained when handling data in this format, however accuracy

is lost [1].

Fixed-point arithmetic (FP) is used in applications that do

not require or cannot have a floating-point arithmetic unit [2].

The floating point arithmetic system has disadvantages because

the operations require higher energy consumption but with

lower speed of operation compared to the arithmetic fixed point

[3]. Small processors and low cost embedded systems they do

not have a unit for handling floating point [4].

For example Fixed point arithmetic it is widely used in

Digital Signal Processing (DSP) [5]. Fixed-point arithmetic’s

can be carried out using the hardware built for integer

arithmetic. In [6] a division-free algorithm was presented for

exponential function using Newton-Raphson improving

computational speed. In [7] the fixed point calculation is

presented to evaluate logarithms, it introduces variants of the

logarithm that inputs a floating point number and outputs the

fixed point result. In [8] a method for the rapid division of

integers in software was presented, for its implementation in

processors with an integrated hardware multiplier. It is based

on determining the reciprocal of the divisor with Newton-

Raphson, with 16 fixed-point bits. In [9] the architecture of a

fixed-point arithmetic unit based on the use of integer

arithmetic operations in a field-programmable gate array

(FPGA) was proposed. Likewise, [10] presents the user guide

for a package for fixed-point arithmetic implemented in VHDL

(Very High Speed Integrated Circuit).

 This paper is organized as follows. In Section II, we

introduce the basics fixed-point concept. Implementations of

four case studies are presented. In section III presents four case

studies where a fixed point is applied; the first one,

decomposition to solve a system of 6x6 simultaneous

equations; the second one, determination of a definite integral

using Simpson's rule; the third one, the implementation for

Newton-Raphson; and finally, the fourth one, the evaluation of

a polynomial. The discussion is presented in section IV. Finally,

a concluding remark is given in Section V.

II. SOME BASICS FIXED-POINT

 In the implementation of fixed-point arithmetic, fixed

numbers are treated as integers, but the programmer must keep

in mind that root point tracking must be carry out during each

operation [11,12,13]. Figure 1 shows the point radix for 𝑁 = 8

bit with 𝑄3.4 format. It has 3 bits for integer part and 4 bits for

fractional part and 1 bit for sign.

Figure 1. Fixed point representation for 𝑄3,4.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS010134
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 01, January-2023

313

www.ijert.org
www.ijert.org
www.ijert.org

 In fixed point operations, the following aspects have to be

considered

1) The number has a sign or unsigned.

2) The position of the radix point in signed numbers in

relation to sign bit. For unsigned numbers, the position of

the radix point relative to the most significant bit. The bits

of numbers of the fractional part to be stored.

The 𝑄 notation is used to represent fixed point numbers that

are given as 𝑄𝑚. 𝑛 where m bits for the integer part 𝑛 bits for

the fractional part. Total number of bits 𝑁 = 𝑚 + 𝑛 + 1 for

signed numbers.

 To obtain the value of 𝑁 − bit number in 𝑄𝑚. 𝑛 format, it

can be calculated by

value = −𝑏𝑁−12
𝑚 + ∑ 𝑏𝑖2

𝑖−𝑛

𝑁−2

𝑖=0

 (1)

 Arithmetic operations we considered 𝑖1 and 𝑓1 as the integer

parts of the first number and 𝑖2 and 𝑓2 the integer parts of the

second one. In addition and subtraction require that the numbers

are aligned, the same numbers of bits in the integer part and in

the fractional part.

 In the multiplication of two numbers, one with 𝑛 bits, and

another with 𝑚 bits, we obtain a number of 𝑛 + 𝑚. Also the

size of the integer and fractional parts are the sum of the integer

and fractional parts of both numbers. i.e. 𝑖1 + 𝑖2 and 𝑓1 + 𝑓2

respectively [13].

 In the case of division, the results can be reduced to following

cases.

1) The quotient of dividing two unsigned fixed point

number is given by a number with an integer part 𝑖1 + 𝑓2

and a fractional part 𝑓1 + 𝑓2.

2) The quotient of dividing a number with sign and other

unsigned, we obtain a number with an integer part 𝑖1 + 𝑓2

and a fractional part 𝑓1 − 𝑓2 .

