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Abstract-Development of Autonomous driving system is
now possible due to End-to-end deep learning, which is a
modeling strategy that is a response to the success of deep
neural networks. Unlike traditional methods, this strategy
is not built on feature engineering. Instead, it leverages the
power of deep neural networks, along with recent
hardware advances ( like GPUSs) to harness the incredible
potential of large amounts of data. It is closer to a human-
like learning approach than traditional ML as it lets a
neural network map raw input to direct output.
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. INTRODUCTION

Thanks to the availability of various sensors including radars,
lidars, camera systems and also wireless communications,
driver assistance systems autonomous vehicles have made
significant advances in recent years. The main requirements
that are imposed to autonomous vehicles are ability to cover
long distances in a safer way, while decreasing the rate of
accidents and traffic jams, and obeying the traffic rules, all
without human interaction. There are 10 trillion automobile
miles driven each year worldwide, with complex and novel
conditions generating millions of situations in which
autonomous vehicles face failure.

Highly intelligent autonomous systems in vehicle are required
to take into account a broader range of information about the
current road situation and the car itself on the same way as a
human driver would process information. For enabling
autonomous vehicles to handle adverse driving conditions,
such as rain and wet roads, the control algorithm must be able
to recognize roads within a tolerable margin of error, using
measuring instruments, such as cameras and laser sensors.
Autonomous vehicles must quickly make decisions based on
incomplete information in situations that programmers often
will not have considered, using ethics that must be encoded all
too literally in software .

This paper attempts to provide a Autonomous driving
system for an virtual environment. We are using two virtual
environment for training and developing the autonomous
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system. The first one is an photo-realistic virtual simulator
provided by Microsoft named ‘Airsim’ , as for now while
while developing this project Airsim doesn’t have signal
system implemented yet, so instead of airsim simulator we are
also developing our own simple simulator with signal system
using Unity Game Engine.

Using such simulators it is now possible to collect a large
amount of data to train autonomous driving models without
having to use an actual car. These models can then be fine-
tuned using a comparably lesser amount of real-world data and
used on actual cars. This technique is called Behavioral
Cloning. In this tutorial, we are training a model to learn how
to steer a car through a portion of the Landscape map in these
simulators using only one of the front facing webcams on the
car as visual input and four distance measuring sensor. Our
strategy, is to train an end-to-end deep learning model to
predict the correct driving control signal (in this case the
steering angle) given a frame from the webcam, and the car's
current state parameters (speed, steering angle, throttle,
distance senor readings etc.).

In the initial part of the paper, we will know about other
relevant projects and then understand the process of
developing/using virtual environment for training and testing
self-driving car model. In the later part of the paper, we would
discuss more about our how our model is actually being trained
and evaluated. We would present the steps that would be used
by our system. And the details of concepts which would be
used.

1. BACKGROUND & RELATED WORK

After studying the various available autonomous driving
systems we aim to execute our proposed system. In order to do
that we studied various papers based on the same to understand
different concepts adopted in each one of them.

Nvidia Developers [1] have empirically demonstrated that
CNNs are able to learn the entire task of lane and road
following without manual decomposition into road or lane
marking detection, semantic abstraction, path planning, and
control. A small amount of training data from less than a
hundred hours of driving was sufficient to train the car to
operate in diverse conditions, on highways, local and
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residential roads in sunny, cloudy, and rainy conditions. The
CNN is able to learn meaningful road features from a very
sparse training signal (steering alone).

Zheng Wang [2] Modified a RC car to handle three tasks: self-
driving on the track, stop sign and traffic light detection, and
front collision avoidance. His system consisted of three
subsystems: input unit (camera, ultrasonic sensor), processing
unit (computer) and RC car control unit. The camera was
connected to Raspberry Pi which sent data back Processing
Unit via TCP server, the on-processing side Neural networks
are used to predict next move of the car.

There are 38,400 (320x120) nodes in the input layer and 32
nodes in the hidden layer and 4 nodes in output layer. The
number of nodes in the hidden layer is chosen fairly arbitrary.
There are four nodes in the output layer where each node
corresponds to the steering control instructions: left, right,
forward and reverse respectively i.e. the possible moves for
car.

The system also had object detection feature which detected
stop sign and red signal. This project adapted the shape-based
approach and used Haar feature-based cascade classifiers for
object detection. Since each object requires its own classifier
and follows the same process in training and detection, this
project only focused on stop sign and traffic light detection.

