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Abstract—Visual disease recognition in healthcare and agriculture 

involves learning discriminative image patterns across biologically 

distinct domains. While convolutional neural networks (CNNs) 

perform well in domain-specific tasks, most prior work relies on 

customized pipelines that limit architectural reuse. This work 

presents AYVANA, a consistent CNN-based framework with 

shared methodology and domain-specific optimization that 

evaluates the independent reuse of convolutional neural network 

(CNN) paradigm across dermatological and agricultural image-

based disease classification tasks. Using established transfer 

learning, domain-specific pipelines are trained independently 

using domain-appropriate optimization strategies, while sharing a 

unified architectural paradigm, ensemble inference mechanism, 

evaluation, and interpretability approach. An EfficientNetB5–

DenseNet169 ensemble achieves 85.61% accuracy and a macro F1-

score of 0.814 on a ten-class dermatology dataset, while an 

EfficientNetB3–InceptionV3 ensemble attains 97.03% accuracy 

and a macro F1-score of 0.968 on a seventy-nine-class plant disease 

dataset. Soft-voting ensembles improve prediction consistency and 

balanced class-wise performance, and Grad-CAM visualizations 

provide qualitative insight. The results demonstrate that 

established CNN architectures can be independently retrained and 

reused across heterogeneous visual diagnostic under a consistent 

experimental protocol with shared evaluation and inference 

procedures, without shared representation learning or cross-

domain feature transfer. 

 

Keywords—Convolutional Neural Networks, Visual Disease 

Diagnosis, Dermatology, Agriculture, Transfer Learning, Ensemble 

Learning, Interpretability. 

 

I. INTRODUCTION 

Visual disease diagnosis plays a critical role in both 

healthcare and agriculture, where observable symptoms guide 

expert decision-making for clinical treatment and crop 

management. In dermatology, accurate identification of skin 

diseases enables timely intervention and improved patient 

outcomes, while in agriculture, early detection of plant diseases 

is essential for minimizing yield loss and ensuring food 

security. Across both domains, diagnosis relies heavily on 

visual cues such as texture variation, color change, lesion 

morphology, and structural distortions. Recent advances in 

deep learning, particularly convolutional neural networks 

(CNNs), have substantially improved automated disease 

recognition through transfer learning and the availability of 

annotated datasets. CNN-based models have demonstrated 

strong performance in dermatology by learning discriminative 

features related to pigmentation and lesion boundaries, and in 

agriculture by capturing visual symptoms such as discoloration 

and necrosis. Motivated by the observation that CNNs 

fundamentally operate as general-purpose visual pattern 

learners—detecting textures, shapes, and spatial structures 

independent of biological context—this work investigates 

whether CNN-based architectures can be independently reused 

across multiple visual disease diagnosis tasks spanning distinct 

domains. Despite significant biological differences, 

dermatological and agricultural datasets share common visual 

learning challenges, including multi-class classification, class 

imbalance, and high intra-class variability. To address this, we 

present AYVANA, a methodological deep learning framework 

that standardizes architectural selection, preprocessing, training 

structure, ensemble inference, evaluation, and interpretability 

across visually driven diagnostic tasks, while allowing domain-

specific optimization and independent model training. Derived 

from the Sanskrit roots “Aya” (body or human health) and 

“Vana” (forest or plants), AYVANA reflects a unified 

perspective on human and plant health. Importantly, AYVANA 

is a methodological experimental framework rather than a novel 

neural architecture or learning algorithm, and it does not 

involve shared biological modelling or cross-domain 

representation learning. 

II. RELATED WORKS 

Deep learning–based image analysis has become a dominant 

approach for automated disease diagnosis across multiple 

domains. In visually driven diagnostic tasks, convolutional 

neural networks (CNNs) effectively learn discriminative 

features from image data, enabling accurate classification of 

complex disease patterns. This section reviews prior work in 

dermatological and agricultural disease diagnosis, as well as 

ensemble and interpretability-based approaches, and outlines 

the research gap addressed by the proposed framework. 
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A. Deep Learning for Dermatological Disease Diagnosis 

CNN-based models have achieved significant success in 

dermatological image analysis, particularly in the classification 

of skin lesions and dermatological conditions from clinical and 

dermoscopic images. A landmark study by Esteva et al. 

demonstrated that deep CNNs can achieve dermatologist-level 

performance in skin cancer classification, establishing the 

feasibility of AI-assisted dermatological diagnosis [3]. 