3) The quotient of dividing two signed numbers gives a

numbers with an integer part 𝑖1 + 𝑓2 + 1 and a fractional

part 𝑓1 − 𝑓2.

We must be careful when obtaining 𝑓2 > 𝑓1, which leads to a

negative fractional part. To avoid this, the dividend can be

shifted to the left. In this way, we can have available at least as

many fractional bits as the divisor. This leads to the next rule:

if 𝑓2 > 𝑓1 then convert divisor to 𝑖1, 𝑥, where 𝑥 ≤ 𝑓2 [11, 12,

13]. To convert from floating-point to fixed point we follow

these steps

• Multiply the floating point number by 2 raised to the

number of desired fractional bits.

• Round the number to the nearest whole number.

• If the number is negative take twos complement of the

value arrived at step 2. Store the rounded x in an integer

container.

 In practice fixed point is programmed in some programming

languages such as C, C++ [14]. This is usually done through

macros that are defined at the begin of the program [14], [15].

In the appendix is presented the code in Maple that shows the

use of (1) to understand how fixed-point arithmetic is

implemented.

III. APPLICATION OF FIXED POINT

A. Case study 1: LU Decomposition to solve a system of 6x6

simultaneous equations.

In this case study we will solve a system 6x6 of linear

equations through the LU factorization [16,17], given for (5)

[

5 1 1
1 4 6
1 2 2

2 5 2
2 4 3
2 3 1

1 1 2
2 3 1
4 5 3

1 4 3
5 3 5
5 3 3]

[

𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6]

=

[

3
3
9
10
2
6]

 (2)

 The implementation of (5) in fixed point is given

//////////// Fixed point

printf();

auto start = std::chrono::steady_clock::now();

for(h=0;h<10000;h++)

 {

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 if(i>j)

 {

 u[i][j]=floatfix(0);

 u_f[i][j]=floatflo(u[i][j]);

 }

 else if(i==j)

 {

 l[i][j]=floatfix(1);

 l_f[i][j]=floatflo(l[i][j]);

 }

 else

 {

 l[i][j]=floatfix(0);

 l_f[i][j]=floatflo(l[i][j]);

 }

 for(i=0;i<n;i++)

 {

 for(j=0;j<n;j++)

 {

 sum=floatfix(0);

 if(i<=j)

 {

 for(k=0;k<n;k++)

 {

 if(k!=i)

 sum=sum+FMUL(l[i][k],

 u[k][j]);

 u[i][j]=a[i][j]-sum;

 u_f[i][j]=floatflo(u[i][j]);

 }

 }

 else

 {

 for(k=0;k<n;k++)

 {

 if(k!=j)

 sum=sum+FMUL(l[i][k],

 u[k][j]);

 [i][j]=FDIV((a[i][j]-sum),u[j][j]);

 l_f[i][j]=floatflo(l[i][j]);

 }

 }

 }

 }

 y[0]=FDIV(b[0],l[0][0]);

 y_f[0]=floatflo(y[0]);

 for(i=1;i<n;i++)

 {

 sum=floatfix(0);

 for(j=0;j<i;j++)

 {

 sum=sum+FMUL(y[j],l[i][j]);

 }

 y[i]=b[i]-sum;

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS010134
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 01, January-2023

314

www.ijert.org
www.ijert.org
www.ijert.org

 y_f[i]=floatflo(y[i]);

 }

 x[n-1] = (y[n-1]);

 x[n-1] = FDIV((x[n-1]), (u[n-1][n-1]));

 x_f[n-1]=floatflo(x[n-1]);

 for(i=n-2;i>=0;i--)

 {

 sum=floatfix(0);

 for(j=n-1;j>i;j--)

 sum = sum + FMUL(x[j],u[i][j]);

 x[i] = (y[i]-sum);

 x[i] = FDIV((x[i]),u[i][i]);

 x_f[i]=floatflo(x[i]);

 }

 }

 auto end = chrono::steady_clock::now();

 printf("The solution are:\n ");

 printf("Y X \n");

 for(i=0;i<n;i++)

 {

 printf("%5.6f\t %5.6f\t\n",y_f[i],x_f[i]);

 }

auto elapsed =

chrono::duration_cast<chrono::microseconds>(end - start);

cout << "Chrono time " << elapsed.count() << "us." <<endl;

B. Case study 2: Determine the definite integral with

Simpson’s Rule 1/3.

