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Abstract—Visual disease recognition in healthcare and agriculture
involves learning discriminative image patterns across biologically
distinct domains. While convolutional neural networks (CNNs)
perform well in domain-specific tasks, most prior work relies on
customized pipelines that limit architectural reuse. This work
presents AYVANA, a consistent CNN-based framework with
shared methodology and domain-specific optimization that
evaluates the independent reuse of convolutional neural network
(CNN) paradigm across dermatological and agricultural image-
based disease classification tasks. Using established transfer
learning, domain-specific pipelines are trained independently
using domain-appropriate optimization strategies, while sharing a
unified architectural paradigm, ensemble inference mechanism,
evaluation, and interpretability approach. An EfficientNetB5—
DenseNet169 ensemble achieves 85.61% accuracy and a macro F1-
score of 0.814 on a ten-class dermatology dataset, while an
EfficientNetB3—InceptionV3 ensemble attains 97.03% accuracy
and a macro F1-score of 0.968 on a seventy-nine-class plant disease
dataset. Soft-voting ensembles improve prediction consistency and
balanced class-wise performance, and Grad-CAM visualizations
provide qualitative insight. The results demonstrate that
established CNN architectures can be independently retrained and
reused across heterogeneous visual diagnostic under a consistent
experimental protocol with shared evaluation and inference
procedures, without shared representation learning or cross-
domain feature transfer.

Keywords—Convolutional Neural Networks, Visual Disease
Diagnosis, Dermatology, Agriculture, Transfer Learning, Ensemble
Learning, Interpretability.

I.  INTRODUCTION

Visual disease diagnosis plays a critical role in both
healthcare and agriculture, where observable symptoms guide
expert decision-making for clinical treatment and crop
management. In dermatology, accurate identification of skin
diseases enables timely intervention and improved patient
outcomes, while in agriculture, early detection of plant diseases
is essential for minimizing yield loss and ensuring food
security. Across both domains, diagnosis relies heavily on
visual cues such as texture variation, color change, lesion
morphology, and structural distortions. Recent advances in
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deep learning, particularly convolutional neural networks
(CNNs), have substantially improved automated disease
recognition through transfer learning and the availability of
annotated datasets. CNN-based models have demonstrated
strong performance in dermatology by learning discriminative
features related to pigmentation and lesion boundaries, and in
agriculture by capturing visual symptoms such as discoloration
and necrosis. Motivated by the observation that CNNs
fundamentally operate as general-purpose visual pattern
learners—detecting textures, shapes, and spatial structures
independent of biological context—this work investigates
whether CNN-based architectures can be independently reused
across multiple visual disease diagnosis tasks spanning distinct
domains. Despite  significant biological differences,
dermatological and agricultural datasets share common visual
learning challenges, including multi-class classification, class
imbalance, and high intra-class variability. To address this, we
present AYVANA, a methodological deep learning framework
that standardizes architectural selection, preprocessing, training
structure, ensemble inference, evaluation, and interpretability
across visually driven diagnostic tasks, while allowing domain-
specific optimization and independent model training. Derived
from the Sanskrit roots “Aya” (body or human health) and
“Vana” (forest or plants), AYVANA reflects a unified
perspective on human and plant health. Importantly, AYVANA
is a methodological experimental framework rather than a novel
neural architecture or learning algorithm, and it does not
involve shared biological modelling or cross-domain
representation learning.

II. RELATED WORKS

Deep learning—based image analysis has become a dominant
approach for automated disease diagnosis across multiple
domains. In visually driven diagnostic tasks, convolutional
neural networks (CNNs) effectively learn discriminative
features from image data, enabling accurate classification of
complex disease patterns. This section reviews prior work in
dermatological and agricultural disease diagnosis, as well as
ensemble and interpretability-based approaches, and outlines
the research gap addressed by the proposed framework.
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A. Deep Learning for Dermatological Disease Diagnosis