Subsequent studies have expanded this direction by leveraging 

transfer learning with pretrained CNN architectures to improve 

diagnostic accuracy and data efficiency. Several works have 

explored the application of modern CNN architectures for 

dermatological disease classification. Venkataiah et al. applied 

transfer learning–based CNN models for diagnosing 

inflammatory skin diseases such as eczema and psoriasis, 

reporting improved classification performance [1]. Shakya et al. 

investigated hybrid frameworks combining CNN feature 

extraction with traditional classifiers for skin cancer analysis [2], 

while Prottasha et al. employed Inception-based architectures 

for real-time skin disease detection [4]. Comparative studies by 

Tschandl et al. and Haenssle et al. evaluated deep learning 

systems against professional dermatologists, demonstrating that 

CNN-based models often achieve competitive or superior 

diagnostic accuracy for specific lesion categories [6,8]. Han et al. 

further demonstrated the effectiveness of CNNs for 

distinguishing benign and malignant cutaneous tumours from 

clinical images [7]. Popescu et al. provided a comprehensive 

review of emerging neural network architectures for melanoma 

detection, highlighting current trends and challenges in 

dermatological AI systems [5]. Despite recent advances, many 

dermatological diagnostic systems still suffer from class 

imbalance, dataset bias, and limited interpretability. Moreover, 

most studies focus on single-domain performance optimization, 

with little attention to architectural reuse or methodological 

consistency across visually driven diagnostic tasks. 

B. Deep Learning for Agricultural Plant Disease Diagnosis 

In agriculture, CNN-based models have been widely 

adopted for plant disease detection due to the visually 

observable nature of disease symptoms on leaves and crops. 

Large-scale datasets such as PlantVillage and other publicly 

available repositories have enabled deep learning models to 

achieve high classification accuracy across multiple crop 

species and disease categories. Recent studies have explored 

ensemble learning and detection-based approaches to reduce 

prediction variance and improve classification reliability in 

agricultural disease diagnosis. Ali et al. demonstrated that 

ensembles of deep learning architectures outperform individual 

CNN models by reducing prediction variance and improving 

minority-class recognition [11]. Object detection–based 

frameworks have also been investigated to localize disease 

regions under complex visual conditions. Miao et al. proposed 

an enhanced YOLOv8-based architecture for accurate plant 

disease detection [10], while Sambana et al. applied transfer 

learning with YOLO-based models to achieve high 

classification accuracy across multiple plant disease categories 
[9]. Lightweight CNN architectures suitable for smart farming 

and edge deployment have been explored by Vo et al. and Kirar, 

highlighting the potential of EfficientNet- and MobileNet-

based systems for real-world agricultural applications [13,12]. 

Demilie presented a comparative analysis of plant disease 

detection techniques, emphasizing the strong empirical 

performance of CNN-based approaches compared to traditional 

machine learning methods [14]. Bao et al. proposed AX-

RetinaNet for detecting tea leaf diseases with 93% accuracy [15], 

while Aldakheel et al. built a YOLOv4-based model achieving 

nearly perfect recognition of leaf infections [16]. Although 

agricultural disease detection systems often report high 

accuracy on benchmark datasets, many rely on curated images 

with limited environmental variability, raising concerns about 

real-world generalization. Like dermatological systems, most 

agricultural models remain domain-specific, using customized 

architectures and pipelines without emphasizing architectural 

consistency or reuse across diagnostic domains. 

C. Ensemble Learning & Interpretability in Visual Diagnosis 

Ensemble learning is widely used in visual classification to 

improve performance consistency and reduce prediction 

variance by combining complementary model architectures. 

Soft-voting ensembles of CNNs have been shown in multiple 

studies to outperform individual models in both medical and 

agricultural imaging tasks, particularly under visually 

ambiguous conditions. Interpretability has likewise become an 

important consideration in applied deep learning. Techniques 

such as Gradient-weighted Class Activation Mapping (Grad-

CAM) provide qualitative insight into model attention by 

highlighting image regions associated with predictions. 

However, in many existing studies, interpretability is treated as 

a post hoc visualization rather than as a systematically 

integrated component of the evaluation framework. 

D. Research Gap & Positioning of the Proposed Framework 

While prior research demonstrates the effectiveness of CNN-

based models for dermatological and agricultural disease 

diagnosis individually, existing approaches remain fragmented 

across multiple visual diagnostic domains, relying on domain-

specific architectures, training strategies, and evaluation 

protocols. Consequently, there is limited investigation into 

whether deep learning architectures from convolutional neural 

network (CNN) paradigm can be independently applied across 

biologically distinct but visually diagnosable domains under a 

consistent methodological framework. Motivated by this gap, 

the proposed AYVANA framework emphasizes architectural 

paradigm reuse rather than shared cross-domain learning, 

applying established CNNs independently to both domains 

using a unified architectural paradigm, ensemble inference 

strategy, evaluation protocol, and interpretability approach, 

while allowing domain-specific training and optimization 

configurations. 