In this case study we will calculate the numerical integral

by means of Simpson's Rule 1/3 [16,17] for the function given

by

𝑓(𝑥) = 6.0333𝑥2 + 2.0333.
 (3)

The fixed-point implementation for (3) is given for

//Coeficients

const1_fix=floatfix(6.0333);

const2_fix=floatfix(2.0333);

// function (3)

f_fix = FMUL(FMUL(X, X),const1_fix)+ const2_fix

C. Case study 3: Determine the numerical root with Newton-

Raphson

In the first case we will implemented fixed point to

determine the roots of the function using Newton-Raphson

[16,17].

𝑓(𝑥) = 0.3222𝑥5 − 1.678662𝑥3 − 1.559448𝑥.

 (4)

The fixed-point implementation for (2) and its derivative

are given by

//constants

const1=floatfix(0.3222);

const2=floatfix(1.678662);

const3=floatfix(1.559448);

const4=floatfix(1.6110);

const5=floatfix(5.035986);

/* Defining equation (2)

f0_fix= FMUL(FMUL(FMUL(FMUL(FMUL(X,X), X),X),X),const1) -

 FMUL(FMUL(FMUL(X,X), X),const2) +FMUL(X,const3);

/* Derivative of (2) 𝑓𝑑 = 1.6110𝑥4 + 5.035986𝑥2 − 1.559448 */
fd_fix= FMUL(FMUL(FMUL(FMUL(X,X), X),X),const4) -

FMUL(FMUL(X,X),const5) +const3;

D. Case study 4: Polynomial evaluation.

In this case study we are going to evaluate the function

given by (4) in the interval 0 ≤ 𝑥 ≤ 1 which was obtained in

[18].

𝑓(𝑥) = 3.173281398136𝑥 − 1.70𝑥2 − 1.798192792278𝑥3

− 0.944876267833𝑥4 + 0.317406667211𝑥5

+ 1.081238617931𝑥6 + 0.847127841554𝑥7

− 0.083371054338𝑥8 − 7.85𝑥9.

 (5)

The implementation in fixed point for (4) is
// Constants
const1_fix=floatfix(3.173281398136);

const2_fix=floatfix(1.70);

const3_fix=floatfix(1.798192792278);

const4_fix=floatfix(0.944876267833);

const5_fix=floatfix(0.317406667211);

const6_fix=floatfix(1.081238617931);

const7_fix=floatfix(0.847127841554);

const8_fix=floatfix(0.083371054338);

const9_fix=floatfix(7.85);

// Equation (4)
y_fix=FMUL(const1_fix,x_fix)-

FMUL(FMUL(const2_fix,x_fix),x_fix) -

FMUL(FMUL(FMUL(const2_fix,x_fix),x_fix),x_fix) -

FMUL(FMUL(FMUL(FMUL(const4_fix,x_fix),x_fix),x_fix),x_fix) +

FMUL(

FMUL(FMUL(FMUL(FMUL(const5_fix,x_fix),x_fix),x_fix),x_fix),

x_fix) + FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const6_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix)+ FMUL(FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const7_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix) - FMUL(FMUL(FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const8_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix)- FMUL(FMUL(FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const9_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix);

IV. DISCUSION

 The computer used for the simulations was an Intel Core

Pentium(R) Intel® Core™ i7-7700 CPU @ running at 3.60GHz

× 8 under Linux Ubuntu 18.04.6 LTS, using as compiler the gcc

7.5.0 with level 3 of optimization. In all case studies, the chrono

library of the C++ language was used to compare computing

times in floating point and fixed point implementations. The

macros used in the executed routines of all the study cases [15]

are

#define FMUL(a,b) (((a)*(b))>>(FIXED_FRACBITS))

#define FDIV(a,b) (((a)<<(FIXED_FRACBITS))/(b))

In the appendix, the complete code in C++ for case study

3 is presented. In this code, the macros that are used for different

operations with fixed-point arithmetic have been implemented.

 In the first case study, we propose to solve a system of six

linear equations with six unknowns using the LU factorization

method. Table I presents a comparison of the solution obtained

from this system using floating point and fixed point

representations. It is observed that the computing time for the

floating point representation is shorter when compared to the

fixed point representation.

