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Abstract-Development of Autonomous driving system is 

now possible due to End-to-end deep learning, which is a 

modeling strategy that is a response to the success of deep 

neural networks. Unlike traditional methods, this strategy 

is not built on feature engineering. Instead, it leverages the 

power of deep neural networks, along with recent 

hardware advances ( like GPUs) to harness the incredible 

potential of large amounts of data. It is closer to a human-

like learning approach than traditional ML as it lets a 

neural network map raw input to direct output.  

Keywords— Autonomous Driving Systems, End-to-End 

Deep Learning, Neural Networks, Unity Game Engine, 
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I. INTRODUCTION 

Thanks to the availability of various sensors including radars, 

lidars, camera systems and also wireless communications, 

driver assistance systems autonomous vehicles have made 

significant advances in recent years. The main requirements 

that are imposed to autonomous vehicles are ability to cover 

long distances in a safer way, while decreasing the rate of 

accidents and traffic jams, and obeying the traffic rules, all 

without human interaction. There are 10 trillion automobile 

miles driven each year worldwide, with complex and novel 

conditions generating millions of situations in which 

autonomous vehicles face failure.  

Highly intelligent autonomous systems in vehicle are required 

to take into account a broader range of information about the 

current road situation and the car itself on the same way as a 

human driver would process information. For enabling 

autonomous vehicles to handle adverse driving conditions, 

such as rain and wet roads, the control algorithm must be able 

to recognize roads within a tolerable margin of error, using 

measuring instruments, such as cameras and laser sensors. 

Autonomous vehicles must quickly make decisions based on 

incomplete information in situations that programmers often 

will not have considered, using ethics that must be encoded all 

too literally in software . 

       This paper attempts to provide a Autonomous driving 

system for an virtual environment. We are using two virtual 

environment for training and developing the autonomous 

system. The first one is an photo-realistic virtual simulator 

provided by Microsoft named ‘Airsim’ , as for now while 

while developing this project Airsim doesn’t have signal 

system implemented yet, so instead of airsim simulator we are 

also developing our own simple simulator with signal system 

using Unity Game Engine.  

Using such simulators it is now possible to collect a large 

amount of data to train autonomous driving models without 

having to use an actual car. These models can then be fine-

tuned using a comparably lesser amount of real-world data and 

used on actual cars. This technique is called Behavioral 

Cloning. In this tutorial, we are training a model to learn how 

to steer a car through a portion of the Landscape map in these 

simulators using only one of the front facing webcams on the 

car as visual input and four distance measuring sensor. Our 

strategy, is to train an end-to-end deep learning model to 

predict the correct driving control signal (in this case the 

steering angle) given a frame from the webcam, and the car's 

current state parameters (speed, steering angle, throttle, 

distance senor readings etc.).   

       In the initial part of the paper, we will know about other 

relevant projects and then understand the process of 

developing/using virtual environment for training and testing 

self-driving car model. In the later part of the paper, we would 

discuss more about our how our model is actually being trained 

and evaluated. We would present the steps that would be used 

by our system. And the details of concepts which would be 

used. 

II. BACKGROUND & RELATED WORK 

     After studying the various available autonomous driving 

systems we aim to execute our proposed system. In order to do 

that we studied various papers based on the same to understand 

different concepts adopted in each one of them. 

 

Nvidia Developers [1] have empirically demonstrated that 

CNNs are able to learn the entire task of lane and road 

following without manual decomposition into road or lane 

marking detection, semantic abstraction, path planning, and 

control. A small amount of training data from less than a 

hundred hours of driving was sufficient to train the car to 

operate in diverse conditions, on highways, local and 
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residential roads in sunny, cloudy, and rainy conditions. The 

CNN is able to learn meaningful road features from a very 

sparse training signal (steering alone).        