CNN-based models have achieved significant success in
dermatological image analysis, particularly in the classification
of skin lesions and dermatological conditions from clinical and
dermoscopic images. A landmark study by Esteva et al
demonstrated that deep CNNss can achieve dermatologist-level
performance in skin cancer classification, establishing the
feasibility of Al-assisted dermatological diagnosis [,
Subsequent studies have expanded this direction by leveraging
transfer learning with pretrained CNN architectures to improve
diagnostic accuracy and data efficiency. Several works have
explored the application of modern CNN architectures for
dermatological disease classification. Venkataiah et al. applied
transfer learning—based CNN models for diagnosing
inflammatory skin diseases such as eczema and psoriasis,
reporting improved classification performance ['l. Shakya ef al.
investigated hybrid frameworks combining CNN feature
extraction with traditional classifiers for skin cancer analysis [,
while Prottasha et al. employed Inception-based architectures
for real-time skin disease detection . Comparative studies by
Tschandl ef al. and Haenssle ef al. evaluated deep learning
systems against professional dermatologists, demonstrating that
CNN-based models often achieve competitive or superior
diagnostic accuracy for specific lesion categories [*%. Han et al.
further demonstrated the effectiveness of CNNs for
distinguishing benign and malignant cutaneous tumours from
clinical images !". Popescu et al. provided a comprehensive
review of emerging neural network architectures for melanoma
detection, highlighting current trends and challenges in
dermatological Al systems 1. Despite recent advances, many
dermatological diagnostic systems still suffer from class
imbalance, dataset bias, and limited interpretability. Moreover,
most studies focus on single-domain performance optimization,
with little attention to architectural reuse or methodological
consistency across visually driven diagnostic tasks.

B. Deep Learning for Agricultural Plant Disease Diagnosis

In agriculture, CNN-based models have been widely
adopted for plant disease detection due to the visually
observable nature of disease symptoms on leaves and crops.
Large-scale datasets such as PlantVillage and other publicly
available repositories have enabled deep learning models to
achieve high classification accuracy across multiple crop
species and disease categories. Recent studies have explored
ensemble learning and detection-based approaches to reduce
prediction variance and improve classification reliability in
agricultural disease diagnosis. Ali et al. demonstrated that
ensembles of deep learning architectures outperform individual
CNN models by reducing prediction variance and improving
minority-class recognition !, Object detection—based
frameworks have also been investigated to localize disease
regions under complex visual conditions. Miao et al. proposed
an enhanced YOLOv8-based architecture for accurate plant
disease detection 9, while Sambana et al. applied transfer
learning with YOLO-based models to achieve high
classification accuracy across multiple plant disease categories
1. Lightweight CNN architectures suitable for smart farming
and edge deployment have been explored by Vo et al. and Kirar,
highlighting the potential of EfficientNet- and MobileNet-
based systems for real-world agricultural applications [13:12],
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Demilie presented a comparative analysis of plant disease
detection techniques, emphasizing the strong empirical
performance of CNN-based approaches compared to traditional
machine learning methods ['4. Bao et al. proposed AX-
RetinaNet for detecting tea leaf diseases with 93% accuracy 1%,
while Aldakheel ef al. built a YOLOv4-based model achieving
nearly perfect recognition of leaf infections ['°1. Although
agricultural disease detection systems often report high
accuracy on benchmark datasets, many rely on curated images
with limited environmental variability, raising concerns about
real-world generalization. Like dermatological systems, most
agricultural models remain domain-specific, using customized
architectures and pipelines without emphasizing architectural
consistency or reuse across diagnostic domains.

C. Ensemble Learning & Interpretability in Visual Diagnosis

Ensemble learning is widely used in visual classification to
improve performance consistency and reduce prediction
variance by combining complementary model architectures.
Soft-voting ensembles of CNNs have been shown in multiple
studies to outperform individual models in both medical and
agricultural imaging tasks, particularly under visually
ambiguous conditions. Interpretability has likewise become an
important consideration in applied deep learning. Techniques
such as Gradient-weighted Class Activation Mapping (Grad-
CAM) provide qualitative insight into model attention by
highlighting image regions associated with predictions.
However, in many existing studies, interpretability is treated as
a post hoc visualization rather than as a systematically
integrated component of the evaluation framework.

D. Research Gap & Positioning of the Proposed Framework

While prior research demonstrates the effectiveness of CNN-
based models for dermatological and agricultural disease
diagnosis individually, existing approaches remain fragmented
across multiple visual diagnostic domains, relying on domain-
specific architectures, training strategies, and evaluation
protocols. Consequently, there is limited investigation into
whether deep learning architectures from convolutional neural
network (CNN) paradigm can be independently applied across
biologically distinct but visually diagnosable domains under a
consistent methodological framework. Motivated by this gap,
the proposed AYVANA framework emphasizes architectural
paradigm reuse rather than shared cross-domain learning,
applying established CNNs independently to both domains
using a unified architectural paradigm, ensemble inference
strategy, evaluation protocol, and interpretability approach,
while allowing domain-specific training and optimization
configurations.