TABLE I. COMPARATIVE ANALYSIS OF COMPUTATION TIMES FOR

CASE STUDY 1

 Exact FP

𝑥1 -4.131182 -4.261719

𝑥2 19.395699 19.867188

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS010134
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 01, January-2023

315

www.ijert.org
www.ijert.org
www.ijert.org

𝑥3 -13.305374 -13.660156

𝑥4 -11.965590 -12.312500

𝑥5 8.266665 8.496094

𝑥6 0.081719 0.125000

Time 0.99𝜇s 72.227𝜇s

In the second case study, the definite integral of a quadratic

function of the second degree (3) with float point coefficients

was calculated using the Simpson 1/3 method. The function was

implemented in a floating point format and a total of 1,000,000

iterations were conducted in the study.

 Table II displays the computation times obtained in the

second case study. It can be observed that the computation time

using the fixed-point format is shorter than the floating-point

format. However, it should be noted that an absolute error of

0.1924 was present in the fixed-point implementation.

TABLE II. COMPARATIVE ANALYSIS OF COMPUTATION TIMES

FOR CASE STUDY 2.
 Area Area in FP Time 𝒎s

Numerical 4.044 - 87

Fixed point 3.851562 986 54

In the third case study, the Newton-Raphson algorithm was

utilized to obtain the root of the function (4), see that the

function used is of degree 5. The root was calculated by

implementing the algorithm in both floating point and fixed

point formats. The number of iterations required to obtain the

root was found to be 9 in both implementations. An initial value

of 𝑥 = 6 was utilized, with an acceptable error tolerance of 0.1.

A total of 100,000 iterations were conducted in the study.

Table III presents the results obtained from the root

calculations using both implementations of the Newton-

Raphson algorithm. It can be observed that an error tolerance of

approximately 0.01 was achieved for both implementations.

Additionally, it is evident that the computation time for the

fixed-point implementation was significantly less than that of

the floating-point implementation.

TABLE III. COMPARATIVE ANALYSIS OF COMPUTATION TIMES

FOR CASE STUDY 3.

 Steps Root Root in FP Time 𝝁s

Numerical 9 2.003563 - 17192

Fixed point 9 2.013672 1031 136

The fourth case study evaluated a function of degree nine,

as previously published in [18], within the interval 0 ≤ 𝑥 ≤ 1

with increments of 0.01. The procedure was conducted 1000

times and the results indicate that the computation time in

floating-point format was 41 milliseconds, while it was

significantly shorter at 1 millisecond using the fixed-point

format. Table IV presents a selection of y values obtained with

increments of 𝑥 = 0.05 to demonstrate the accuracy achieved

with the float-point implementation.

TABLE IV. COMPARATIVE ANALYSIS OF COMPUTATION TIMES

FOR CASE STUDY 4.
Value 𝒙 Value 𝒚 Value 𝒚 obtained

with FP

0 0 0

0.05 0.153556 0.15332

0.1 0.297191 0.296387

0.15 0.429377 0.429199

0.2 0.548501 0.547852

0.25 0.652919 0.652344

0.3 0.741019 0.742188

0.35 0.811315 0.813477

0.4 0.86254 0.867676

0.45 0.8937565 0.900391

0.5 0.904447 0.914062

0.55 0.894607 0.908203

0.6 0.864772 0.881348

0.65 0.815991 0.835938

0.7 0.749705 0.77002

0.75 0.667469 0.690918

0.8 0.570507 0.597168

0.85 0.459009 0.487305

0.9 0.331136 0.369629

0.95 0.181636 0.241699

1 -4.84E-07 0.103027

Figure 2 illustrates the absolute error present when utilizing

the Fixed Point Implementation within the interval 0 ≤ 𝑥 ≤ 1.

It is observed that the absolute error increases as the value of 𝑥

approaches 1. This phenomenon is attributed to the increase in

numerical values of 𝑥, which in turn leads to an increase in the

numerical values generated in each of the terms in (9) as a result

of the multiplications of each coefficient with the

corresponding power of 𝑥 . Furthermore, the computation

accuracy diminishes as the error is a function of the number of

bits used to represent the information. To mitigate numerical

errors, an increase in the number of bits in the fractional part

would be necessary.

Figure 2. Absolut error for case study IV.