“How to Train Your Self Driving Car Using Deep Learning”
by

Towardsdatascience.com [5] demonstrates method on how to
Train an end-to-end deep learning model that would let a car
drive by itself around the track in a driving simulator. It is a
supervised regression problem between the car steering angles
and the road images in real-time from the cameras of a car. In
this project, Udacity driving simulator has been used which has
two different tracks. One of them was used for collecting
training data, and the other one — never seen by the model —
as a substitute for the test set. This project was also inspired
from [1] Nvidia’s End-to-End learning Deep learning for self-
driving cars.

“3D Modelling and Visualization based on the Unity game
engine — Advantages and Challenges™. [7] The paper has been
organized with a brief introduction on 3D GIS modelling
standards, description of project area and Unity3D game
engine as project implementation platform.

I1l. PROPOSED SYSTEM (IMPLEMENTATION)

The diagram below shows the overall flow of how the system
is going to work.

Unity Simulator Environment

Virtual

Camera Sensors

Virtual Car

Output Data Input Data

Python Module

Socket 10 server

Sensor
Images
o Data

CNN Model ANN Model

Fredicled
P‘;i?&?{‘ﬁ:
Angle
Output Data

The system mainly consists of two parts:
1. Unity Environment
2. Python Module (Server)

We can manually drive the car in the simulated environment
to collect the required data that is stored in the local folder. On
training the model on collected data it can be tested using the
python module. The system is based on Client-Server
architecture where the python module act as server and the
virtual car act as a client.

In autonomous driving mode, virtual camera images along
with sensor data are transferred to the server. Using the
received data, the model predicts the corresponding steering
angle and acceleration to be applied which is transferred to the
virtual car controller.

A. Simulator / Virtual Environment

For generating data we first need to setup a virtual
environment, we are making use of 2 virtual simulator
1) AirSim Simulator

Fig.1.AirSim Simulator
AirSim (Aerial Informatics and Robotics Simulation) is an
open-source, cross platform simulator for drones, ground
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vehicles such as cars and various other objects, built on Epic
Games' Unreal Engine 4 as a platform for Al research.

There are two ways you can generate training data from
AirSim for deep learning. The easiest way is to simply press
the record button provided in the lower right corner. This will
start writing pose and images for each frame. The data logging
code was modified to get data as per our training model
requirement.

2) Developing simulator in Unity 3D

We used the unity game engine to develop a simple 3d
simulator environment, which consists of roads and signal
systems. The environment is developed using Road Architect.
Road architect is a professional quality road system creator
featuring dynamic intersections, bridges and many other road
objects. The various road objects help to train the neural model
with different environmental conditions. This includes roads,
bridges, stop-signals, speed-limit signals, etc.

The simulated autonomous car is attached with a virtual
camera that helps to collect images required for training the
CNN model. As images do not provide enough information
about the exact distances of the objects it is necessary to have
sensors that directly provides such distances. Such sensors are
implemented using Unity’s ‘Raycast’ property. It continuously
sends rays from a given point in specific direction. The length
of such rays is used and stored as the distance of the objects
from the car.

Fig.2. Unity Game Engine

The environment also includes various other cars running at
different speeds.

IV. DATASET COLLECTION

The main part of creating a more precise Neural Network
Model begins with the collecting of relevant data. Our Untity
Simulator has more precisely two modes, one is the Training
Mode and the other is the Evaluation Mode.

The dataset collection takes place in the Training Mode. There
are three cameras mounted in front of our car in Unity. The
location of these cameras are front left, front center and front
right to more precisely capture the surrounding environment.
In order to collect the dataset, we manually drive the car in the
Training Mode. In Training Mode, the simulator captures the
images from the three front cameras and stores it in a database.
The corresponding human action pertaining to every frame is
also captured by the simulator which is stored in an Excel file.

As a result the dataset required to train a Neural Network

Model is collected, wherein the input to the model will be the

input frame image and the output will be the steering angle.