1. METHODOLOGY AND TRAINING STRATEGY

A. Problem Formulation

This study investigates whether convolutional neural
networks (CNNs), as a general-purpose visual learning
paradigm, can be independently reused across biologically
distinct but visually diagnosable domains under domain-
appropriate training configurations. The problem is formulated
as a multi-class image classification task, where RGB images
are mapped to disease categories by learning discriminative
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visual features such as texture irregularities, color variations,
lesion morphology, and structural distortions. Importantly, the
proposed framework does not involve joint training, shared
representation learning, or cross-domain feature transfer.
Dermatological and agricultural diagnostic pipelines are trained
independently using domain-specific datasets. The shared
framework in this work refers strictly to the reuse of a common
architectural paradigm, consistent preprocessing, training
structure, ensemble inference, evaluation protocol, and
interpretability mechanism across visual diagnostic domains.
This design enables an empirical assessment of architectural
family reuse without introducing cross-domain learning.

B. Dermatological Disease Diagnosis Pipeline

Dataset Preparation and Preprocessing

The dermatological diagnostic pipeline operates on a curated
dataset constructed from publicly available sources, comprising
ten skin disease categories, including Actinic Keratosis, Basal
Cell Carcinoma, Benign Keratosis, Fungal Infection,
Melanocytic Nevus, Melanoma, Psoriasis, Seborrheic
Keratoses, Squamous Cell Carcinoma, and Viral Infection
7,181 Images corresponding to these categories are aggregated
from established Kaggle repositories, including ISIC-labelled
datasets and curated skin disease image collections. The use of
multiple data sources introduces variability in acquisition
conditions, including differences in lesion scale, color
distribution, skin tone, illumination, and background
characteristics, resulting in substantial intra-class variability.
All images are processed in RGB format and resized to 224 X
224 pixels to match the input requirements of ImageNet-
pretrained CNN backbones. Input normalization is performed
using ImageNet mean and standard deviation values to ensure
compatibility with pretrained weights. The consolidated dataset
is organized into training, validation, and test partitions
following the predefined directory structure of the source
datasets. While explicit separation between training, validation,
and test folders is maintained, the aggregation of multiple
public sources may introduce low-level redundancy or
correlated samples across splits, as patient-level identifiers and
duplicate detection are not consistently available. Data
augmentation is applied only to the training set and includes
random rotations along with horizontal and vertical flips.
Validation and test sets remain augmentation-free to support
unbiased experimental evaluation.

Model Architecture
Two CNN backbones, EfficientNetB5 and DenseNetl69, are
employed to capture complementary dermatological features.
EfficientNetB5 is selected for its strong performance in
modelling fine-grained texture patterns, while DenseNetl69
facilitates feature reuse through dense connectivity, supporting
stable gradient propagation in deep networks. Both models are
initialized with ImageNet-pretrained weights, and their original
classification layers are replaced with task-specific fully
connected heads corresponding to the ten dermatological
disease classes. Global Average Pooling, as implemented in the
selected CNN architectures, is applied prior to classification, to
reduce feature dimensionality and mitigate overfitting. Model
training follows a transfer learning setup in which all network
parameters are trained end-to-end from ImageNet-initialized
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weights using the Adam optimizer in conjunction with the
OneCycleLR learning rate scheduler, without staged freezing
of layers. Training proceeds for a fixed number of epochs, and
model checkpoint selection is performed based on minimum
validation loss rather than patience-based early stopping.

Algorithm
Input: Dermatology image dataset Dgermatology,
Output: Predicted disease class
1. Load dataset Dgermatology @and split into train/val/test

2. Resize images to 224x224 and normalize using
ImageNet statistics

3. Apply data augmentation to training set only

4. [Initialize EfficientNetB5 and DenseNetl69 with
pretrained weights

5. Replace classifiers with task-specific heads (10 classes)

6. Train models using the Adam optimizer with
OneCycleLR learning rate scheduling

7. Select best model checkpoints based on validation loss.

8. Perform soft-voting ensemble on test set predictions

9. Apply Grad-CAM for lesion localization

10. Evaluate using Accuracy, Fl-score, and Confusion

ine

Matrix

Dual CNM Architecture

EfficientNet BS Pretrained

Training - Adam and
OneCyclelR

Model Checkpoints

DenseNet 169 Pretrained

| T

Ensemble with TTA -
Average Probabilities

g l

Final Classification

Explainability - Grad-CAM
Visualization

Evaluation Metrics |

Activation Heatmaps

Fig. 1. Block diagram of the dermatological image classification pipeline,
showing preprocessing, EfficientNetB5 and DenseNet169 feature extraction,
Adam training with OneCycleLR, soft-voting ensemble inference, evaluation,
and Grad-CAM interpretability.