 

III. METHODOLOGY AND TRAINING STRATEGY 

A. Problem Formulation 

This study investigates whether convolutional neural 

networks (CNNs), as a general-purpose visual learning 

paradigm, can be independently reused across biologically 

distinct but visually diagnosable domains under domain-

appropriate training configurations. The problem is formulated 

as a multi-class image classification task, where RGB images 

are mapped to disease categories by learning discriminative 
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visual features such as texture irregularities, color variations, 

lesion morphology, and structural distortions. Importantly, the 

proposed framework does not involve joint training, shared 

representation learning, or cross-domain feature transfer. 

Dermatological and agricultural diagnostic pipelines are trained 

independently using domain-specific datasets. The shared 

framework in this work refers strictly to the reuse of a common 

architectural paradigm, consistent preprocessing, training 

structure, ensemble inference, evaluation protocol, and 

interpretability mechanism across visual diagnostic domains. 

This design enables an empirical assessment of architectural 

family reuse without introducing cross-domain learning. 

B. Dermatological Disease Diagnosis Pipeline 

Dataset Preparation and Preprocessing 

The dermatological diagnostic pipeline operates on a curated 

dataset constructed from publicly available sources, comprising 

ten skin disease categories, including Actinic Keratosis, Basal 

Cell Carcinoma, Benign Keratosis, Fungal Infection, 

Melanocytic Nevus, Melanoma, Psoriasis, Seborrheic 

Keratoses, Squamous Cell Carcinoma, and Viral Infection 
[17,18]. Images corresponding to these categories are aggregated 

from established Kaggle repositories, including ISIC-labelled 

datasets and curated skin disease image collections. The use of 

multiple data sources introduces variability in acquisition 

conditions, including differences in lesion scale, color 

distribution, skin tone, illumination, and background 

characteristics, resulting in substantial intra-class variability. 

All images are processed in RGB format and resized to 224 × 

224 pixels to match the input requirements of ImageNet-

pretrained CNN backbones. Input normalization is performed 

using ImageNet mean and standard deviation values to ensure 

compatibility with pretrained weights. The consolidated dataset 

is organized into training, validation, and test partitions 

following the predefined directory structure of the source 

datasets. While explicit separation between training, validation, 

and test folders is maintained, the aggregation of multiple 

public sources may introduce low-level redundancy or 

correlated samples across splits, as patient-level identifiers and 

duplicate detection are not consistently available. Data 

augmentation is applied only to the training set and includes 

random rotations along with horizontal and vertical flips. 

Validation and test sets remain augmentation-free to support 

unbiased experimental evaluation. 

 

Model Architecture 

Two CNN backbones, EfficientNetB5 and DenseNet169, are 

employed to capture complementary dermatological features. 

EfficientNetB5 is selected for its strong performance in 

modelling fine-grained texture patterns, while DenseNet169 

facilitates feature reuse through dense connectivity, supporting 

stable gradient propagation in deep networks. Both models are 

initialized with ImageNet-pretrained weights, and their original 

classification layers are replaced with task-specific fully 

connected heads corresponding to the ten dermatological 

disease classes. Global Average Pooling, as implemented in the 

selected CNN architectures, is applied prior to classification, to 

reduce feature dimensionality and mitigate overfitting. Model 

training follows a transfer learning setup in which all network 

parameters are trained end-to-end from ImageNet-initialized 

weights using the Adam optimizer in conjunction with the 

OneCycleLR learning rate scheduler, without staged freezing 

of layers. Training proceeds for a fixed number of epochs, and 

model checkpoint selection is performed based on minimum 

validation loss rather than patience-based early stopping. 

 

Algorithm 

Input: Dermatology image dataset Ddermatology, 

Output: Predicted disease class 

1. Load dataset Ddermatology and split into train/val/test 

2. Resize images to 224×224 and normalize using 

ImageNet statistics 

3. Apply data augmentation to training set only 

4. Initialize EfficientNetB5 and DenseNet169 with 

pretrained weights 

5. Replace classifiers with task-specific heads (10 classes) 

6. Train models using the Adam optimizer with 

OneCycleLR learning rate scheduling 

7. Select best model checkpoints based on validation loss. 

8. Perform soft-voting ensemble on test set predictions 

9. Apply Grad-CAM for lesion localization 

10. Evaluate using Accuracy, F1-score, and Confusion 

Matrix 

 

 

Fig. 1. Block diagram of the dermatological image classification pipeline, 

showing preprocessing, EfficientNetB5 and DenseNet169 feature extraction, 

Adam training with OneCycleLR, soft-voting ensemble inference, evaluation, 

and Grad-CAM interpretability. 

