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 Abstract 

The templates provide readers easy access to the 

contents guided by consistent structures.  Thus, 

template detection techniques have received a lot of 

attention recently to improve the performance of 

search engines, clustering, and classification of web 

documents. In this paper, we present novel 

algorithms for detecting and extracting templates 

from a large number of web documents which are 

generated from heterogeneous templates. We cluster 

the web documents based on the similarity of 

underlying template structures in the documents so 

that the template for each cluster is extracted 

simultaneously. We develop a novel goodness 

measure with its fast approximation for clustering 

and provide comprehensive analysis of our 

algorithm. Our experimental results with real-life 

data sets confirm the effectiveness and robustness of 

our algorithm compared to the state of the art for 

template detection algorithms.  

Keywords: Automatic Template Detection, Content 

Extraction, Clustering, M.D.L Cost. 

1. Introduction 

World Wide Web is the most useful source of 

information. In order to achieve high productivity of 

publishing, the web pages in many websites are 

automatically populated by using the common 

templates with contents. The templates provide 

readers easy access to the contents guided by 

consistent structures. However,  

for machines, the templates are considered harmful 

since they degrade the accuracy and performance of 

web applications due to irrelevant terms in templates. 

Thus, template detection techniques have received a 

lot of attention recently to improve the performance  

 

 

 

 

of search engines, clustering, and classification of 

web documents template material is common content 

or formatting that appears on multiple pages of a site. 

Almost all pages on the web today contain template 

material to a greater or lesser extent. Common 

examples include navigation sidebars containing 

links along the left or right side of the page; corporate 

logos that appear in a uniform location on all pages; 

standard background colors or styles; headers or 

dropdown menus along the top with links to products, 

locations, and contact information; banner 

advertisements; and footers containing links to 

homepages or copyright information. The template 

mechanism is used to support many purposes, 

particularly navigation, presentation, and branding.  

 

2. Project Policy 

Search engines are often compared based on how 

much of the Web they index. For example, Google 

claims that they currently index 8 billion Web pages, 

while Yahoo states its index covers 20 billion pages. 

Unfortunately, comparing search engines based on 

the sheer number of indexed pages is often 

misleading because of the unbounded number of 

pages available on the Web. For example, consider a 

calendar page that is generated by a dynamic Web 

site. Since such a page often has a link to the “next-

day” or “next-month” page, a Web crawler1 can 

potentially download an unbounded number of pages 

from this single site by following an unbounded 

sequence of next-day links. Thus, 10 billion pages 

indexed by one search engine may not have as many 

“interesting”pages as 1 billion pages of another 

search engine if most of its pages came from a single 

dynamic Web site.  

The World Wide Web is a vast repository of 

information. The amount of data stored in electronic 
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databases accessible to users through search forms 

and dynamically generated Web pages, the so-called 

hidden Web, dwarfs the amount of information 

available on static Web pages. Unfortunately, most of 

this information is presented in a form accessible 

only to a human user, e.g., list or tables that visually 

lay out relational data. Although newer technologies, 

such as XML and the Semantic Web, address this 

problem directly, only a small fraction of the 

information on the Web is semantically labeled. The 

overwhelming majority of the available data has to be 

accessed in other ways. Web wrappers are popular 

tools for efficiently extracting information from Web 

pages. Much of the research in this area over the last 

decade has been concerned with quick and robust 

construction of Web wrappers, usually with the help 

of machine learning techniques. Because even the 

most advanced of such systems learn correct 

wrappers from examples provided by the user, the 

focus recently has been on minimizing the number of 

examples the user has to label, e.g., through active 

learning. Still, even when user effort is significantly 

reduced, the amount and the rate of growth of 

information on the Web will quickly overwhelm user 

resources. Maintaining wrappers so that they 

continue to extract information correctly as Web sites 

change requires significant effort, although some 

progress has been made on automating this task. 

Heuristic techniques that may work in one 

information domain are unlikely to work in another. 

A domain-independent, fully automatic solution that 

requires no user intervention is the Holy Grail of 

information extraction from the Web. Despite the 

inherent difficulty of the problem, there are general 

principles and algorithms that can be used to 

automatically extract data from structured web sites. 

In this project, we present new novel techniques that 

are applicable to a broad range of hidden Web 

sources. 

 

 
 

 

Fig.1 Sample Amazon Page 

 

Fig.2 Extracted data

3. Existing System 

Table Extraction from HTML Documents 

Existing approaches to extracting table data from 

Web documents can be classified as heuristic or 

machine learning. Heuristic approaches to detecting 

tables and record boundaries in Web documents 

include using the Document Object Model (DOM) 

and other features to identify tables. Domain-specific 

heuristic rules that rely on features such as percent 

signs and date/time formats have also been tried 

successfully.  