Ensemble Inference and Interpretability

During inference, predictions from EfficientNetBS and
DenseNet169 are combined using soft-voting ensemble
averaging, where class probability outputs from both models
are averaged to produce the final prediction. This ensemble
strategy reduces prediction variance and improves prediction
consistency for visually ambiguous skin conditions. To support
interpretability, Gradient-weighted Class Activation Mapping
(Grad-CAM) is applied to the final convolutional layers of both
models. Grad-CAM heatmaps highlight lesion regions that
contribute most strongly to model predictions, enabling
qualitative verification that the models attend to visually salient
regions associated with predicted classes rather than
background artifacts.
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Grad-CAM Comparison for EfficientNetB5 (Predicted: Actinic_keratosis | True: Actinic_keratosis)

A Original image

B. Grad-CAM Activation Map

Fig. 2. Grad-CAM visualization for EfficientNetB5 on an Actinic Keratosis
image, showing the input image (left) and activation map (right).

Grad-CAM Comparison for DenseNet169 (Predicted: Actinic_keratosis | True: Actinic_keratosis)

A Original image B. Grad-CAM Activation Map

Fig. 3. Grad-CAM visualization for DenseNet169 on an Actinic Keratosis
image, with the input image (left) and activation map (right).

C. Agricultural Plant Disease Diagnosis Pipeline

Dataset Preparation and Preprocessing

The agricultural diagnostic pipeline operates on a curated,
multi-source dataset aggregated from publicly available Kaggle
and Mendeley repositories, comprising seventy-nine disease
and healthy classes across multiple crop species, including
Applel'®29 Cashew?!, Cassaval?'l, Corn'*?, Cotton3?,
Cucumber???4, Grape!'*2%, Groundnut?, Lentil®®, Onion!?*,
Potatol!>?9,  Ricel?®23%,  Soyabean?”, Tomato!'>?" and
WheatB3!l, Images are collected under heterogeneous imaging
conditions, with variations in illumination, background, leaf
orientation, scale, and disease severity, resulting in substantial
visual diversity. All images are processed in RGB format,
resized to 299 x 299 pixels, and normalized using ImageNet
statistics to ensure compatibility with pretrained CNN
backbones. The dataset is organized into training, validation,
and test partitions following predefined directory structures,
without additional duplicate detection or cross-source overlap
analysis. Data augmentation, including random rotations and
horizontal and vertical flips, is applied only to the training set,
while validation and test sets remain augmentation-free to
support unbiased evaluation.

Model Architecture
Two CNN architectures, EfficientNetB3 and InceptionV3, are
employed in the agricultural diagnostic pipeline to capture
complementary visual features. EfficientNetB3 emphasizes
efficient texture-sensitive representation, while InceptionV3
enhances multi-scale spatial feature extraction through parallel
convolutional pathways. Both models are initialized with
ImageNet-pretrained weights, and their classification heads are
replaced with task-specific ~ fully connected layers
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corresponding to the 79 agricultural disease and healthy classes.
Global Average Pooling, as implemented in the selected CNN
architectures, is applied prior to classification. Model training
follows a transfer learning paradigm involving a two-stage fine-
tuning strategy. In the initial stage, ImageNet-pretrained
EfficientNetB3 and InceptionV3 backbones are frozen while
task-specific classification heads are optimized using the Adam
optimizer. In the subsequent stage, the full network is unfrozen
and fine-tuned with reduced learning rates using StepL.R-based
scheduling. Model checkpoint selection is based on minimum
validation loss to mitigate overfitting. Backbone freezing is
implemented through parameter freezing and optimizer
parameter scoping rather than explicit gradient disabling.

Algorithm
Input: Agricultural image dataset Dagriculture,
Output: Predicted disease class
1. Load Dagricutiure dataset and split into train/val/test

2. Resize images to 299x299 and normalize using
ImageNet statistics

3. Apply data augmentation to training data only

4. [Initialize pretrained EfficientNetB3 and InceptionV3
with pretrained-weights

5. Replace final classifiers with 79-class task-specific
heads

6. Train models using Adam optimizer with StepLR
scheduling

7. Reduce learning rate in later epochs

8. Save best checkpoints based on validation loss

9. Perform soft-voting ensemble on test predictions

10. Generate Grad-CAM visual explanations

11. Evaluate using Accuracy, F1-Score and Confusion
matrix

Dataset

Data Pipeline
Resize/Augment/Normalize

!