Ensemble Inference and Interpretability 

During inference, predictions from EfficientNetB5 and 

DenseNet169 are combined using soft-voting ensemble 

averaging, where class probability outputs from both models 

are averaged to produce the final prediction. This ensemble 

strategy reduces prediction variance and improves prediction 

consistency for visually ambiguous skin conditions. To support 

interpretability, Gradient-weighted Class Activation Mapping 

(Grad-CAM) is applied to the final convolutional layers of both 

models. Grad-CAM heatmaps highlight lesion regions that 

contribute most strongly to model predictions, enabling 

qualitative verification that the models attend to visually salient 

regions associated with predicted classes rather than 

background artifacts. 
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Fig. 2. Grad-CAM visualization for EfficientNetB5 on an Actinic Keratosis 

image, showing the input image (left) and activation map (right). 

 

Fig. 3. Grad-CAM visualization for DenseNet169 on an Actinic Keratosis 

image, with the input image (left) and activation map (right). 

C. Agricultural Plant Disease Diagnosis Pipeline 

Dataset Preparation and Preprocessing 

The agricultural diagnostic pipeline operates on a curated, 

multi-source dataset aggregated from publicly available Kaggle 

and Mendeley repositories, comprising seventy-nine disease 

and healthy classes across multiple crop species, including 

Apple[19,20], Cashew[21], Cassava[21], Corn[19,20], Cotton[32], 

Cucumber[22,24], Grape[19,20], Groundnut[25], Lentil[26], Onion[23], 

Potato[19,20], Rice[28,29,30], Soyabean[27], Tomato[19,20] and 

Wheat[31]. Images are collected under heterogeneous imaging 

conditions, with variations in illumination, background, leaf 

orientation, scale, and disease severity, resulting in substantial 

visual diversity. All images are processed in RGB format, 

resized to 299 × 299 pixels, and normalized using ImageNet 

statistics to ensure compatibility with pretrained CNN 

backbones. The dataset is organized into training, validation, 

and test partitions following predefined directory structures, 

without additional duplicate detection or cross-source overlap 

analysis. Data augmentation, including random rotations and 

horizontal and vertical flips, is applied only to the training set, 

while validation and test sets remain augmentation-free to 

support unbiased evaluation. 

 

Model Architecture 

Two CNN architectures, EfficientNetB3 and InceptionV3, are 

employed in the agricultural diagnostic pipeline to capture 

complementary visual features. EfficientNetB3 emphasizes 

efficient texture-sensitive representation, while InceptionV3 

enhances multi-scale spatial feature extraction through parallel 

convolutional pathways. Both models are initialized with 

ImageNet-pretrained weights, and their classification heads are 

replaced with task-specific fully connected layers 

corresponding to the 79 agricultural disease and healthy classes. 

Global Average Pooling, as implemented in the selected CNN 

architectures, is applied prior to classification. Model training 

follows a transfer learning paradigm involving a two-stage fine-

tuning strategy. In the initial stage, ImageNet-pretrained 

EfficientNetB3 and InceptionV3 backbones are frozen while 

task-specific classification heads are optimized using the Adam 

optimizer. In the subsequent stage, the full network is unfrozen 

and fine-tuned with reduced learning rates using StepLR-based 

scheduling. Model checkpoint selection is based on minimum 

validation loss to mitigate overfitting. Backbone freezing is 

implemented through parameter freezing and optimizer 

parameter scoping rather than explicit gradient disabling. 

 

Algorithm 

Input: Agricultural image dataset Dagriculture, 

Output: Predicted disease class 

1. Load Dagriculture dataset and split into train/val/test 

2. Resize images to 299×299 and normalize using 

ImageNet statistics 

3. Apply data augmentation to training data only 

4. Initialize pretrained EfficientNetB3 and InceptionV3 

with pretrained-weights 

5. Replace final classifiers with 79-class task-specific 

heads 

6. Train models using Adam optimizer with StepLR 

scheduling 

7. Reduce learning rate in later epochs 

8. Save best checkpoints based on validation loss 

9. Perform soft-voting ensemble on test predictions 

10. Generate Grad-CAM visual explanations 

11. Evaluate using Accuracy, F1-Score and Confusion 

matrix 

 

Fig. 4. Block diagram of the agricultural plant disease classification pipeline, 

including preprocessing, EfficientNetB3 and InceptionV3 backbones, Adam 

with StepLR, evaluation, and Grad-CAM interpretability. 
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Ensemble Inference and Interpretability 

At inference time, probability outputs from EfficientNetB3 and 

InceptionV3 are combined using soft-voting ensemble 

averaging. This ensemble strategy improves classification 

stability and reduces misclassification among visually similar 

plant disease categories. Interpretability is achieved using 

Grad-CAM, which is applied to the final convolutional layers 

of both models. The resulting heatmaps qualitatively highlight 

infected regions such as necrotic tissue and discoloration on 

plant leaves, indicating that model predictions are driven by 

disease-relevant visual cues rather than background artifacts. 

