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Abstract  -   Let a0, a1, ….. be a sequence of independent and identically distributed standard  normal random variables. In this paper, 

the average number of real zeros of the random fractional polynomial  
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  (0 )x   , for large values of n is obtained. 

Further it is proved that the average number of real zeros nEN   is asymptotic to
1

logn


. 
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1 INTRODUCTION 

Mathematical models are indispensable in many areas of Science and Engineering. For bacterial growth the models usually take 

the form of differential equations or a system of differential equations.  

Differential equations have been extensively studied, both from the analytical and numerical view points. However, there are 

many situations, where the equations with random coefficients are better suited in describing the behavior of the quantities of 

interest. 

Randomness in the coefficients may arise, because of errors in the observed or measured data, variability in experiment and 

empirical conditions, uncertainties (variables that cannot be measured, missing data, etc…) or plainly because of lack of 

knowledge. Differential equations where some or all the coefficients are  considered as random variables or that incorporate 

stochastic effects have been  increasingly used in the last few decades to deal with errors and uncertainties and  to represent the 

growing field of great scientific interests. [6, 7, 9]. 

Fractional calculus is a branch of mathematics that grows out of the traditional definitions of the integral calculus and derivative 

operators. In the same way fractional exponents is an outgrowth of exponents with integer value [1]. 

In a letter to L’Hopital in 1695, Leibniz raised the following question [7], 

“Can the meaning of derivatives with integer order be generalized to derivatives with non integer orders?” L’Hopital posted the 

question to Leibniz, what would be the result if the order will be 
1

2
”. Leibniz replied as: ʻIt will lead to a paradox, from which 

one day useful consequences will be drawnʼ.From these words fractional calculus has been initiated. Random fractional 

algebraic polynomials arise in the study of differential equations with random coefficients.[5,10,11]. Consider the polynomial, 
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 If ak’s (k = 0, 1,…, (n-1)) are all independent real random variables, then the above polynomial becomes a random polynomial. 

Set,
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.In particular if 
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When 1   , that is for the polynomial 
k

ka x ,where ak
’s (k=0,1,…,(n-1))  are independent and standard normal variables, 

then the number of real zeros, is  estimated as nEN  = 
2

logn
  

in Kac[3]. This relation is known as Kac’s result.  When 

1

2
  , the above polynomial (1.1) takes the form 
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The average number of real zeros of this fractional polynomial

 

 the interval  (0,∞)  is estimated in [4] as nEN  = 
1

log .n


 

Average number of real zeros of various random polynomials is discussed in [2]. In this paper, the fractional polynomial of the 

form, given in (1.2) has been discussed. The main theorem proved in this article is stated below. 
 
 

THEOREM (1.1) 

 If the random variables ak
’s (k = 0, 1,…., (n-1)) are all independent standard normal variables ,the average number of real zeros, 

nEN  of the fractional  polynomial (1.2)  is given by the  following formula,      

                nEN    
1

2
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 and its asymptotic relation is given by 
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                                                                                                        (1.4) 

 and the interval estimation is, 
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 ≤ nEN
 
≤  

1
log 0.2n


                                                                             (1.5) 

where nEN denotes the average number of real zeros of the 

 fractional polynomial (1.2).The following theorem (1.2) is needed to  prove the theorem (1.1) completely. 

 
 

THEOREM (1.2) 

For the random fractional polynomial,  
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, the number of real zeros in (0, 1), and in (1,∞) are
 
equal. 

Proof: 

Consider the random fractional polynomial,        
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where  
1

x
   y . So, as x  varies from 0 to 1, the range of y  is from 1 to . Therefore the number of real zeros in the interval 

(0, 1) is same as that of the interval (1, ∞). 

 

2  PROOF OF THE MAIN THEOREM (1.1) 

By Kac’s formula [3], for the random polynomial 
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the number of real zeros in the interval (a,b) is given by the equation, 
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In the present case, the fractional polynomial  
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Substituting the values of A, B and C, given in the system of equations (2.4) in  

the equation (2.2) yields,  
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and by an analytical computation in the equation (2.1), gives 
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Employing the theorem (1.2), (0, )nEN   is of the form 
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3 ASYMPTOTIC VALUE OF ENn 

Consider  

                          (0, )nEN      
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Suppose f(x) is differentiable on (0, 1), applying the mean value theorem for  
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On the other hand, ( )nh x →0, as n→∞, so 
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Evaluation of the first integral in the right hand side of (3.7) yields,   
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The second integral in the right hand side of (3.7) tends to zero, when .n   

Then the inequation (3.7) becomes, 
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From the equation (3.1),  

  

(0, )nEN 

   



   

1 1 1
log log(2 ).n

n 
 

                                                       

(3.10)

 

For large values of n, 
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To obtain the lower estimate, let ε and δ be two real quantities with  0 < (ε, δ) < 1,  
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Making suitable transformation, 
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That is, 
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  From the inequations (3.11) and (3.16) the asymptotic formula 
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       is obtained. 

 Equation (3.17) represents the asymptotic value of the real zeros of the  random fractional polynomial for 0 < x < ∞. This 

proves the theorem 1.1  
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4  A GENERALISATION OF THE RESULTS ON RANDOM AND FRACTIONAL POLYNOMIALS 

In this section, a generalisation of the Kac’s formula [3], and the theorem (1.1) on  

random fractional polynomial is proved. 

Consider the algebraic equation,
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where the ak’s (k = 0,1,…(n-1)) are independent random variables assuming 

real values only.  
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Substituting the values of A, B and C, given in the system of equations (4.8) in   

the equation (4.3) yields,  
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When α =1, equation (4.10) coincides the relation derived in Kac’s formula [3].
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That is for the polynomial 
k

ka x ,where ak
’s (k = 0,1,…,(n-1)) are independent and normally distributed random variables 

with mean 0 and variance 1, Kac[3]  estimated the average number of real zeros in ( , )   as 
2
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But when
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This result coincides with the result derived in [4]. 
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