

Autonomous Driving System in Virtual

Environment

Ameya Morajkar
Department of Computer Engineering

Vidyalankar Institute of Technology

Mumbai,India

Dhananjay Nikalje
Department of Computer Engineering

Vidyalankar Institute of Technology

Mumbai, India

Pankaj Vanwari
Department of Computer Engineering

Vidyalankar Institute of Technology

Mumbai, India

Arsh Ahmed Jamadar
Department of Computer Engineering

Vidyalankar Institute of Technology

Mumbai, India

Abstract-Development of Autonomous driving system is

now possible due to End-to-end deep learning, which is a

modeling strategy that is a response to the success of deep

neural networks. Unlike traditional methods, this strategy

is not built on feature engineering. Instead, it leverages the

power of deep neural networks, along with recent

hardware advances (like GPUs) to harness the incredible

potential of large amounts of data. It is closer to a human-

like learning approach than traditional ML as it lets a

neural network map raw input to direct output.

Keywords— Autonomous Driving Systems, End-to-End

Deep Learning, Neural Networks, Unity Game Engine,

Virtual-Simulators, SDC.

I. INTRODUCTION

Thanks to the availability of various sensors including radars,

lidars, camera systems and also wireless communications,

driver assistance systems autonomous vehicles have made

significant advances in recent years. The main requirements

that are imposed to autonomous vehicles are ability to cover

long distances in a safer way, while decreasing the rate of

accidents and traffic jams, and obeying the traffic rules, all

without human interaction. There are 10 trillion automobile

miles driven each year worldwide, with complex and novel

conditions generating millions of situations in which

autonomous vehicles face failure.

Highly intelligent autonomous systems in vehicle are required

to take into account a broader range of information about the

current road situation and the car itself on the same way as a

human driver would process information. For enabling

autonomous vehicles to handle adverse driving conditions,

such as rain and wet roads, the control algorithm must be able

to recognize roads within a tolerable margin of error, using

measuring instruments, such as cameras and laser sensors.

Autonomous vehicles must quickly make decisions based on

incomplete information in situations that programmers often

will not have considered, using ethics that must be encoded all

too literally in software .

 This paper attempts to provide a Autonomous driving

system for an virtual environment. We are using two virtual

environment for training and developing the autonomous

system. The first one is an photo-realistic virtual simulator

provided by Microsoft named ‘Airsim’ , as for now while

while developing this project Airsim doesn’t have signal

system implemented yet, so instead of airsim simulator we are

also developing our own simple simulator with signal system

using Unity Game Engine.

Using such simulators it is now possible to collect a large

amount of data to train autonomous driving models without

having to use an actual car. These models can then be fine-

tuned using a comparably lesser amount of real-world data and

used on actual cars. This technique is called Behavioral

Cloning. In this tutorial, we are training a model to learn how

to steer a car through a portion of the Landscape map in these

simulators using only one of the front facing webcams on the

car as visual input and four distance measuring sensor. Our

strategy, is to train an end-to-end deep learning model to

predict the correct driving control signal (in this case the

steering angle) given a frame from the webcam, and the car's

current state parameters (speed, steering angle, throttle,

distance senor readings etc.).

 In the initial part of the paper, we will know about other

relevant projects and then understand the process of

developing/using virtual environment for training and testing

self-driving car model. In the later part of the paper, we would

discuss more about our how our model is actually being trained

and evaluated. We would present the steps that would be used

by our system. And the details of concepts which would be

used.

II. BACKGROUND & RELATED WORK

 After studying the various available autonomous driving

systems we aim to execute our proposed system. In order to do

that we studied various papers based on the same to understand

different concepts adopted in each one of them.

Nvidia Developers [1] have empirically demonstrated that

CNNs are able to learn the entire task of lane and road

following without manual decomposition into road or lane

marking detection, semantic abstraction, path planning, and

control. A small amount of training data from less than a

hundred hours of driving was sufficient to train the car to

operate in diverse conditions, on highways, local and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS090131
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 09, September-2020

814

www.ijert.org
www.ijert.org
www.ijert.org

residential roads in sunny, cloudy, and rainy conditions. The

CNN is able to learn meaningful road features from a very

sparse training signal (steering alone).