 

Table Extraction from Plain Text 

Automatic table extraction from plain text documents 

is a line of research parallel to the work on HTML 

table extraction. There are differences between plain 

text and HTML tables that make the two 

fundamentally different problems. Plain text 
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documents use white space and new line for the 

purpose of formatting tables: new lines are used to 

separate records and white spaces are used to 

separate columns, among other purposes. Record 

segmentation from plain text documents is, therefore, 

a much easier task. Closely linking format and 

content in plain text documents also gives rise to new 

challenges. In plain text tables, a long attribute value 

that may not fit in a table cell will be broken between 

two lines, creating a non-locality in a text stream. An 

automatic algorithm will have to associate part of a 

string with another string that will appear arbitrarily 

later in the text stream. This problem does not usually 

arise in HTML documents. On the other hand, 

HTML tables vary widely in their layout and 

formatting conventions, making it difficult to rely on 

any set of features to be good row or column 

separators. Although one may employ the same set of 

tools for extracting from HTML and plain text tables, 

specialized algorithms that address the conventions 

of each domain may outperform a general algorithm. 

 

DOM based algorithm 

This algorithm uses the DOM structure of the pages 

on a website by searching for nodes of the DOM tree 

that are repeated across multiple pages on the 

website. It is based on the work of Rajagopalan and 

Bar-Yossef and Yi and Liu, but contains 

simplifications from those techniques. Construction 

of the DOM tree for a page requires that the page first 

be cleaned. This is a substantial problem on the Web 

due to the diverse set of languages, authors, and 

tools; and also due to the excellent efforts of web 

browsers to render badly-formed HTML correctly. 

We modified an existing HTML parsing and cleaning 

library called HyParSuite to address this problem, 

maintaining offsets to nodes in the original unclean 

page so that the links and text inside and outside 

templates may be extracted later. The algorithm then 

operates in two passes. 

First pass: The first pass iterates over all the pages in 

the website and dumps information about all the 

DOM nodes in a page. This information consists of 

the hash of the content of the node (template-hash) 

and the start and end offsets into the original file. The 

template-hash is calculated using the HTML content 

within the node’s start and end tags and DOM node’s 

name, attributes, and their values. For example, 

consider the following HTML substructure: <td><a 

href=’...’>Click here</a> to visit ...</td> This 

structure consists of four HTML nodes. The topmost 

node is the <td> node. The template-hash of this node 

will be computed from the entire HTML string. The 

<a> tag is a child of the <td> node and its template-

hash will be calculated using the the contents 

between the <a> and </a> tags inclusive of the tags. 

Text nodes are constructed for stretches of text in 

HTML files and the above example consists of two 

text nodes. 

Thus the template-hash is a compressed 

representation of the HTML tag and its contents. 

Counting the number of times a template-hash is 

encountered in a website tells us the number of times 

a specific HTML node is seen. Hence, the first pass 

keeps track of the number of times each template 

hash has been seen in the website and passes this 

information to the second pass. 

Secondpass: The second pass then scans this 

information and computes a set of template-nodes for 

each page. A HTML node in a particular page is said 

to be a template node if the following conditions are 

met: first, the occurrence count of the node’s 

template-hash is within a specified threshold; and 

second, the node is not a child of any other template-

node. 

Sibling template nodes are then coalesced to produce 

the templates on a page. The coalescing process 

permits small gaps of changing content in the final 

templates produced. This is useful for templates with 

dynamic content, where small portions of the 

template content changes while the essential HTML 

and text structure remains the same. Parameter 

settings: The DOM-based algorithm is parameterized 

by the upper and lower thresholds on the number of 

occurrences of template-nodes. A lower-threshold 

value of 1 will cause the entire web page to be 

regarded as a single template, as the root of the page 

always occurs at least once. The upper-threshold 

parameter prevents the algorithm from detecting 

extremely small HTML constructs like <BR> as 

templates just because they are fairly common in 

HTML files. Other than removing small commonly 

occurring HTML nodes from consideration, the 

upper-threshold does not have significant impact on 

the quality of templates detected. 

 

Text based algorithm 

The text-based algorithm does not make use of 

HTML structural information. The page is pre-

processed to remove all HTML tags, comments, and 

text within <script> tags. The resulting detagged 

content is typically 2-3 times smaller than the 

original HTML. The algorithm operates henceforth 

on this representation. The algorithm detects 

templates using a two-pass sliding window controlled 

by four parameters: a window size W, a fragment 

frequency threshold F, a sampling density D, and a 

page sample size P. All are described below in more 

detail. 