In the present study, the performance of fixed point and

floating point implementations were compared across multiple

case studies. It is worth noting that the computer utilized in

these experiments was equipped with a mathematical

coprocessor capable of performing floating point operations.

The results indicate that in situations where the number of float-

point arithmetic operations is relatively low, the float-point

implementation tends to exhibit superior performance as

demonstrated in Table I of the first case study, where operations

such as multiplication, division, addition, and subtraction were

performed. However, as the complexity of the arithmetic

calculations increases, the computing times in float-point

operations also increase. This phenomenon is observed in case

study 2, as presented in Table II. Specifically, in this case the

expression being evaluated was a second degree function with

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS010134
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 01, January-2023

316

www.ijert.org
www.ijert.org
www.ijert.org

constant coefficients. It is important to note that the use of

fixed-point arithmetic in this scenario resulted in a reduction of

computation time, as well as an acceptable error level.

In the third case study, a fifth-degree function was

evaluated using the Newton-Raphson method to determine one

of its roots. The results indicate that the computation time using

a fixed point was significantly lower compared to the use of

floating point. This trend continues in the fourth case study,

where a polynomial of a different degree was evaluated, with a

notable reduction in computation time when using a fixed point

approach. However, it is important to note that in all of the case

studies, an error was observed in the implementation of fixed

point algorithms. This highlights the need for careful

consideration and implementation in order to effectively use

fixed point in numerical analysis. Additionally, it is important

to note that the use of fixed point may not always be the most

appropriate method and that other techniques, such as floating

point, should also be considered in the analysis.

However, it is important to note that in all the case studies

presented in this article, an error occurred when implementing

a fixed point. Despite this, the results of the case studies show

that the use of fixed point can provide significant performance

gains in certain situations. As such, it is crucial to carefully

evaluate the trade-offs between computation time and

numerical accuracy when deciding to implement fixed point in

numerical analysis algorithms. The results obtained show a

reduction in computation times, for which fixed-point

arithmetic is useful and applicable to embedded systems,

especially those that lack a mathematical processor.

Furthermore, the article presented a teaching aid for the

implementation of fixed point in numerical analysis algorithms

such as the Newton-Raphson method, where a speed increase

of more than 100 times was achieved compared to that obtained

with float-point. In this work the computing times were

measured using the C language, however it is possible to

measure computing time using Fortran [19-22].

V. CONCLUDING REMARKS

In this study, the implementation of fixed point arithmetic

in four numerical analysis algorithms was presented: the

solution of a system of equations through LU factorization, the

determination of a definite integral through numerical

integration, the determination of a root through the Newton-

Raphson method, and the evaluation of a ninth-order

polynomial. The results of these case studies demonstrate the

advantages of fixed point implementation in terms of

computation time when dealing with complex numerical

calculations. The aim of this article is to provide readers with a

clear understanding of fixed point implementation through

simple and reproducible examples. As a future research

direction, it would be beneficial to implement these algorithms

on embedded systems, such as PIC microcontrollers, to further

evaluate the advantages of fixed point implementation in real-

world applications.

DECLARATION OF INTERESTS STATEMENT

The authors declare that there are no conflicts of interest

regarding the publication of this paper.

ACKNOWLEDGMENTS

Authors would like to thank Roberto Ruiz Gomez for his

contribution to this project. The authors are grateful to the

anonymous referee for a careful checking of details and helpful

comments that improved this paper.

APPENDIX

A. Code 1. Program in Maple
#Code written by the authors

#Code Maple for understand Fixed Point

#The follow code presents a method for understanding fixed-

point numbers in Qm.n

restart;

#Let Q(1, 6);

Digits:=9;

#implementation of formula 1, see text. Q1,6;

V := -b[N-1]*2^m+sum(b[i]*2^(i-n), i = 0 .. N-2);

#NN := m+n+1;

NN := 1+6+1;

Example 1

value := expand(subs(N = 8, m = 1, n = 6, V));

b[7] := 0;

b[6] := 1;

b[5] := 1;

b[4] := 0;

b[3] := 1;

b[2] := 0;

b[1] := 1;

b[0] := 1;

evalf(value);

##################################

#Let Q(1, 6)

#Example 2

value := expand(subs(N = 8, m = 3, n = 4, V));

b[7] := 0;

b[6] := 1;

b[5] := 1;

b[4] := 0;

b[3] := 1;

b[2] := 0;

b[1] := 1;

b[0] := 1;

evalf(value);