Zheng Wang [2] Modified a RC car to handle three tasks: self-

driving on the track, stop sign and traffic light detection, and

front collision avoidance. His system consisted of three

subsystems: input unit (camera, ultrasonic sensor), processing

unit (computer) and RC car control unit. The camera was

connected to Raspberry Pi which sent data back Processing

Unit via TCP server, the on-processing side Neural networks

are used to predict next move of the car.

There are 38,400 (320×120) nodes in the input layer and 32

nodes in the hidden layer and 4 nodes in output layer. The

number of nodes in the hidden layer is chosen fairly arbitrary.

There are four nodes in the output layer where each node

corresponds to the steering control instructions: left, right,

forward and reverse respectively i.e. the possible moves for

car.

The system also had object detection feature which detected

stop sign and red signal. This project adapted the shape-based

approach and used Haar feature-based cascade classifiers for

object detection. Since each object requires its own classifier

and follows the same process in training and detection, this

project only focused on stop sign and traffic light detection.

“How to Train Your Self Driving Car Using Deep Learning”

by

Towardsdatascience.com [5] demonstrates method on how to

Train an end-to-end deep learning model that would let a car

drive by itself around the track in a driving simulator. It is a

supervised regression problem between the car steering angles

and the road images in real-time from the cameras of a car. In

this project, Udacity driving simulator has been used which has

two different tracks. One of them was used for collecting

training data, and the other one — never seen by the model —

as a substitute for the test set. This project was also inspired

from [1] Nvidia’s End-to-End learning Deep learning for self-

driving cars.

“3D Modelling and Visualization based on the Unity game

engine – Advantages and Challenges”. [7] The paper has been

organized with a brief introduction on 3D GIS modelling

standards, description of project area and Unity3D game

engine as project implementation platform.

III. PROPOSED SYSTEM (IMPLEMENTATION)

The diagram below shows the overall flow of how the system

is going to work.

The system mainly consists of two parts:

1. Unity Environment

2. Python Module (Server)

We can manually drive the car in the simulated environment

to collect the required data that is stored in the local folder. On

training the model on collected data it can be tested using the

python module. The system is based on Client-Server

architecture where the python module act as server and the

virtual car act as a client.

In autonomous driving mode, virtual camera images along

with sensor data are transferred to the server. Using the

received data, the model predicts the corresponding steering

angle and acceleration to be applied which is transferred to the

virtual car controller.

A. Simulator / Virtual Environment

For generating data we first need to setup a virtual

environment, we are making use of 2 virtual simulator

1) AirSim Simulator

Fig.1.AirSim Simulator

AirSim (Aerial Informatics and Robotics Simulation) is an

open-source, cross platform simulator for drones, ground

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS090131
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 09, September-2020

815

www.ijert.org
www.ijert.org
www.ijert.org

vehicles such as cars and various other objects, built on Epic

Games' Unreal Engine 4 as a platform for AI research.

There are two ways you can generate training data from

AirSim for deep learning. The easiest way is to simply press

the record button provided in the lower right corner. This will

start writing pose and images for each frame. The data logging

code was modified to get data as per our training model

requirement.

2) Developing simulator in Unity 3D

We used the unity game engine to develop a simple 3d

simulator environment, which consists of roads and signal

systems. The environment is developed using Road Architect.

Road architect is a professional quality road system creator

featuring dynamic intersections, bridges and many other road

objects. The various road objects help to train the neural model

with different environmental conditions. This includes roads,

bridges, stop-signals, speed-limit signals, etc.

The simulated autonomous car is attached with a virtual

camera that helps to collect images required for training the

CNN model. As images do not provide enough information

about the exact distances of the objects it is necessary to have

sensors that directly provides such distances. Such sensors are

implemented using Unity’s ‘Raycast’ property. It continuously

sends rays from a given point in specific direction. The length

of such rays is used and stored as the distance of the objects

from the car.

Fig.2. Unity Game Engine

The environment also includes various other cars running at

different speeds.

IV. DATASET COLLECTION

 The main part of creating a more precise Neural Network

Model begins with the collecting of relevant data. Our Untity

Simulator has more precisely two modes, one is the Training

Mode and the other is the Evaluation Mode.

The dataset collection takes place in the Training Mode. There

are three cameras mounted in front of our car in Unity. The

location of these cameras are front left, front center and front

right to more precisely capture the surrounding environment.

In order to collect the dataset, we manually drive the car in the

Training Mode. In Training Mode, the simulator captures the

images from the three front cameras and stores it in a database.