 

Zheng Wang [2] Modified a RC car to handle three tasks: self-

driving on the track, stop sign and traffic light detection, and 

front collision avoidance. His system consisted of three 

subsystems: input unit (camera, ultrasonic sensor), processing 

unit (computer) and RC car control unit. The camera was 

connected to Raspberry Pi which sent data back Processing 

Unit via TCP server, the on-processing side Neural networks 

are used to predict next move of the car. 

 

There are 38,400 (320×120) nodes in the input layer and 32 

nodes in the hidden layer and 4 nodes in output layer. The 

number of nodes in the hidden layer is chosen fairly arbitrary. 

There are four nodes in the output layer where each node 

corresponds to the steering control instructions: left, right, 

forward and reverse respectively i.e. the possible moves for 

car. 

 

The system also had object detection feature which detected 

stop sign and red signal. This project adapted the shape-based 

approach and used Haar feature-based cascade classifiers for 

object detection. Since each object requires its own classifier 

and follows the same process in training and detection, this 

project only focused on stop sign and traffic light detection. 

 

“How to Train Your Self Driving Car Using Deep Learning” 

by 

Towardsdatascience.com [5] demonstrates method on how to 

Train an end-to-end deep learning model that would let a car 

drive by itself around the track in a driving simulator. It is a 

supervised regression problem between the car steering angles 

and the road images in real-time from the cameras of a car. In 

this project, Udacity driving simulator has been used which has 

two different tracks. One of them was used for collecting 

training data, and the other one — never seen by the model — 

as a substitute for the test set. This project was also inspired 

from [1] Nvidia’s End-to-End learning Deep learning for self-

driving cars.  

 

“3D Modelling and Visualization based on the Unity game 

engine – Advantages and Challenges”. [7] The paper has been 

organized with a brief introduction on 3D GIS modelling 

standards, description  of  project area  and Unity3D game  

engine  as  project  implementation  platform. 

  

III. PROPOSED SYSTEM (IMPLEMENTATION) 

 

The diagram below shows the overall flow of how the system 

is going to work. 

 

 
 

The system mainly consists of two parts: 

1. Unity Environment 

2. Python Module (Server) 

 

We can manually drive the car in the simulated environment 

to collect the required data that is stored in the local folder. On 

training the model on collected data it can be tested using the 

python module. The system is based on Client-Server 

architecture where the python module act as server and the 

virtual car act as a client. 

 

In autonomous driving mode, virtual camera images along 

with sensor data are transferred to the server. Using the 

received data, the model predicts the corresponding steering 

angle and acceleration to be applied which is transferred to the 

virtual car controller. 

 

A. Simulator / Virtual Environment 

For generating data we first need to setup a virtual 

environment, we are making use of 2 virtual simulator 

1) AirSim Simulator  

 

 
Fig.1.AirSim Simulator 

AirSim (Aerial Informatics and Robotics Simulation) is an 

open-source, cross platform simulator for drones, ground 
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vehicles such as cars and various other objects, built on Epic 

Games' Unreal Engine 4 as a platform for AI research. 

 

There are two ways you can generate training data from 

AirSim for deep learning. The easiest way is to simply press 

the record button provided in the lower right corner. This will 

start writing pose and images for each frame. The data logging 

code was modified to get data as per our training model 

requirement. 

 

2) Developing simulator in Unity 3D 

We used the unity game engine to develop a simple 3d 

simulator environment, which consists of roads and signal 

systems. The environment is developed using Road Architect. 

Road architect is a professional quality road system creator 

featuring dynamic intersections, bridges and many other road 

objects. The various road objects help to train the neural model 

with different environmental conditions. This includes roads, 

bridges, stop-signals, speed-limit signals, etc. 

 

The simulated autonomous car is attached with a virtual 

camera that helps to collect images required for training the 

CNN model. As images do not provide enough information 

about the exact distances of the objects it is necessary to have 

sensors that directly provides such distances. Such sensors are 

implemented using Unity’s ‘Raycast’ property. It continuously 

sends rays from a given point in specific direction. The length 

of such rays is used and stored as the distance of the objects 

from the car. 