CNN Backbone Selection

| EfficientNet B3 Pretrained |

Inception V3 Pretrained |

Training Configuration

| Loss: CrossEntropylLoss | | Optimizer: Adam

| LR Scheduler: StepLR |

Performance Metrics
computation

Model checkpoints Grad-CAM Visualization

Fig. 4. Block diagram of the agricultural plant disease classification pipeline,
including preprocessing, EfficientNetB3 and InceptionV3 backbones, Adam
with StepLR, evaluation, and Grad-CAM interpretability.
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Ensemble Inference and Interpretability

At inference time, probability outputs from EfficientNetB3 and
InceptionV3 are combined using soft-voting ensemble
averaging. This ensemble strategy improves classification
stability and reduces misclassification among visually similar
plant disease categories. Interpretability is achieved using
Grad-CAM, which is applied to the final convolutional layers
of both models. The resulting heatmaps qualitatively highlight
infected regions such as necrotic tissue and discoloration on
plant leaves, indicating that model predictions are driven by
disease-relevant visual cues rather than background artifacts.
This qualitative evidence supports the prediction consistency of
the ensemble model’s decision-making process in complex
agricultural imaging scenarios.

MANUAL Grad-CAM on EfficientNet83 | Predicted: Class_0 (True: Apple_Black_rot}

B Grad-CAM Activation Map

Fig. 5. Grad-CAM visualization for EfficientNetB3 on an Apple Black Rot
leaf image, showing the input image (left) and activation map (right).

MANUAL Grad-CAM on InceptionV3 | Predicted: Class_0 (True: Apple_Black_rot}

B Grad-CAM Activation Map

Fig. 6. Grad-CAM visualization for InceptionV3 on an Apple Black Rot leaf
image, with the input image (left) and activation map (right).

D. Evaluation Protocol and Reproducibility

Model performance across both domains is evaluated using
classification accuracy, macro-averaged Fl-score, and
confusion matrix analysis. Macro-averaged metrics are
emphasized to ensure balanced assessment across classes with
varying sample frequencies. All experiments are implemented
using the PyTorch framework with pretrained models sourced
from torchvision and are conducted in a GPU-accelerated
environment using NVIDIA Tesla T4 GPUs. Fixed random
seeds are applied across Python, NumPy, and PyTorch
environments, and consistent preprocessing pipelines and
evaluation procedures are maintained to ensure procedural
consistency across experiments. Minor numerical variations
may still arise due to GPU-level nondeterminism. Dataset splits
follow the predefined directory structure of the aggregated
public datasets. While explicit separation between training,
validation, and test folders is preserved, no additional duplicate
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detection or cross-source overlap analysis is performed.
Consequently, reported results should be interpreted as
representative experimental outcomes rather than statistically
bounded estimates. No multi-seed variance analysis or
statistical significance testing is conducted. The proposed
methodology does not involve shared parameter learning,
multi-task optimization, or cross-domain feature transfer.
Dermatological and agricultural pipelines are trained
independently using domain-specific datasets. While both
pipelines employ transfer learning with ImageNet-pretrained
CNN architectures, learning rate scheduling strategies differ by
domain: dermatological models utilize the OneCycleLR
learning rate scheduler, whereas agricultural models employ an
epoch-based StepLR scheduler, reflecting domain-specific
optimization configurations. The methodological unification in
this work refers to architectural family reuse, consistent
preprocessing, ensemble inference, standardized evaluation
metrics, and qualitative interpretability mechanisms, rather than
identical optimization configurations.

IV. RESULTS AND ANALYSIS

This section reports experimental results obtained using the
proposed AYVANA framework for dermatological and
agricultural image-based disease classification. Performance is
evaluated using complementary metrics to account for class
imbalance, dataset scale, and visual complexity, with
comparisons between individual CNN backbones and ensemble
configurations. Grad-CAM visualizations provide qualitative
insight into model attention but do not constitute clinical or
agronomic validation. All results are based on single
experimental runs with fixed random seeds; no multi-seed
variance analysis or statistical significance testing is performed,
and conclusions are limited to observed performance under the
evaluated experimental configurations.

A. Dermatological Disease Diagnosis

The dermatological diagnostic pipeline is evaluated on a
ten-class skin disease classification task using a held-out test
set. Performance is primarily assessed using classification
accuracy, macro Fl-score, and confusion matrix analysis,
which together provide a balanced evaluation under class
imbalance and clinical visual ambiguity. Table I summarizes
the performance of individual CNN models and the ensemble
configuration.

TABLE 1. PERFORMANCE COMPARISION FOR DERMATOLOGICAL
DISEASE DIAGNOSIS
CNN Models Performance
Metrics
DenseNet169 EfficientNetB5 Ensemble
Accuracy 81.15% 83.24% 85.61%
FI1-Score 0.7645 0.7820 0.8140

The ensemble model achieves the highest overall
performance, improving accuracy by approximately 2—4% over
individual backbones. The increase in macro F1-score indicates
improved balanced classification across both common and
minority disease classes. These results suggest that combining
complementary CNN architectures reduces prediction variance
and improves prediction consistency in visually ambiguous
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dermatological conditions. Training and validation loss curves
exhibit smooth convergence behavior under the applied
learning rate scheduling. Both EfficientNetB5 and
DenseNet169 exhibit smooth training and validation loss trends
over epochs, with validation accuracy steadily improving.
EfficientNetB5 shows a slightly larger train—validation gap,
while DenseNet169 demonstrates smoother and more balanced
learning behaviour.