The corresponding human action pertaining to every frame is

also captured by the simulator which is stored in an Excel file.

As a result the dataset required to train a Neural Network

Model is collected, wherein the input to the model will be the

input frame image and the output will be the steering angle.

The images captured by the three front cameras are as follows:-

Fig.3. Front Left Camera View

Fig.4. Front Center Camera View

Fig.5. Front Right Camera View

The corresponding steering angle, throttle,

deacceleration (reverse) and the current speed recorded

pertaining to the input images which is stored in the Excel file

is as follows:-

Fig.6. Recorded Data Table

 We collected around 20,000 images by driving the car for

around 20 minutes. We tried to capture various different

scenarios by driving the car in different ways so as to have a

robust dataset.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS090131
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 09, September-2020

816

www.ijert.org
www.ijert.org
www.ijert.org

The sensor data helps to determine the acceleration to be

applied. Currently the car consists of front sensors (Unity

Raycast) attached to it. The length of the sensor is stored in

CSV file along with the corresponding acceleration of the car

at a given point in time. We can attach multiple sensors to car

at various positions. The collected data is used to train the deep

neural network.

Fig.7. Sensors in Unity Game Engine

Fig.8. Recorded data from Unity Game Environment

V. PREPROCESSING

We applied various preprocessing techniques on the dataset

collected to make the model training task easier. Our main task

was to predict the steering angle, so it was important for us to

have an equal balance of left steering angle as well as right

steering angle, so as to avoid making the model biased in

favoring the outputs in a particular direction. As a result we

wrote a python script, which sets a threshold and selects left

steering and right steering angle images in equal proportion.

The histogram depicting the steering angle and frequency of

images with respect to that steering angle in our training

dataset is as follows:-

Fig.9 Steering Angle Distribution

In the above histogram, x-axis represents the steering angle

wherein negative values denote left steering angle and positive

values denote right steering angle. The y-axis represents the

frequency of images with respect to a particular steering angle.

We can see the proportion of steering angle in both the

direction is almost the same. Moreover, we decided to keep

steering angle of majority of the images in our training dataset

close to zero. The main reason to do so was to make the model

learn to drive straight, as in an ideal drive, majority of the

driving takes place on a straight road as compared to the

number of turns the car takes.

We also used various image augmentation techniques like

image flipping, random zooming, altering the brightness

intensities, on the dataset collected. The main reason for doing

this was to make a versatile model which would be more robust

to any changes in the environment. Few of the data augmented

images used in the training is as follows:-

Fig.11.Augemented Images from dataset

The second image shows flipped representation of the original

first image. When the image is flipped, the corresponding

steering angle is reversed. The fourth image is the combination

of image flipping, image panning and brightness alteration

applied on the third image. These data augmenting techniques

helps the model more robust in predicting the output even after

slight changes in the input images. As a result, the model more

precisely learns the mapping of input images to its

corresponding steering angle.

VI. MODEL TRAINING

 The model architecture we chose is nearly identical to the

NVIDIA’s network for End-to-End Learning for Self Driving

Cars. Before feeding the input images to the model, we applied

some more preprocessing techniques to make the input images

appropriate as per the model requirements.

We first removed the top part and the bottom part (hood of the

car) of the image to get our region of interest. We then

converted the image from RGB to YUV format as the model

tends to learn faster in this format. We applied Gaussian Blur

with filter size of 3x3 and then resized the image to have shape

(66, 200, 3) which is the input requirement for the model. We

finally then normalized the input image pixels. One of the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS090131
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 09, September-2020

817

www.ijert.org
www.ijert.org
www.ijert.org

images after applying the preprocessing steps before feeding

to the model is as shown below:

Fig.12.YUV format Training image.

 Our model features 5 convolutional layers and 4 fully

connected layers which looks similar to the architecture as

shown below:-

Fig.13 CNN Model

Source: [1]

Abstract features from the images are captured by the

convolutional layers. These abstracted features are fed into the

fully-connected layers which serve as a steering controller.

We used ELU activation in both the convolutional layer and

fully-connected layer. We chose ELU over ReLU as our output

lies between -1 to 1 and ReLU gives 0 as output for negative

values which causes hinderance in models performance.

We used keras to build and train the model, which provided

quick and simple implementation. Our keras model summary

is as follows:-

Fig.14.Model Summary

The model was trained using Adam Optimizer with a learning

rate of 0.001. As our output was steering angle, we used mean

squared-error as the loss function. We used batch generator to

generate minibatches on the fly with a batch size of l00 and

taking 300 steps for epoch in training. For validation, we used

batch generator with a batch size of 100 taking 200 validation

steps.