This qualitative evidence supports the prediction consistency of 

the ensemble model’s decision-making process in complex 

agricultural imaging scenarios. 

 

 

Fig. 5. Grad-CAM visualization for EfficientNetB3 on an Apple Black Rot 

leaf image, showing the input image (left) and activation map (right). 

 

Fig. 6. Grad-CAM visualization for InceptionV3 on an Apple Black Rot leaf 

image, with the input image (left) and activation map (right). 

D. Evaluation Protocol and Reproducibility 

Model performance across both domains is evaluated using 

classification accuracy, macro-averaged F1-score, and 

confusion matrix analysis. Macro-averaged metrics are 

emphasized to ensure balanced assessment across classes with 

varying sample frequencies. All experiments are implemented 

using the PyTorch framework with pretrained models sourced 

from torchvision and are conducted in a GPU-accelerated 

environment using NVIDIA Tesla T4 GPUs. Fixed random 

seeds are applied across Python, NumPy, and PyTorch 

environments, and consistent preprocessing pipelines and 

evaluation procedures are maintained to ensure procedural 

consistency across experiments. Minor numerical variations 

may still arise due to GPU-level nondeterminism. Dataset splits 

follow the predefined directory structure of the aggregated 

public datasets. While explicit separation between training, 

validation, and test folders is preserved, no additional duplicate 

detection or cross-source overlap analysis is performed. 

Consequently, reported results should be interpreted as 

representative experimental outcomes rather than statistically 

bounded estimates. No multi-seed variance analysis or 

statistical significance testing is conducted. The proposed 

methodology does not involve shared parameter learning, 

multi-task optimization, or cross-domain feature transfer. 

Dermatological and agricultural pipelines are trained 

independently using domain-specific datasets. While both 

pipelines employ transfer learning with ImageNet-pretrained 

CNN architectures, learning rate scheduling strategies differ by 

domain: dermatological models utilize the OneCycleLR 

learning rate scheduler, whereas agricultural models employ an 

epoch-based StepLR scheduler, reflecting domain-specific 

optimization configurations. The methodological unification in 

this work refers to architectural family reuse, consistent 

preprocessing, ensemble inference, standardized evaluation 

metrics, and qualitative interpretability mechanisms, rather than 

identical optimization configurations. 

 

IV. RESULTS AND ANALYSIS 

This section reports experimental results obtained using the 

proposed AYVANA framework for dermatological and 

agricultural image-based disease classification. Performance is 

evaluated using complementary metrics to account for class 

imbalance, dataset scale, and visual complexity, with 

comparisons between individual CNN backbones and ensemble 

configurations. Grad-CAM visualizations provide qualitative 

insight into model attention but do not constitute clinical or 

agronomic validation. All results are based on single 

experimental runs with fixed random seeds; no multi-seed 

variance analysis or statistical significance testing is performed, 

and conclusions are limited to observed performance under the 

evaluated experimental configurations. 

A. Dermatological Disease Diagnosis 

The dermatological diagnostic pipeline is evaluated on a 

ten-class skin disease classification task using a held-out test 

set. Performance is primarily assessed using classification 

accuracy, macro F1-score, and confusion matrix analysis, 

which together provide a balanced evaluation under class 

imbalance and clinical visual ambiguity. Table I summarizes 

the performance of individual CNN models and the ensemble 

configuration. 

TABLE I.  PERFORMANCE COMPARISION FOR DERMATOLOGICAL 

DISEASE DIAGNOSIS 

Metrics 
CNN Models Performance 

DenseNet169 EfficientNetB5 Ensemble 

Accuracy 81.15% 83.24% 85.61% 

F1-Score 0.7645 0.7820 0.8140 

 

The ensemble model achieves the highest overall 

performance, improving accuracy by approximately 2–4% over 

individual backbones. The increase in macro F1-score indicates 

improved balanced classification across both common and 

minority disease classes. These results suggest that combining 

complementary CNN architectures reduces prediction variance 

and improves prediction consistency in visually ambiguous 
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dermatological conditions. Training and validation loss curves 

exhibit smooth convergence behavior under the applied 

learning rate scheduling. Both EfficientNetB5 and 

DenseNet169 exhibit smooth training and validation loss trends 

over epochs, with validation accuracy steadily improving. 