First pass: In the first pass, P pages are sampled 

uniformly at random from the crawled pages of the 

site1 and a window of size W is slid over the text of 
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those pages. At each offset, a counter is incremented 

for the fragment contained in the window. Those 

fragments which occur at least F times in the sample 

are passed to the second pass. For efficiency, we 

introduce the sampling density parameter D in the 

first pass. A counter for a fragment is only kept if the 

hash of the fragment is zero modulo D. Thus, only 1 

in every D fragments will be considered, but the 

down sampling is performed such that if a certain 

fragment is counted on one page, it will be counted 

on all pages. Other down sampling mechanisms, such 

as retaining every Dth fragment, do not have this 

essential property. We choose D in order to increase 

the likelihood that after the filtering process 

concludes, consecutive fragments are contiguous. A 

coalescing process in the second pass ensures that the 

total volume of template text is counted correctly. A 

value of D = 0 in the experiments means all 

fragments are used. Second pass: In the second pass, 

each page is scanned for these frequent fragments, 

and overlapping or contiguous fragments are 

coalesced into a single template. At the end of the 

second pass, we have a set of template hashes which 

are either individual or coalesced fragments. These 

hashes are stored in a hash table, so that a new page 

can be broken into fragments and scanned quickly for 

templates. 

 

HTML Documents and Cluster Initialization 

 

The DOM defines a standard for accessing 

documents, like HTML and XML. The DOM 

presents an HTML document as a tree structure. The 

entire document is a document node, every HTML 

element is an element node, the texts in the HTML 

elements are text nodes, every HTML attribute is an 

attribute node, and comments are comment nodes. 

The support of a path is defined as the number of 

documents in D, which contain the path. For each 

document di, we provide a minimum support 

threshold tdi . If a path is contained by a document di 

and the support of the path is at least the given 

minimum support threshold tdi , the path is called an 

essential path of di. For a web document set D with 

its path set PD, we use matrix ME with 0/1 values to 

represent the documents with their essential paths. 

The value at a cell in the matrix ME is 1 if a path pi is 

an essential path of a document dj. Otherwise, it is 0. 

We next illustrate the representation of a clustering of 

web documents. Let us assume that we have m 

clusters for a web document set D. A cluster ci is 

denoted by Ti is a set of paths representing the 

template of ci and Di is a set of documents belonging 

to ci. In our clustering model, we allow a document 

to be included in a single cluster only.  

 

 

4. Proposed System 

 
Clustering With MDL Cost 

In this module we have clustering algorithm TEXT-

MDL. The input parameter is a set of documents D, 

where di is the ith document. The output result is a 

set of clusters C, where ci is a cluster represented by 

the template paths Ti and the member documents Di. 

A clustering model C is denoted by two matrices MT 

and MD and the goodness measure of the clustering 

C is the MDL cost. TEXT-MDL is an agglomerative 

hierarchical clustering algorithm which starts with 

each input document as an individual cluster. When a 

pair of clusters is merged, the MDL cost of the 

clustering model can be reduced or increased. The 

procedure GetBestPair finds a pair of clusters whose 

reduction of the MDL cost is maximal in each step of 

merging and the pair is repeatedly merged until any 

reduction is not possible. In order to calculate the 

MDL cost when each possible pair of clusters is 

merged, the procedure GetMDLCost(ci, cj, C), where 

ci and cj are a pair to be merged and C is the current 

clustering, is called in GetBestPair and C is updated 

by merging the best pair of clusters. GetBestPair 

should recalculate the MDL cost reduction of every 

pair at each iteration of while loop. We introduce an 

approximate MDL cost model and use MinHash to 

significantly reduce the time complexity. Get MDL 

Cost with the approximate entropy model.  

 

Estimation of MDL Cost with MinHash 

We will present how we can estimate the MDL cost 

of a clustering by MinHash not only to reduce the 

dimensions of documents but also to find quickly the 

best pair to be merged in the MinHash signature 

space. The Jaccard’s coefficient between two sets S1 

and S2 and the Min-Wise independent permutation is 

a well-known Monte Carlo technique that estimates 

the Jaccard’s coefficient by repeatedly assigning 

random ranks to the universal set and comparing the 

minimum values from the ranks of each set. Consider 

a set of random permutations on a universal set U and 

a set S1. Let P be the rank of rj in a permutation and 

is called minwise independent if we have for every 

set S1 and every S2. Then, for any sets S1, S2 MDL 

cost estimation by MinHash. Now we present the 

procedure GetHashMDLCost. Note that we estimate 

the MDL cost, but do not generate the template paths 

of each cluster. Thus, Tk of ck is initialized as the 

empty set. Instead of the template paths, the signature 

of ck is maintained to estimate the MDL cost. After 

finishing clustering, a postprocessing is needed to get 

the actual template paths. We refer to the processing 

as the template path generation step. 
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Clustering with MinHash 