We trained the model for 30 epochs. In total, the model was

trained on around 30,000 images per epoch. The following

graph shows the variation in the loss with respect to the epochs

in training as well as validation

Fig.15.Loss vs Epoch

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS090131
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 09, September-2020

818

www.ijert.org
www.ijert.org
www.ijert.org

VII. OBJECT DETECTION

We used YOLOv3 (You Only Look Once) [8] for object

Detection. YOLOv3 is an object detection algorithm which is

based on neural nets which can be used to detect objects in live

videos or static images, it is one of the fastest and accurate

object detection method to date. YOLOv3 can identify 80

different classes which also include person, bicycle, traffic

light, car, motorbike, stop sign, etc which are very useful in

self driving task. As a result, we used YOLOv3 in our

simulation, to mainly detect traffic lights, vehicle and

pedestrians and to take appropriate decisions based on the

detection while navigating the car.

At test time, the simulation sends the current captured frame to

the server. The Neural Network Model is run on this input

image to get the corresponding steering angle. Apart from that,

YOLOv3 is also run on the same image to detect objects in the

given image. Based on the output of detection, the

corresponding acceleration is determined.

Fig.16.Signal Detection using YOLO

In the above image, the yolo model detects the traffic light

with 73% probability. Using image processing, the color of

the traffic light is deciphered. If the color is red, the car is

deaccelerated so as to stop else if the color is green, the car is

accelerated. YOLOv3 can detect multiple objects in the

image as well

Fig.17.Object Detection

As in the above image, the YOLO model detects traffic light

as well as car and person

and thus appropriate decision is

taken.

VIII.

CONCLUSION

Simulator is the safest and cheapest way to test the autonomous

car prototype

before deploying it in real life environment.

Our

project provides such a flexible simulated environment. With

the help of CNN model, the car is able to drive on various road

conditions. It also successfully detected and classified various

road objects.

IX.

FUTURE

SCOPE

Simulators can further be used to create a much more realistic

environment, it can be used to simulate real life traffic

situations, complex road architectures, human driver errors etc.

This Simulations then can be used to train Autonomous driving

systems. Such models then can tested and then be incorporated

in real world cars.

X.

REFERENCES

[1]

End-to-End Deep Learning for Self-Driving Cars

By

Mariusz Bojarski,

Ben Firner,

Beat Flepp,

Larry Jackel,

Urs
Muller,

Karol Zieba

and

Davide Del Testa

–

Nvidia Developers

https://images.nvidia.com/content/tegra/automotive/images/2016/soluti
ons/pdf/end-to-end-dl-using-px.pdf

[2]

Self-Driving RC Car

–

Zheng Wang

https://zhengludwig.wordpress.com/projects/self-driving-rc-car/

[3]

Open source simulator for autonomous vehicles built on Unreal Engine
/ Unity, from Microsoft AI &
Research

https://microsoft.github.io/AirSim/.

[4]

Introduction to Udacity Self-Driving Car Simulator

https://medium.com/activating-robotic-minds/introduction-to-udacity-
self-driving-car-simulator-4d78198d301d

-Naoki Shibuya

[5]

How to Train Your Self Driving Car Using Deep Learning

https://towardsdatascience.com/how-to-train-your-self-driving-car-
using-deep-learning-ce8ff76119cb

[6]

http://neuralnetworksanddeeplearning.com/

By

Michael

Nielsen

/ Dec
2019

[E-book].

[7]

Ismail Buyuksaliha, Serdar Bayburta, Gurcan Buyuksaliha, A.P.
Baskaracaa, Hairi Karimb

and Alias Abdul Rahmanb

–

“ 3D Modelling
and Visualization based on the Unity game engine

–

Advantages

and

Challenges”,

ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Volume IV-4/W4, 2017 4th
International GeoAdvances

Workshop, 14–15 October 2017,
Safranbolu, Karabuk, Turkey.

[8]

YOLOv3: An Incremental Improvemnet

By Joseph Redmond, Ali Farhadi –

University of Washington

https://pjreddie.com/media/files/papers/YOLOv3.pdf

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS090131
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 09, September-2020

819

www.ijert.org
www.ijert.org
www.ijert.org