EfficientNetB5 shows a slightly larger train–validation gap, 

while DenseNet169 demonstrates smoother and more balanced 

learning behaviour. 

 

 

Fig. 7. Training loss and validation accuracy curves for EfficientNetB5 on the 

dermatological dataset, demonstrationg model convergence across training 

epochs. 

 

Fig. 8. Training loss and validation accuracy curves for DenseNet169 on the 

dermatological dataset, demonstrating learning progression across training 

epochs. 

B. Agricultural Disease Diagnosis 

The agricultural diagnostic pipeline is evaluated on a large-

scale dataset comprising seventy-nine disease and healthy 

classes across multiple crop species. Table II presents the 

comparative performance of individual CNN models and their 

ensemble. 

TABLE II.  PERFORMANCE COMPARISION FOR AGRICULTURAL DISEASE 

DIAGNOSIS 

Metrics 
CNN Models Performance 

InceptionV3 EfficientNetB3 Ensemble 

Accuracy 95.12% 96.45% 97.03% 

F1-Score 0.942 0.958 0.968 

 

Both individual models demonstrate strong performance, 

reflecting the effectiveness of transfer learning for large-scale 

plant disease classification. The ensemble configuration 

consistently outperforms individual models, yielding 

improvements in both accuracy and macro F1-score. Training 

and validation accuracy for both EfficientNetB3 and 

InceptionV3 increase steadily across epochs, with a clear 

performance boost observed as training progresses. 

Corresponding loss curves exhibit smooth convergence, with a 

consistent reduction in loss throughout training. Validation 

metrics closely track training metrics, and both models exhibit 

smooth training and validation loss trends over epochs under 

the evaluated experimental configuration, with no evidence of 

severe overfitting within the observed training regime. Overall, 

these trends suggest that the chosen optimization strategy and 

learning rate scheduling are well-suited for the agricultural 

dataset, enabling efficient model convergence. 

 

 

Fig. 9. Training and validation accuracy and loss curves for EfficientNetB3 

over 10 epochs on the agricultural dataset, illustrating convergence behavior 

under Adam optimization with StepLR scheduling. 

 

Fig. 10. Training and validation accuracy and loss curves for InceptionV3 over 

10 epochs on the agricultural disease dataset, illustrating learning progression 

under Adam optimization with StepLR scheduling. 

C. Ensemble vs Individual Model Analysis 

This analysis compares individual CNN backbones with 

their corresponding soft-voting ensemble configurations to 

assess the effectiveness of ensemble inference under a unified 

training and evaluation protocol. For dermatological disease 

classification, the ensemble combining EfficientNetB5 and 

DenseNet169 surpasses both standalone models, achieving an 

accuracy of 85.61% and a macro F1-score of 0.814. The gain in 

macro F1-score reflects improved class-wise balance, 

particularly for visually similar and underrepresented disease 

categories. In the agricultural domain, EfficientNetB3 and 

InceptionV3 already demonstrate strong individual 

performance; however, their ensemble further improves 

prediction consistency, attaining 97.03% accuracy and a macro 

F1-score of 0.968 across 79 disease and healthy classes. Across 

both domains, soft-voting ensemble inference consistently 

outperforms single-model configurations while maintaining 

identical inference pipelines and without introducing additional 

training complexity. These findings indicate that model 

complementarity can be effectively leveraged at the inference 

stage, enhancing prediction consistency within independently 

trained domain-specific classification tasks. Moreover, the 

consistent gains across two biologically distinct domains 
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reinforce the consistency of the proposed ensemble strategy 

across independently trained domain-specific classification 

tasks. 

D. Summary of Performance of Each Domain 

The proposed framework demonstrates performance 

improvements across both dermatological and agricultural 

disease classification tasks despite substantial differences in 

dataset scale, class count, and visual complexity. In the 

dermatology domain, the ensemble model achieves an accuracy 

of 85.61% with a macro F1-score of 0.814, reflecting the 

challenge of visually ambiguous and clinically complex skin 

disease categories. In contrast, the agricultural domain attains 

higher absolute performance, with 97.03% accuracy and a 

macro F1-score of 0.968, attributable to clearer visual 

separability and larger dataset size. 

TABLE III.  DOMAIN PERFORMANCE COMPARISION 

Metrics 
Domain 

Dermatology Agriculture 

Classes 10 79 

Ensemble Accuracy 85.61% 97.03% 

Macro F1-Score 0.8140 0.968 

 

These results indicate that CNN-based architectures, when 

trained independently under a consistent methodological 

framework, can be reused across biologically distinct visual 

diagnostic domains without domain-specific architectural 

redesign. 