 

 
Fig.2. Unity Game Engine 

 

The environment also includes various other cars running at 

different speeds. 

IV. DATASET COLLECTION 

       The main part of creating a more precise Neural Network 

Model begins with the collecting of relevant data. Our Untity 

Simulator has more precisely two modes, one is the Training 

Mode and the other is the Evaluation Mode.  

 

The dataset collection takes place in the Training Mode. There 

are three cameras mounted in front of our car in Unity. The 

location of these cameras are front left, front center and front 

right to more precisely capture the surrounding environment. 

In order to collect the dataset, we manually drive the car in the 

Training Mode. In Training Mode, the simulator captures the 

images from the three front cameras and stores it in a database. 

The corresponding human action pertaining to every frame is 

also captured by the simulator which is stored in an Excel file.  

 

As a result the dataset required to train a Neural Network 

Model is collected, wherein the input to the model will be the 

input frame image and the output will be the steering angle. 

The images captured by the three front cameras are as follows:- 

 
Fig.3. Front Left Camera View 

 
Fig.4. Front Center Camera View 

 
Fig.5. Front Right Camera View 

 

The corresponding steering angle, throttle, 

deacceleration (reverse) and the current speed recorded 

pertaining to the input images which is stored in the Excel file  

is as follows:- 

 
Fig.6. Recorded Data Table 

 

 We collected around 20,000 images by driving the car for 

around 20 minutes. We tried to capture various different 

scenarios by driving the car in different ways so as to have a 

robust dataset.  
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The sensor data helps to determine the acceleration to be 

applied. Currently the car consists of front sensors (Unity 

Raycast) attached to it. The length of the sensor is stored in 

CSV file along with the corresponding acceleration of the car 

at a given point in time.  We can attach multiple sensors to car 

at various positions. The collected data is used to train the deep 

neural network. 

 

 
Fig.7. Sensors in Unity Game Engine 

 

 
Fig.8. Recorded data from Unity Game Environment 

V. PREPROCESSING  

We applied various preprocessing techniques on the dataset 

collected to make the model training task easier. Our main task 

was to predict the steering angle, so it was important for us to 

have an equal balance of left steering angle as well as right 

steering angle, so as to avoid making the model biased in 

favoring the outputs in a particular direction. As a result we 

wrote a python script, which sets a threshold and selects left 

steering and right steering angle images in equal proportion. 

The histogram depicting the steering angle and frequency of 

images with respect to that steering angle in our training 

dataset is as follows:- 

 
Fig.9 Steering Angle Distribution 

 

In the above histogram, x-axis represents the steering angle 

wherein negative values denote left steering angle and positive 

values denote right steering angle. The y-axis represents the 

frequency of images with respect to a particular steering angle. 

We can see the proportion of steering angle in both the 

direction is almost the same. Moreover, we decided to keep 

steering angle of majority of the images in our training dataset 

close to zero. The main reason to do so was to make the model 

learn to drive straight, as in an ideal drive, majority of the 

driving takes place on a straight road as compared to the 

number of turns the car takes.  

We also used various image augmentation techniques like 

image flipping, random zooming, altering the brightness 

intensities, on the dataset collected. The main reason for doing 

this was to make a versatile model which would be more robust 

to any changes in the environment. Few of the data augmented 

images used in the training is as follows:- 

 
Fig.11.Augemented Images from dataset 

 

The second image shows flipped representation of the original 

first image. When the image is flipped, the corresponding 

steering angle is reversed. The fourth image is the combination 

of image flipping, image panning and brightness alteration 

applied on the third image. These data augmenting techniques 

helps the model more robust in predicting the output even after 

slight changes in the input images. As a result, the model more 

precisely learns the mapping of input images to its 

corresponding steering angle.  

 

VI. MODEL TRAINING 

       The model architecture we chose is nearly identical to the 

NVIDIA’s network for End-to-End Learning for Self Driving 

Cars.  Before feeding the input images to the model, we applied 

some more preprocessing techniques to make the input images 

appropriate as per the model requirements.  