EfficlentNetBs Loss History EfficientNetS Validation Accuracy History

1] H i i i 3 H 4 1 H
Epoch Evach

Fig. 7. Training loss and validation accuracy curves for EfficientNetB5 on the
dermatological dataset, demonstrationg model convergence across training
epochs.

DenseNetl69 Loss Histary

DenseNet169 validation Accuracy Histary
823 { — vaidation Accuracy

Nalidation Loss _—
-

Ve
Accuracy

1] H i i i 3 H 4 1 H
Epoch Epach

Fig. 8. Training loss and validation accuracy curves for DenseNet169 on the
dermatological dataset, demonstrating learning progression across training
epochs.

B. Agricultural Disease Diagnosis

The agricultural diagnostic pipeline is evaluated on a large-
scale dataset comprising seventy-nine disease and healthy
classes across multiple crop species. Table II presents the
comparative performance of individual CNN models and their
ensemble.

TABLE II. PERFORMANCE COMPARISION FOR AGRICULTURAL DISEASE
DIAGNOSIS
. CNN Models Performance
Metrics
InceptionV3 EfficientNetB3 Ensemble
Accuracy 95.12% 96.45% 97.03%
FI1-Score 0.942 0.958 0.968

Both individual models demonstrate strong performance,
reflecting the effectiveness of transfer learning for large-scale
plant disease classification. The ensemble configuration
consistently outperforms individual models, yielding
improvements in both accuracy and macro F1-score. Training
and validation accuracy for both EfficientNetB3 and
InceptionV3 increase steadily across epochs, with a clear
performance boost observed as training progresses.
Corresponding loss curves exhibit smooth convergence, with a
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consistent reduction in loss throughout training. Validation
metrics closely track training metrics, and both models exhibit
smooth training and validation loss trends over epochs under
the evaluated experimental configuration, with no evidence of
severe overfitting within the observed training regime. Overall,
these trends suggest that the chosen optimization strategy and
learning rate scheduling are well-suited for the agricultural
dataset, enabling efficient model convergence.

EfficientNetB3 Accuracy over 10 Epochs Efficientlvetna Loss over 10 Epochs

Fig. 9. Training and validation accuracy and loss curves for EfficientNetB3
over 10 epochs on the agricultural dataset, illustrating convergence behavior
under Adam optimization with StepLR scheduling.

InceptionV3 Accuracy over 10 Epochs Inception3 Lass avsr 10 Epachs

z } . } i3 z 3 . 3 "
Eocn epocn

Fig. 10. Training and validation accuracy and loss curves for InceptionV3 over
10 epochs on the agricultural disease dataset, illustrating learning progression
under Adam optimization with StepLR scheduling.

C. Ensemble vs Individual Model Analysis

This analysis compares individual CNN backbones with
their corresponding soft-voting ensemble configurations to
assess the effectiveness of ensemble inference under a unified
training and evaluation protocol. For dermatological disease
classification, the ensemble combining EfficientNetB5 and
DenseNet169 surpasses both standalone models, achieving an
accuracy of 85.61% and a macro F1-score of 0.814. The gain in
macro Fl-score reflects improved class-wise balance,
particularly for visually similar and underrepresented disease
categories. In the agricultural domain, EfficientNetB3 and
InceptionV3  already demonstrate  strong individual
performance; however, their ensemble further improves
prediction consistency, attaining 97.03% accuracy and a macro
F1-score of 0.968 across 79 disease and healthy classes. Across
both domains, soft-voting ensemble inference consistently
outperforms single-model configurations while maintaining
identical inference pipelines and without introducing additional
training complexity. These findings indicate that model
complementarity can be effectively leveraged at the inference
stage, enhancing prediction consistency within independently
trained domain-specific classification tasks. Moreover, the
consistent gains across two biologically distinct domains
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reinforce the consistency of the proposed ensemble strategy
across independently trained domain-specific classification
tasks.

D. Summary of Performance of Each Domain

The proposed framework demonstrates performance
improvements across both dermatological and agricultural
disease classification tasks despite substantial differences in
dataset scale, class count, and visual complexity. In the
dermatology domain, the ensemble model achieves an accuracy
of 85.61% with a macro Fl-score of 0.814, reflecting the
challenge of visually ambiguous and clinically complex skin
disease categories. In contrast, the agricultural domain attains
higher absolute performance, with 97.03% accuracy and a
macro Fl-score of 0.968, attributable to clearer visual
separability and larger dataset size.