The images captured by the three front cameras are as follows:-
Front Left Camera

0 50 100 150 200 250 300
Fig.3. Front Left Camera View

Front Center Camera

Fig.4. Front Center Camera View

Front Right Camera

0 50 100 150 200 250 300
Fig.5. Front Right Camera View

The corresponding steering angle, throttle,
deacceleration (reverse) and the current speed recorded
pertaining to the input images which is stored in the Excel file

is as follows:-

center left right steering throttle reverse  speed

0 center.2019.05.13.18.25.47.377jpg left_2019.05.13_18.25.47.377pg right 2019.05.13.18_25.47.377 jpg 00 00 0 0000078

1 center.2019.05.13.18.25.47.479jpg left_2019.05.13_18.25.47.479jpg right2019.05.13.18_25.47 479,pg 00 00

0 0.000079
2 center.2019.05.13.18.25.47_581pg left_2019.05.13_18.25.47.581pg right 2019.05.13.18_25.47_581jpg 00 00 0 0000079
0 0.000079

0 0.000078

Fig.6. Recorded Data Table

We collected around 20,000 images by driving the car for
around 20 minutes. We tried to capture various different
scenarios by driving the car in different ways so as to have a
robust dataset.
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The sensor data helps to determine the acceleration to be
applied. Currently the car consists of front sensors (Unity
Raycast) attached to it. The length of the sensor is stored in
CSV file along with the corresponding acceleration of the car
at a given point in time. We can attach multiple sensors to car
at various positions. The collected data is used to train the deep
neural network.

Fig.7. Sensors in Unity Game Engine

A B | c | D | E | F | 6 |
1 [Steer Accel Center Left Right LeftMid RightMid
2 0 0 1 ¥ 1 1 b £
3 0 0 1 1 1 1 1
4 | 0 0 1 1 1 1 1
5 ] 0 i 1 1 1 1
6 0 0 1 1 1 1 1
7 0 0 1 1 1 1 1

Fig.8. Recorded data from Unity Game Environment

V. PREPROCESSING

We applied various preprocessing techniques on the dataset
collected to make the model training task easier. Our main task
was to predict the steering angle, so it was important for us to
have an equal balance of left steering angle as well as right
steering angle, so as to avoid making the model biased in
favoring the outputs in a particular direction. As a result we
wrote a python script, which sets a threshold and selects left
steering and right steering angle images in equal proportion.
The histogram depicting the steering angle and frequency of
images with respect to that steering angle in our training
dataset is as follows:-

Training set

600 4

500 -

400 1

300 +

200

100 1

0 e
-1.00 -0.75 -0.50 -0.25 000 025 050 075 100
Fig.9 Steering Angle Distribution

In the above histogram, x-axis represents the steering angle
wherein negative values denote left steering angle and positive
values denote right steering angle. The y-axis represents the
frequency of images with respect to a particular steering angle.
We can see the proportion of steering angle in both the
direction is almost the same. Moreover, we decided to keep
steering angle of majority of the images in our training dataset
close to zero. The main reason to do so was to make the model
learn to drive straight, as in an ideal drive, majority of the
driving takes place on a straight road as compared to the
number of turns the car takes.

We also used various image augmentation techniques like
image flipping, random zooming, altering the brightness
intensities, on the dataset collected. The main reason for doing
this was to make a versatile model which would be more robust
to any changes in the environment. Few of the data augmented
images used in the training is as follows:-

Oniginal_image Augmented Image

fiipped_image - Steering Angie -0.0

20 )

Fig.11.Augemented Images from dataset

The second image shows flipped representation of the original
first image. When the image is flipped, the corresponding
steering angle is reversed. The fourth image is the combination
of image flipping, image panning and brightness alteration
applied on the third image. These data augmenting techniques
helps the model more robust in predicting the output even after
slight changes in the input images. As a result, the model more
precisely learns the mapping of input images to its
corresponding steering angle.

VI. MODEL TRAINING
The model architecture we chose is nearly identical to the
NVIDIA’s network for End-to-End Learning for Self Driving
Cars. Before feeding the input images to the model, we applied
some more preprocessing techniques to make the input images
appropriate as per the model requirements.

We first removed the top part and the bottom part (hood of the
car) of the image to get our region of interest. We then
converted the image from RGB to YUV format as the model
tends to learn faster in this format. We applied Gaussian Blur
with filter size of 3x3 and then resized the image to have shape
(66, 200, 3) which is the input requirement for the model. We
finally then normalized the input image pixels. One of the
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images after applying the preprocessing steps before feeding
to the model is as shown below:

Training Image

o

8 8 8 8 8

50 [ 100 125 150

Fig.12.YUV format Training image.

