
AUTOMATIC TEMPLATE DETECTION USING NOVEL APPROACH

T.PRATHIBHA, B.SUKUMAR, A.SRIRAM

M.Tech Student, CSE Department, SSJ Engineering College, AP, India,

Assistant Professor, CSE Department, SSJ Engineering College, AP, India,

Assistant Professor, IT Department, ANURAG Group of Institution, AP, India.

 Abstract

The templates provide readers easy access to the

contents guided by consistent structures. Thus,

template detection techniques have received a lot of

attention recently to improve the performance of

search engines, clustering, and classification of web

documents. In this paper, we present novel

algorithms for detecting and extracting templates

from a large number of web documents which are

generated from heterogeneous templates. We cluster

the web documents based on the similarity of

underlying template structures in the documents so

that the template for each cluster is extracted

simultaneously. We develop a novel goodness

measure with its fast approximation for clustering

and provide comprehensive analysis of our

algorithm. Our experimental results with real-life

data sets confirm the effectiveness and robustness of

our algorithm compared to the state of the art for

template detection algorithms.

Keywords: Automatic Template Detection, Content

Extraction, Clustering, M.D.L Cost.

1. Introduction

World Wide Web is the most useful source of

information. In order to achieve high productivity of

publishing, the web pages in many websites are

automatically populated by using the common

templates with contents. The templates provide

readers easy access to the contents guided by

consistent structures. However,

for machines, the templates are considered harmful

since they degrade the accuracy and performance of

web applications due to irrelevant terms in templates.

Thus, template detection techniques have received a

lot of attention recently to improve the performance

of search engines, clustering, and classification of

web documents template material is common content

or formatting that appears on multiple pages of a site.

Almost all pages on the web today contain template

material to a greater or lesser extent. Common

examples include navigation sidebars containing

links along the left or right side of the page; corporate

logos that appear in a uniform location on all pages;

standard background colors or styles; headers or

dropdown menus along the top with links to products,

locations, and contact information; banner

advertisements; and footers containing links to

homepages or copyright information. The template

mechanism is used to support many purposes,

particularly navigation, presentation, and branding.

2. Project Policy

Search engines are often compared based on how

much of the Web they index. For example, Google

claims that they currently index 8 billion Web pages,

while Yahoo states its index covers 20 billion pages.

Unfortunately, comparing search engines based on

the sheer number of indexed pages is often

misleading because of the unbounded number of

pages available on the Web. For example, consider a

calendar page that is generated by a dynamic Web

site. Since such a page often has a link to the “next-

day” or “next-month” page, a Web crawler1 can

potentially download an unbounded number of pages

from this single site by following an unbounded

sequence of next-day links. Thus, 10 billion pages

indexed by one search engine may not have as many

“interesting”pages as 1 billion pages of another

search engine if most of its pages came from a single

dynamic Web site.

The World Wide Web is a vast repository of

information. The amount of data stored in electronic

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

databases accessible to users through search forms

and dynamically generated Web pages, the so-called

hidden Web, dwarfs the amount of information

available on static Web pages. Unfortunately, most of

this information is presented in a form accessible

only to a human user, e.g., list or tables that visually

lay out relational data. Although newer technologies,

such as XML and the Semantic Web, address this

problem directly, only a small fraction of the

information on the Web is semantically labeled. The

overwhelming majority of the available data has to be

accessed in other ways. Web wrappers are popular

tools for efficiently extracting information from Web

pages. Much of the research in this area over the last

decade has been concerned with quick and robust

construction of Web wrappers, usually with the help

of machine learning techniques. Because even the

most advanced of such systems learn correct

wrappers from examples provided by the user, the

focus recently has been on minimizing the number of

examples the user has to label, e.g., through active

learning. Still, even when user effort is significantly

reduced, the amount and the rate of growth of

information on the Web will quickly overwhelm user

resources. Maintaining wrappers so that they

continue to extract information correctly as Web sites

change requires significant effort, although some

progress has been made on automating this task.

Heuristic techniques that may work in one

information domain are unlikely to work in another.