TABLE III. DOMAIN PERFORMANCE COMPARISION
. Domain
Metrics "
Dermatology Agriculture
Classes 10 79
Ensemble Accuracy 85.61% 97.03%
Macro FI-Score 0.8140 0.968

These results indicate that CNN-based architectures, when
trained independently under a consistent methodological
framework, can be reused across biologically distinct visual
diagnostic domains without domain-specific architectural
redesign.

E. Evaluation Metrics

Model performance is assessed using classification
accuracy, macro Fl-score and confusion matrix. Accuracy
provides an overall performance measure, while macro F1-
score evaluates balanced performance across classes by treating
all classes equally. Confusion matrices are used to analyze
class-wise prediction behavior and misclassification patterns.

Confusion Matrix
The confusion matrices illustrate the performance of the
ensemble CNN framework across both dermatology and
agriculture domains by comparing true class labels with
predicted labels. In the dermatology task, the matrix exhibits
strong diagonal dominance, indicating that most skin diseases
are correctly classified, with a macro Fl-score of 0.814
reflecting balanced precision and recall across all 10 classes.
Misclassifications primarily occur between visually similar
conditions such as melanoma and melanocytic nevus or actinic
keratosis and basal cell carcinoma, which is expected due to
overlapping visual patterns and inherent class imbalance in
medical datasets. In contrast, the agricultural confusion matrix
displays an exceptionally sharp diagonal with minimal off-
diagonal errors, resulting in a high overall accuracy of 97.03%.
This highlights the model’s strong discriminative capability
across a large number of plant disease and healthy classes.
Collectively, these matrices demonstrate that although
dermatological diagnosis presents greater visual ambiguity, the
proposed ensemble framework achieves strong empirical
performance across both domains under the evaluated
experimental conditions. The results further emphasize the
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benefit of ensemble inference in enhancing class separability
and consistency in complex, real-world classification scenarios.

Ensemble Confusion Matrix (Macro F1: 0.8140)
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Fig. 11. Confusion matrix of the ensemble CNN model for dermatological
disease classification across 10 classes, reporting a macro F1-score of 0.814 and
highlighting class-wise prediction behavior.

Ensembla Model Confusios

Label

Preciceea Label

Fig. 12. Confusion matrix of the ensemble CNN model for agricultural disease
classification across 79 disease and healthy classes, illustrating prediction
distribution with an overall test accuracy of 97.03%.

F. Ablation Analysis

The selection of EfficientNetB5, DenseNetl69,
EfficientNetB3, and InceptionV3 is guided by domain-specific
visual characteristics and engineering trade-offs rather than an
exhaustive comparison across all deep learning architectures.
Transformer-based models such as Vision Transformers are
excluded due to their higher data requirements and weaker
inductive bias for local texture learning, which is critical for
both dermatological lesion analysis and plant disease
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recognition. Object detection frameworks such as YOLO are
also not considered, as this work addresses closed-set image-
level disease classification rather than region-level detection,
and introducing detection-based models would alter the task
formulation and evaluation protocol. Within the CNN family,
the chosen architectures represent complementary design
principles. EfficientNet is selected for its compound scaling
strategy, enabling strong performance with balanced
computational  cost. DenseNetl69 is paired with
EfficientNetB5 in the dermatology domain due to its dense
feature reuse, which preserves fine-grained texture and color
information required for visually ambiguous skin diseases. In
contrast, InceptionV3 is paired with EfficientNetB3 in the
agricultural domain, as its multi-branch architecture effectively
captures multi-scale spatial patterns commonly observed in
plant disease imagery. The wuse of EfficientNetB5 for
dermatology and EfficientNetB3 for agriculture reflects
differences in dataset complexity and visual ambiguity.
Dermatological images exhibit subtle intra-class variations that
benefit from higher-capacity models, while agricultural images
are larger in scale with clearer visual separability, allowing
EfficientNetB3 to achieve strong performance with improved
efficiency. Soft-voting ensemble inference is employed to
exploit architectural complementarity without increasing
training complexity. Across both domains, ensembles
consistently improve macro-averaged Fl-score, indicating
reduced prediction variance and more balanced class-wise
performance, particularly for visually similar or
underrepresented disease categories. These gains demonstrates
enchanced performance under the evaluated experimental
conditions beyond raw accuracy, supporting the reuse of
established CNNs under a consistent experimental framework.

