

Fig 4.2 Block Diagram For Receiver Section

OVER ALL CIRCUIT DIAGRAM

ARDUINO ATMEGE 328

The Atmel picoPower ATmega328/P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328/P achieves throughputs close to 1MIPS per MHz. This empowers system designer to optimize the device for power consumption versus processing speed.

PRESSURE SENSOR BMP180

Fig 6.2 Pressure Sensor BMP 180

This precision sensor from Bosch is the best low-cost sensing solution for measuring barometric pressure and temperature. Because pressure changes with altitude you can also use it as an altimeter! The sensor is soldered onto a PCB with a 3.3V regulator, I2C level shifter and pull-up resistors on the I2C pins.

The BMP180 is the next-generation of sensors from Bosch, and replaces the BMP085. The good news is that it is completely identical to the BMP085 in terms of firmware/software/interfacing - you can use our BMP085 tutorial and any example code/libraries as a drop-in replacement. This board is 5V compliant - a 3.3V regulator and a i2c level shifter circuit is included so you can use this sensor safely with 5V logic and power. Using the sensor is easy. For example, if you're using an Arduino, simply connect

TEMPERATURESENSOR DHT11

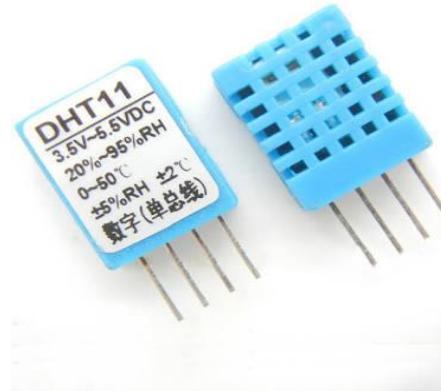


Fig 6.3 Temperature Sensor DHT11

The DHT11 Temperature& Humidity Sensor features a temperature& humidity sensor complex with a calibrated digital signal output. By using the exclusive digital-signal-acquisition technique and temperature & humidity sensing technology, it ensures high reliability and excellent long-term stability.

This sensor includes a resistive-type humidity measurement component and an NTC temperature measurement component, and connects to a high performance 8-bit microcontroller, offering excellent quality, fast response, anti-interference ability and cost-effectiveness.

Each DHT11 sensor is strictly calibrated in the laboratory that is extremely accurate on humidity calibration. The calibration coefficients are stored as programs in the OTP memory, which are used by the sensor's internal signal detecting process.

ULTRASONIC SENSOR HC-SR04

Fig 6.4 Ultrasonic Sensor HC-SR04

A ultrasonic sensor are used to accurate measure tha distance length so it is used in bike fuel level condition, that sensor fixed in inside body of fuel tank.

A sensor are product to sound in the tank. In sound of reflected to measured the fuel distance level

Its working is quite simple, as discussed above, it has a trigger and an echo pin. A signal of +5V is sent over to Trigger pin for around 10 microseconds in order to trigger the sensor.

LCD DISPLAY 16×2

Fig 6.5 LCD Display 16×2

Alphanumeric displays are used in a wide range of applications, including palmtop computers, word processors, photocopiers, point of sale terminals, medical instruments, cellular phones, etc.

The 16 x 2 intelligent alphanumeric dot matrix display is capable of displaying 224 different characters and symbols. A full list of the characters and symbols is printed on pages 7/8 (note these symbols can vary between brand of LCD used).

This booklet provides all the technical specifications for connecting the unit, which requires a single power supply (+5V).

OUTPUT

The output is display in LCD display from sensors, they are engine temperature level, tyre pressure level and fuel distance level

CONCLUSION

Better accuracy on fuel status and air status and temperature of the vehicle. The proposed idea which consists of load cell based fuel measurement system that acquire the measured fuel level and send to the display unit which is present on the dash board. This system utilizes the techniques to provide a solution that analyze the measurement of the real-time tyre pressure.

REFERENCES

- [1] Avinash D. Kale, Shubhada S. Thakare, Dr. D. S. Chaudhari, Wireless Tire Pressure Monitoring System for Vehicles using SPI Protocol, International Journal of Advanced Research in Computer Engineering & Technology Volume 1, Issue 4, 89-91, June 2012.
- [2] Stephan van Zyl, Sam van Goethem, StratisKanarachos, Martin Rexeis, Stefan Hausberger, Richard Smokers, Study on Tyre Pressure Monitoring Systems, TNO-060-DTM-2013-02025, 29 July 2013.
- [3] Montgomery, K, Chiang, K, "A New Paradigm for Integrated Environmental Monitoring", ACM International Conference Proceeding Series, 2010.
- [4] Mazidi, Muhammad Ali, 8051 Microcontroller and Embedded Systems, The (1st Edition)1999, Prentice Hall
- [5] K. J. Ayala, 8051 Microcontroller, Architecture, Programming & Applications, Second Edition, Penram International Publishing (India), Mumbai, 1998.