B. Code 2. Program in C++

/*Complete code for the implementation in fixed-point for

the study case number 3*/

//Libraries

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<iostream>

#include<chrono>

#include<unistd.h>

using namespace std;

//******* Macros FIXED-POINT ****************//

//////// Fractional bits

#define FIXED_FRACBITS 11

typedef int fixedp;

// Convert to fixed point

#define shortfix(x) ((fixedp)((x) << (FIXED_FRACBITS)))

#define intfix(x) ((fixedp)((x) << (FIXED_FRACBITS)))

#define longfix(x) ((fixedp)((x) << (FIXED_FRACBITS)))

#define floatfix(x) ((fixedp)((x) * (1 <<

(FIXED_FRACBITS))))

#define doublefix(x) ((fixedp)((x) * (1 <<

(FIXED_FRACBITS))))

//// Convert to floating point /////////////

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS010134
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 01, January-2023

317

www.ijert.org
www.ijert.org
www.ijert.org

#define shortflo(x) ((short)((x) >> (FIXED_FRACBITS)))

#define intflo(x) ((int)((x) >> (FIXED_FRACBITS)))

#define longflo(x) ((long)((x) >> (FIXED_FRACBITS)))

#define floatflo(x) ((float)(x) / (1 <<

(FIXED_FRACBITS)))

#define doubleflo(x) ((double)(x) / (1 <<

(FIXED_FRACBITS)))

////////// Another option /////////////////////////

/* Basic operations between two numbers a and b at a fixed

point in q format returning in q format q */

#define FADD(a,b) ((a)+(b))

#define FSUB(a,b) ((a)-(b))

#define FMUL(a,b) (((a)*(b))>>(FIXED_FRACBITS))

#define FDIV(a,b) (((a)<<(FIXED_FRACBITS))/(b))

// Variables into fixed-point

fixedp x_fix, y_fix, const1_fix, const2_fix, const3_fix,

const4_fix,const5_fix,const6_fix,const7_fix,const8_fix,cons

t9_fix,const10_fix,const11_fix;

int main(void)

 {

 float x=0,y=0;

 int contador;

 x_fix=floatfix(x);

 y_fix=floatfix(y);

 const1_fix=floatfix(3.173281398136);

 const2_fix=floatfix(1.70);

 const3_fix=floatfix(1.798192792278);

 const4_fix=floatfix(0.944876267833);

 const5_fix=floatfix(0.317406667211);

 const6_fix=floatfix(1.081238617931);

 const7_fix=floatfix(0.847127841554);

 const8_fix=floatfix(0.083371054338);

 const9_fix=floatfix(7.85);

 const10_fix=floatfix(1.0);

 const11_fix=floatfix(0.01);

 // Clock

 auto start = chrono::steady_clock::now();

 for(contador=1;contador<1000;contador++)

 {

 for(x_fix=0; x_fix<=const10_fix;

 x_fix=x_fix+const11_fix)

 {

 y_fix= FMUL(const1_fix,x_fix)-

FMUL(FMUL(const2_fix,x_fix),x_fix) -

FMUL(FMUL(FMUL(const2_fix,x_fix),x_fix),x_fix) -

FMUL(FMUL(FMUL(FMUL(const4_fix,x_fix),x_fix),x_fix),x_fix)

+ FMUL(

FMUL(FMUL(FMUL(FMUL(const5_fix,x_fix),x_fix),x_fix),x_fix),

x_fix) + FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const6_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix)+ FMUL(FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const7_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix) - FMUL(FMUL(FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const8_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix)- FMUL(FMUL(FMUL(FMUL(

FMUL(FMUL(FMUL(FMUL(const9_fix,x_fix),x_fix),x_fix),x_fix),

x_fix),x_fix),x_fix),x_fix);

 }

}

 auto end = chrono::steady_clock::now();

cout << "Elapsed time in ms: "<<

 chrono::duration_cast<chrono::milliseconds>(end –

 start).count() << " ms"<< endl;

 cout << "el valor usando PFIJO es"<<floatflo(y_fix)

 <<endl;

 return 0;

}

REFERENCES

[1] Kraeling, Mark B. "Fixed-point math in time-critical C

applications." Wescon/96. IEEE, 587-593,1996.