E. Evaluation Metrics 

Model performance is assessed using classification 

accuracy, macro F1-score and confusion matrix. Accuracy 

provides an overall performance measure, while macro F1-

score evaluates balanced performance across classes by treating 

all classes equally. Confusion matrices are used to analyze 

class-wise prediction behavior and misclassification patterns. 

 

Confusion Matrix 

The confusion matrices illustrate the performance of the 

ensemble CNN framework across both dermatology and 

agriculture domains by comparing true class labels with 

predicted labels. In the dermatology task, the matrix exhibits 

strong diagonal dominance, indicating that most skin diseases 

are correctly classified, with a macro F1-score of 0.814 

reflecting balanced precision and recall across all 10 classes. 

Misclassifications primarily occur between visually similar 

conditions such as melanoma and melanocytic nevus or actinic 

keratosis and basal cell carcinoma, which is expected due to 

overlapping visual patterns and inherent class imbalance in 

medical datasets. In contrast, the agricultural confusion matrix 

displays an exceptionally sharp diagonal with minimal off-

diagonal errors, resulting in a high overall accuracy of 97.03%. 

This highlights the model’s strong discriminative capability 

across a large number of plant disease and healthy classes. 

Collectively, these matrices demonstrate that although 

dermatological diagnosis presents greater visual ambiguity, the 

proposed ensemble framework achieves strong empirical 

performance across both domains under the evaluated 

experimental conditions. The results further emphasize the 

benefit of ensemble inference in enhancing class separability 

and consistency in complex, real-world classification scenarios. 

 

Fig. 11. Confusion matrix of the ensemble CNN model for dermatological 

disease classification across 10 classes, reporting a macro F1-score of 0.814 and 

highlighting class-wise prediction behavior. 

 

 

Fig. 12. Confusion matrix of the ensemble CNN model for agricultural disease 

classification across 79 disease and healthy classes, illustrating prediction 

distribution with an overall test accuracy of 97.03%. 

F. Ablation Analysis 

 The selection of EfficientNetB5, DenseNet169, 

EfficientNetB3, and InceptionV3 is guided by domain-specific 

visual characteristics and engineering trade-offs rather than an 

exhaustive comparison across all deep learning architectures. 

Transformer-based models such as Vision Transformers are 

excluded due to their higher data requirements and weaker 

inductive bias for local texture learning, which is critical for 

both dermatological lesion analysis and plant disease 
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recognition. Object detection frameworks such as YOLO are 

also not considered, as this work addresses closed-set image-

level disease classification rather than region-level detection, 

and introducing detection-based models would alter the task 

formulation and evaluation protocol. Within the CNN family, 

the chosen architectures represent complementary design 

principles. EfficientNet is selected for its compound scaling 

strategy, enabling strong performance with balanced 

computational cost. DenseNet169 is paired with 

EfficientNetB5 in the dermatology domain due to its dense 

feature reuse, which preserves fine-grained texture and color 

information required for visually ambiguous skin diseases. In 

contrast, InceptionV3 is paired with EfficientNetB3 in the 

agricultural domain, as its multi-branch architecture effectively 

captures multi-scale spatial patterns commonly observed in 

plant disease imagery. The use of EfficientNetB5 for 

dermatology and EfficientNetB3 for agriculture reflects 

differences in dataset complexity and visual ambiguity. 

Dermatological images exhibit subtle intra-class variations that 

benefit from higher-capacity models, while agricultural images 

are larger in scale with clearer visual separability, allowing 

EfficientNetB3 to achieve strong performance with improved 

efficiency. Soft-voting ensemble inference is employed to 

exploit architectural complementarity without increasing 

training complexity. Across both domains, ensembles 

consistently improve macro-averaged F1-score, indicating 

reduced prediction variance and more balanced class-wise 

performance, particularly for visually similar or 

underrepresented disease categories. These gains demonstrates 

enchanced performance under the evaluated experimental 

conditions beyond raw accuracy, supporting the reuse of 

established CNNs under a consistent experimental framework. 

V. CONCLUSION AND FUTURE WORKS 

A. Conclusion 

This work presented AYVANA, a unified deep learning 

framework that investigates the applicability of the 

convolutional neural network (CNN) paradigm across two 

biologically distinct yet visually diagnosable domains: 

dermatological disease identification and agricultural crop 

disease classification. By employing consistent preprocessing 

strategies, transfer learning–based CNN backbones, and a 

standardized experimental pipeline, the study demonstrates that 

modern CNN architectures can be independently retrained and 

reused across multiple diagnostic contexts without requiring 

domain-specific architectural redesign. Through extensive 

experiments on publicly available benchmark datasets, the 

framework achieved competitive classification performance in 

both domains, confirming the strong capacity of CNNs to learn 

discriminative visual features such as texture irregularities, 

colour variations, lesion morphology, and structural distortions. 