 

We first removed the top part and the bottom part (hood of the 

car) of the image to get our region of interest. We then 

converted the image from RGB to YUV format as the model 

tends to learn faster in this format. We applied Gaussian Blur 

with filter size of 3x3  and then resized the image to have shape 

(66, 200, 3) which is the input requirement for the model. We 

finally then normalized the input image pixels. One of the 
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images after applying the preprocessing steps before feeding 

to the model is as shown below:  

 

 
Fig.12.YUV format Training image. 

 

   Our model features 5 convolutional layers and 4 fully 

connected layers which looks similar to the architecture as 

shown below:- 

 

 
Fig.13 CNN Model 

 

Source: [1] 

 

Abstract features from the images are captured by the 

convolutional layers. These abstracted features are fed into the 

fully-connected layers which serve as a steering controller.  

 

We used ELU activation in both the convolutional layer and 

fully-connected layer. We chose ELU over ReLU as our output 

lies between -1 to 1 and ReLU gives 0 as output for negative 

values which causes hinderance in models performance. 

 

We used keras to build and train the model, which provided 

quick and simple implementation. Our keras model summary 

is as follows:- 

 

 
Fig.14.Model Summary 

 

The model was trained using Adam Optimizer with a learning 

rate of 0.001. As our output was steering angle, we used mean 

squared-error as the loss function. We used batch generator to 

generate minibatches on the fly with a batch size of l00 and 

taking 300 steps for epoch in training. For validation, we used 

batch generator with a batch size of 100 taking 200 validation 

steps.  

 

We trained the model for 30 epochs. In total, the model was 

trained on around 30,000 images per epoch. The following 

graph shows the variation in the loss with respect to the epochs 

in training as well as validation 

 

 
Fig.15.Loss vs Epoch  
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VII. OBJECT DETECTION 

We used YOLOv3 (You Only Look Once) [8] for object 

Detection. YOLOv3 is an object detection algorithm which is 

based on neural nets which can be used to detect objects in live 

videos or static images, it is one of the fastest and accurate 

object detection method to date. YOLOv3 can identify 80 

different classes which also include person, bicycle, traffic 

light, car, motorbike, stop sign, etc which are very useful in 

self driving task. As a result, we used YOLOv3 in our 

simulation, to mainly detect traffic lights, vehicle and 

pedestrians and to take appropriate decisions based on the 

detection while navigating the car.  

 

At test time, the simulation sends the current captured frame to 

the server. The Neural Network Model is run on this input 

image to get the corresponding steering angle. Apart from that, 

YOLOv3 is also run on the same image to detect objects in the 

given image. Based on the output of detection, the 

corresponding acceleration is determined.  

 

 
 

Fig.16.Signal Detection using YOLO 

 

In the above image, the yolo model detects the traffic light 

with 73% probability. Using image processing, the color of 

the traffic light is deciphered. If the color is red, the car is 

deaccelerated so as to stop else if the color is green, the car is 

accelerated. YOLOv3 can detect multiple objects in the 

image as well 

 

 

Fig.17.Object Detection

 

 

 

As in the above image, the YOLO model detects traffic light 

as well as car and person

 

and thus appropriate decision is 

taken. 

 

VIII.

 

CONCLUSION

 

Simulator is the safest and cheapest way to test the autonomous 

car prototype

 

before deploying it in real life environment.

 

Our 

project provides such a flexible simulated environment. With 

the help of CNN model, the car is able to drive on various road 

conditions. It also successfully detected and classified various 

road objects. 

 

 

IX.

 

FUTURE

 

SCOPE

 

Simulators can further be used to create a much more realistic 

environment, it can be used to simulate real life traffic 

situations, complex road architectures, human driver errors etc. 

This Simulations then can be used to train Autonomous driving 

systems. Such models then can tested and then be incorporated 

in real world cars.
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