Our model features 5 convolutional layers and 4 fully
connected layers which looks similar to the architecture as
shown below:-

Output: vehicle control

!
I EEET]

Fully-connected layer

[ S0neunns ] Fully-connected layer
[ 100 neurons ] Fully-connected layer
—_—————— feature map
—_——

64@1x18

3x3 kernel

//3X3 kernel
%emel

5x5 kernel

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map

lies between -1 to 1 and ReL U gives 0 as output for negative
values which causes hinderance in models performance.

We used keras to build and train the model, which provided
quick and simple implementation. Our keras model summary
is as follows:-

Layer (type) Output Shape Param #
conv2d_6 (Conv2D) (None, 31, 98, 24) 1824
conv2d_7 (Conv2D) (None, 14, 47, 36) 21636
conv2d_8 (Conv2D) (None, 5, 22, 48) 43248
conv2d_9 (Conv2D) (None, 3, 20, 64) 27712
conv2d_10 (Conv2D) (None, 1, 18, 64) 36928
flatten_2 (Flatten) (None, 1152) 2]
dense_5 (Dense) (None, 100) 115300
dense_6 (Dense) (None, 50) 5050
dense_7 (Dense) (None, 10) 510
dense_8 (Dense) (None, 1) 11

Total params: 252,219
Trainable params: 252,219
Non-trainable params: ©

Fig.14.Model Summary

The model was trained using Adam Optimizer with a learning
rate of 0.001. As our output was steering angle, we used mean
squared-error as the loss function. We used batch generator to
generate minibatches on the fly with a batch size of 100 and
taking 300 steps for epoch in training. For validation, we used
batch generator with a batch size of 100 taking 200 validation
steps.

We trained the model for 30 epochs. In total, the model was
trained on around 30,000 images per epoch. The following
graph shows the variation in the loss with respect to the epochs
in training as well as validation

24@31x98
- Loss
i / it Normalized 030 s
é g : f input planes validation
3@66X200 0.25 -
[ Normalization ]
| 020
: Input planes
H 3@66x200
0.15 1
Fig.13 CNN Model
0.10 1
Source: [1]
0.05 1
Abstract features from the images are captured by the . . . . . . .
convolutional layers. These abstracted features are fed into the 0 5 10 ’ 15 20 5 30
fully-connected layers which serve as a steering controller. eh
Fig.15.Loss vs Epoch
We used ELU activation in both the convolutional layer and
fully-connected layer. We chose ELU over ReLU as our output
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VII. OBJECT DETECTION

We used YOLOvV3 (You Only Look Once) [8] for object
Detection. YOLOV3 is an object detection algorithm which is
based on neural nets which can be used to detect objects in live
videos or static images, it is one of the fastest and accurate
object detection method to date. YOLOV3 can identify 80
different classes which also include person, bicycle, traffic
light, car, motorbike, stop sign, etc which are very useful in
self driving task. As a result, we used YOLOv3 in our
simulation, to mainly detect traffic lights, vehicle and
pedestrians and to take appropriate decisions based on the
detection while navigating the car.

At test time, the simulation sends the current captured frame to
the server. The Neural Network Model is run on this input
image to get the corresponding steering angle. Apart from that,
YOLOV3 is also run on the same image to detect objects in the
given image. Based on the output of detection, the
corresponding acceleration is determined.

s
hu =

Fig.16.Signal Detection using YOLO

In the above image, the yolo model detects the traffic light
with 73% probability. Using image processing, the color of
the traffic light is deciphered. If the color is red, the car is
deaccelerated so as to stop else if the color is green, the car is
accelerated. YOLOv3 can detect multiple objects in the
image as well

Fig.17.0bject Detection

As in the above image, the YOLO model detects traffic light
as well as car and person and thus appropriate decision is
taken.
VIIl. CONCLUSION

Simulator is the safest and cheapest way to test the autonomous
car prototype before deploying it in real life environment. Our
project provides such a flexible simulated environment. With
the help of CNN model, the car is able to drive on various road
conditions. It also successfully detected and classified various
road objects.

IX. FUTURE SCOPE
Simulators can further be used to create a much more realistic
environment, it can be used to simulate real life traffic
situations, complex road architectures, human driver errors etc.
This Simulations then can be used to train Autonomous driving
systems. Such models then can tested and then be incorporated
in real world cars.
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