The results indicate that, despite fundamental biological 

differences between human skin and plant pathology, visually 

driven diagnostic tasks can be addressed using a shared 

methodological foundation when supported by appropriate 

dataset-specific training and evaluation. Importantly, 

AYVANA does not seek to establish cross-domain biological 

generalization or shared representation learning between 

dermatology and agriculture. Instead, the primary contribution 

lies in demonstrating architectural reusability and 

methodological consistency, showing that a single deep 

learning framework can be systematically applied across 

heterogeneous visual diagnostic problems. This finding 

reinforces the architectural flexibility of CNN-based models for 

visual pattern recognition tasks when applied under domain-

specific training settings. In addition to predictive performance, 

the integration of Grad-CAM–based interpretability provides 

qualitative insights into the regions influencing model 

decisions, enhancing transparency and supporting trust in 

automated diagnostic systems. While these explanations are not 

clinically definitive, they offer a useful mechanism for visual 

validation of learned features in both domains. Overall, this 

study contributes empirical evidence supporting the use of 

unified CNN architectures for multi-domain visual diagnostics 

and highlights the potential of such frameworks to streamline 

development across application areas. The proposed approach 

serves as a technical foundation for future research exploring 

multimodal learning, uncertainty estimation, real-world 

validation, and domain adaptation, thereby advancing the 

development of reliable and scalable AI-driven diagnostic 

systems. 

B. Limitations 

While the proposed AYVANA framework demonstrates 

that convolutional neural network (CNN) architectures can be 

effectively applied to both dermatological and agricultural 

disease diagnosis, several limitations must be acknowledged. 

Although the framework unifies the experimental pipeline, the 

dermatological and agricultural models are trained and 

evaluated independently, with no shared feature learning, cross-

domain representation transfer, or domain adaptation. 

Accordingly, AYVANA does not claim biological or semantic 

generalization between human skin and plant pathology, but 

rather emphasizes architectural reusability under a consistent 

methodology. The experimental evaluation relies exclusively 

on publicly available benchmark datasets, which, while 

standardized, may not fully reflect real-world variability. In 

dermatology, this includes differences in skin tone, lesion 

progression, and imaging conditions, while in agriculture, real 

field environments introduce challenges such as occlusion, 

variable lighting, and background clutter. As a result, the 

reported performance may not directly translate to 

unconstrained deployment settings. Furthermore, the 

framework operates under a closed-set classification 

assumption, limiting its ability to handle rare, emerging, or out-

of-distribution disease cases, as no explicit uncertainty 

estimation or unknown-class rejection mechanisms are 

incorporated. Finally, the proposed system has not undergone 

clinical or field-level validation, and its predictions are not 

benchmarked against expert-confirmed diagnoses. In addition, 

AYVANA relies solely on single-modality RGB image 

analysis, without incorporating complementary contextual or 

multimodal information such as patient metadata, 

environmental factors, or temporal disease progression. These 

limitations indicate that the results should be interpreted strictly 

as evidence of methodological consistency and architectural 

reuse, rather than real-world diagnostic readiness or cross-

domain biological generalization. 
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C. Future Work 

Several research directions can extend the AYVANA 

framework and enhance its applicability across visual 

diagnostic domains. A key avenue involves exploring cross-

domain representation learning through shared feature 

extractors or domain-adaptive training to examine whether 

certain visual patterns generalize beyond independent domain-

specific learning. Another important direction is the integration 

of multimodal inputs. In dermatology, incorporating patient 

metadata or dermoscopic imagery may improve diagnostic 

consistency, while in agriculture, combining visual data with 

environmental factors, crop growth stage information, or 

temporal progression could enhance robustness under real-

world conditions. Future work may also focus on uncertainty 

estimation and out-of-distribution detection to improve 

prediction safety. Techniques such as predictive calibration or 

confidence-aware rejection mechanisms would enable the 

system to abstain from uncertain predictions, which is critical 

for real-world deployment. In addition, clinical and field-level 

validation involving dermatologist-confirmed diagnoses and 

agronomist-verified field trials is essential to bridge the gap 

between benchmark evaluation and practical usability. Finally, 

deployment-oriented research, including model compression, 

pruning, and quantization, as well as more advanced 

interpretability methods beyond Grad-CAM, could further 

improve efficiency, transparency, and user trust. 
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