V. CONCLUSION AND FUTURE WORKS

A. Conclusion

This work presented AYVANA, a unified deep learning
framework that investigates the applicability of the
convolutional neural network (CNN) paradigm across two
biologically distinct yet visually diagnosable domains:
dermatological disease identification and agricultural crop
disease classification. By employing consistent preprocessing
strategies, transfer learning—based CNN backbones, and a
standardized experimental pipeline, the study demonstrates that
modern CNN architectures can be independently retrained and
reused across multiple diagnostic contexts without requiring
domain-specific architectural redesign. Through extensive
experiments on publicly available benchmark datasets, the
framework achieved competitive classification performance in
both domains, confirming the strong capacity of CNNs to learn
discriminative visual features such as texture irregularities,
colour variations, lesion morphology, and structural distortions.
The results indicate that, despite fundamental biological
differences between human skin and plant pathology, visually
driven diagnostic tasks can be addressed using a shared
methodological foundation when supported by appropriate
dataset-specific  training and evaluation. Importantly,
AYVANA does not seek to establish cross-domain biological
generalization or shared representation learning between
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dermatology and agriculture. Instead, the primary contribution
lies in demonstrating architectural reusability and
methodological consistency, showing that a single deep
learning framework can be systematically applied across
heterogeneous visual diagnostic problems. This finding
reinforces the architectural flexibility of CNN-based models for
visual pattern recognition tasks when applied under domain-
specific training settings. In addition to predictive performance,
the integration of Grad-CAM-based interpretability provides
qualitative insights into the regions influencing model
decisions, enhancing transparency and supporting trust in
automated diagnostic systems. While these explanations are not
clinically definitive, they offer a useful mechanism for visual
validation of learned features in both domains. Overall, this
study contributes empirical evidence supporting the use of
unified CNN architectures for multi-domain visual diagnostics
and highlights the potential of such frameworks to streamline
development across application areas. The proposed approach
serves as a technical foundation for future research exploring
multimodal learning, uncertainty estimation, real-world
validation, and domain adaptation, thereby advancing the
development of reliable and scalable Al-driven diagnostic
systems.

B. Limitations

While the proposed AYVANA framework demonstrates
that convolutional neural network (CNN) architectures can be
effectively applied to both dermatological and agricultural
disease diagnosis, several limitations must be acknowledged.
Although the framework unifies the experimental pipeline, the
dermatological and agricultural models are trained and
evaluated independently, with no shared feature learning, cross-
domain representation transfer, or domain adaptation.
Accordingly, AYVANA does not claim biological or semantic
generalization between human skin and plant pathology, but
rather emphasizes architectural reusability under a consistent
methodology. The experimental evaluation relies exclusively
on publicly available benchmark datasets, which, while
standardized, may not fully reflect real-world variability. In
dermatology, this includes differences in skin tone, lesion
progression, and imaging conditions, while in agriculture, real
field environments introduce challenges such as occlusion,
variable lighting, and background clutter. As a result, the
reported performance may not directly translate to
unconstrained  deployment settings. Furthermore, the
framework operates under a closed-set classification
assumption, limiting its ability to handle rare, emerging, or out-
of-distribution disease cases, as no explicit uncertainty
estimation or unknown-class rejection mechanisms are
incorporated. Finally, the proposed system has not undergone
clinical or field-level validation, and its predictions are not
benchmarked against expert-confirmed diagnoses. In addition,
AYVANA relies solely on single-modality RGB image
analysis, without incorporating complementary contextual or
multimodal  information such as patient metadata,
environmental factors, or temporal disease progression. These
limitations indicate that the results should be interpreted strictly
as evidence of methodological consistency and architectural
reuse, rather than real-world diagnostic readiness or cross-
domain biological generalization.
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C. Future Work

Several research directions can extend the AYVANA
framework and enhance its applicability across visual
diagnostic domains. A key avenue involves exploring cross-
domain representation learning through shared feature
extractors or domain-adaptive training to examine whether
certain visual patterns generalize beyond independent domain-
specific learning. Another important direction is the integration
of multimodal inputs. In dermatology, incorporating patient
metadata or dermoscopic imagery may improve diagnostic
consistency, while in agriculture, combining visual data with
environmental factors, crop growth stage information, or
temporal progression could enhance robustness under real-
world conditions. Future work may also focus on uncertainty
estimation and out-of-distribution detection to improve
prediction safety. Techniques such as predictive calibration or
confidence-aware rejection mechanisms would enable the
system to abstain from uncertain predictions, which is critical
for real-world deployment. In addition, clinical and field-level
validation involving dermatologist-confirmed diagnoses and
agronomist-verified field trials is essential to bridge the gap
between benchmark evaluation and practical usability. Finally,
deployment-oriented research, including model compression,
pruning, and quantization, as well as more advanced
interpretability methods beyond Grad-CAM, could further
improve efficiency, transparency, and user trust.
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