When we merge clusters hierarchically, we select two 

clusters which maximize the reduction of the MDL 

cost by merging them. Given a cluster ci, if a cluster 

cj maximizes the reduction of the MDL cost, we call 

cj the nearest cluster of ci. In order to efficiently find 

the nearest cluster of ci, we use the heuristic, we can 

reduce the search space to find the nearest cluster of a 

cluster ci. The previous search space to find the 

nearest cluster of ci was the same as the number of 

current clusters. But, the search space becomes the 

number of clusters whose Jaccard’s coefficient with 

ci is maximal. The Jaccard’s coefficient can be 

estimated with the signatures of MinHash and 

clusters whose Jaccard’s coefficient with ci is 

maximal can be directly accessed in the signature 

space. we provide the procedures to find the best pair 

using MinHash. In TEXT-MDL, the GetBestPair is 

replaced by GetInitBestPair and the GetBestPair is 

replaced by GetHashBestPair. In GetInitBestPair, we 

first merge clusters with the same signature of 

MinHash. Next, for each cluster ci, we get clusters 

with the maximal Jaccard’s coefficient estimated by 

the signatures of MinHash and compute the MDL 

cost of each pair. In GetHashBestPair, the steps are 

similar to those in GetInitBestPair. 

 

Algorithms: 

Algorithm 1: HTML Cluster Initialization 

Step 1: Input HTML or XML documents 

Step 2: Retrieve document node from every HTML 

page. 

Step 3: Retrieve texts nodes from the HTML pages 

Step4: Compute support of a path as number of      

documents, which contain the path 

Step 5: Input minimum support threshold 

Step 6: Compute clustering of web documents 

 

Algorithm 2: Clustering MDLCost 

Step 1: Input set of documents D 

Step 2: Create two matrices MT and MD 

Step 3: Merge pair of clusters and compute MDL cost 

of the clustering 

Step 4: Compute GetBestPair to finds a pair of 

clusters 

Step 5: Iteratively check for reduction by repeatedly 

merging 

 

 Algorithm 3:  MDLCostMinHash 

Step 1: Input the clustering Matrix 

Step 2: Reduce dimensions of documents to find best 

pair to be merged 

Step 3: Compute Jaccard’s coefficient by repeatedly 

assigning random ranks 

Step 4: Compute GetHashMDLCost  

Step 5: Apply post processing to get the actual 

template paths. 

 

 

Algorithm 4: ClusteringMinHash 

Step 1: Select two clusters which maximize the 

reduction of the MDL cost 

Step 2: Reduce the search space to find the nearest 

cluster 

Step 3: Check Jaccard’s coefficient is maximal 

Step 4: Merge clusters with the same signature of 

MinHash 

Step 5: Compute the MDL cost of each pair 

 

5. Conclusion 

Searching for information about people in the web is 

one of the most common activities of internet users. 

Around 30 percent of search engine queries include 

person names. However, retrieving information about 

people from web search engines can become difficult 

when a person has nicknames or name aliases. For 

example, the famous Japanese major league baseball 

player Hideki Matsui is often called as Godzilla on 

the web. A newspaper article on the baseball player 

might use the real name, Hideki Matsui, whereas a 

blogger would use the alias, Godzilla, in a blog entry. 

We will not be able to retrieve all the information 

about the baseball player, if we only use his real 

name. Identification of entities on the web is difficult 

for two fundamental reasons: first, different entities 

can share the same name (i.e., lexical ambiguity); 

second, a single entity can be designated by multiple 

names (i.e., referential ambiguity). For example, the 

lexical ambiguity considers the name Jim Clark. 

Aside from the two most popular namesakes, the 

formula-one racing champion and the founder of 

Netscape, at least 10 different people are listed 

among the top 100 results returned by Google for the 

name. On the other hand, referential ambiguity 

occurs because people use different names to refer to 

the same entity on the web. 

 

6. Future Work 
We propose as future work a lexical-pattern-based 

approach to extract aliases of a given name. We use a 

set of names and their aliases as training data to 

extract lexical patterns that describe numerous ways 

in which information related to aliases of a name is 
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presented on the web. Next, we substitute the real 

name of the person that we are interested in finding 

aliases in the extracted lexical patterns, and download 

snippets from a web search engine. We extract a set 

of candidate aliases from the snippets. The candidates 

are ranked using various ranking scores computed 

using three approaches: lexical pattern frequency, co-

occurrences in anchor texts, and page counts-based 

association measures. Moreover, we integrate the 

different ranking scores to construct a single ranking 

function using ranking support vector machines. We 

evaluate the proposed method using three data sets: 

an English personal names data set, an English 

location names data set, and a Japanese personal 

names data set. The proposed method reported high 

MRR and AP scores on all three data sets and 

outperformed numerous baselines and a previously 

proposed alias extraction algorithm. Discounting co-

occurrences from hubs is important to filter the noise 

in co-occurrences in anchor texts. For this purpose, 

we proposed a simple and effective hub discounting 

measure. Moreover, the extracted aliases significantly 

improved recall in a relation detection task and 

render useful in a web search task. 
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