[2] Anton Cervin, “Fix Point Implementation of Control Algorithms”, Lund
University. A Graduate Course on Embedded Control Systems – Pisa 8-
12 June 2009.

[3] O. Schlösser, "Implementing a C++ Fixed-Point Class for Embedded
Systems." 3, 2013.

[4] Ramanathan, S., et al. "Design and implementation of fixed point
arithmetic unit." Int. J. Eng. Res. Appl. 6.6 (2016): 11-13.

[5] Roman, Kuc. "Introduction to Digital Signal Processing." (1982).

[6] Chang, Chung-Hsien, et al. "A division-free algorithm for fixed-point
power exponential function in embedded system." 2013 1st International
Conference on Orange Technologies (ICOT). IEEE, 223-226, 2013.

[7] J. Le Maire, N. Brunie, F. de Dinechin, J. M. Muller, "Computing
floating-point logarithms with fixed-point operations." 2016 IEEE 23nd
Symposium on Computer Arithmetic (ARITH). IEEE, 2016.

[8] Nikola M. Nenadic, and Svetlana B. Mladenovic. "Fast division on fixed-
point DSP processors using Newton-Raphson method." EUROCON
2005-The International Conference on" Computer as a Tool". Vol. 1.
IEEE, 2005.

[9] Przybył, Andrzej. "Fixed-point arithmetic unit with a scaling mechanism
for FPGA-based embedded systems." Electronics 10.10 1164.(2021):

[10] Bishop, David. "Fixed point package user’s guide." Packages and bodies
for the IEEE (2006): 1076-2008.

[11] Oberstar, Erick L, Fixed-point representation & fractional math,
“Oberstar Consulting,” vol. 9 pp. 19, 2007.

[12] Yates, Randy, Fixed-point arithmetic: An introduction, “Digital Signal
Labs,” vol. 81, no. 83, pp. 15, 2009.

[13] Pyeatt, Larry and Ughetta, William, ARM 64-Bit Assembly Language,
Newnes, 2019.

[14] H. Shildt, Turbo c/c++ 3.1 Manual de referencia 1ed Mcgraw Hill,
1994.

[15] Application Note 33, Fixed Point Arithmetic on the ARM, document
number: ARM DAI 0033A, September 1996,
https://developer.arm.com/documentation/dai0033/a/

[16] Burden, Richard L., J. Douglas Faires, and Annette M. Burden. Numerical
analysis. Cengage learning, 2015.

[17] Chapra, Steven C., et al. Métodos numéricos para ingenieros. McGraw-
Hill, 2011.

[18] H. Vazquez-Leal, M.A. Sandoval-Hernandez, U. A. Filobello-Nino, J.
Huerta-Chua. "The novel Leal-polynomials for the multi-expansive
approximation of nonlinear differential equations." Heliyon, 2020.

[19] M. Sandoval-Hernandez, H. Vazquez-Leal, U. Filobello-Nino, Elisa De-
Leo-Baquero, Alexis C. Bielma-Perez, J.C. Vichi-Mendoza, O. Alvarez-
Gasca, A.D. Contreras-Hernandez, N. Bagatella-Flores, B.E. Palma-
Grayeb, J. Sanchez-Orea, L. Cuellar-Hernandez. The Quadratic Equation
and its Numerical Roots." International Journal of Engineering Research
y Technology 10.6 (2021), 301-305. 2021.

[20] M. A. Sandoval-Hernández, H. Vázquez-Leal, J. Huerta-Chua, F. J.
Castro-González, U. A. Filobello-Nino. "Didáctica del graficado de
funciones: el caso de las funciones piecewise." RIDE. Revista
Iberoamericana para la Investigación y el Desarrollo Educativo 12.24
(2022).

[21] H. Vazquez-Leal, Hector, M. A. Sandoval-Hernandez, and U. Filobello-
Nino. "The novel family of transcendental Leal-functions with
applications to science and engineering." Heliyon 6.11 (2020).

[22] T. Fukushima, "Precise and fast computation of Lambert W-functions
without transcendental function evaluations." Journal of Computational
and Applied Mathematics 244 (2013), 77-89, 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS010134
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 01, January-2023

318

www.ijert.org
www.ijert.org
www.ijert.org