A domain-independent, fully automatic solution that

requires no user intervention is the Holy Grail of

information extraction from the Web. Despite the

inherent difficulty of the problem, there are general

principles and algorithms that can be used to

automatically extract data from structured web sites.

In this project, we present new novel techniques that

are applicable to a broad range of hidden Web

sources.

Fig.1 Sample Amazon Page

Fig.2 Extracted data

3. Existing System

Table Extraction from HTML Documents

Existing approaches to extracting table data from

Web documents can be classified as heuristic or

machine learning. Heuristic approaches to detecting

tables and record boundaries in Web documents

include using the Document Object Model (DOM)

and other features to identify tables. Domain-specific

heuristic rules that rely on features such as percent

signs and date/time formats have also been tried

successfully.

Table Extraction from Plain Text

Automatic table extraction from plain text documents

is a line of research parallel to the work on HTML

table extraction. There are differences between plain

text and HTML tables that make the two

fundamentally different problems. Plain text

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

documents use white space and new line for the

purpose of formatting tables: new lines are used to

separate records and white spaces are used to

separate columns, among other purposes. Record

segmentation from plain text documents is, therefore,

a much easier task. Closely linking format and

content in plain text documents also gives rise to new

challenges. In plain text tables, a long attribute value

that may not fit in a table cell will be broken between

two lines, creating a non-locality in a text stream. An

automatic algorithm will have to associate part of a

string with another string that will appear arbitrarily

later in the text stream. This problem does not usually

arise in HTML documents. On the other hand,

HTML tables vary widely in their layout and

formatting conventions, making it difficult to rely on

any set of features to be good row or column

separators. Although one may employ the same set of

tools for extracting from HTML and plain text tables,

specialized algorithms that address the conventions

of each domain may outperform a general algorithm.

DOM based algorithm

This algorithm uses the DOM structure of the pages

on a website by searching for nodes of the DOM tree

that are repeated across multiple pages on the

website. It is based on the work of Rajagopalan and

Bar-Yossef and Yi and Liu, but contains

simplifications from those techniques. Construction

of the DOM tree for a page requires that the page first

be cleaned. This is a substantial problem on the Web

due to the diverse set of languages, authors, and

tools; and also due to the excellent efforts of web

browsers to render badly-formed HTML correctly.

We modified an existing HTML parsing and cleaning

library called HyParSuite to address this problem,

maintaining offsets to nodes in the original unclean

page so that the links and text inside and outside

templates may be extracted later. The algorithm then

operates in two passes.

First pass: The first pass iterates over all the pages in

the website and dumps information about all the

DOM nodes in a page. This information consists of

the hash of the content of the node (template-hash)

and the start and end offsets into the original file. The

template-hash is calculated using the HTML content

within the node’s start and end tags and DOM node’s

name, attributes, and their values. For example,

consider the following HTML substructure: <td>Click here to visit ...</td> This

structure consists of four HTML nodes. The topmost

node is the <td> node. The template-hash of this node

will be computed from the entire HTML string. The

<a> tag is a child of the <td> node and its template-

hash will be calculated using the the contents

between the <a> and tags inclusive of the tags.

Text nodes are constructed for stretches of text in

HTML files and the above example consists of two

text nodes.

Thus the template-hash is a compressed

representation of the HTML tag and its contents.

Counting the number of times a template-hash is

encountered in a website tells us the number of times

a specific HTML node is seen. Hence, the first pass

keeps track of the number of times each template

hash has been seen in the website and passes this

information to the second pass.

Secondpass: The second pass then scans this

information and computes a set of template-nodes for

each page. A HTML node in a particular page is said

to be a template node if the following conditions are

met: first, the occurrence count of the node’s

template-hash is within a specified threshold; and

second, the node is not a child of any other template-

node.

Sibling template nodes are then coalesced to produce

the templates on a page. The coalescing process

permits small gaps of changing content in the final

templates produced. This is useful for templates with

dynamic content, where small portions of the

template content changes while the essential HTML

and text structure remains the same. Parameter

settings: The DOM-based algorithm is parameterized

by the upper and lower thresholds on the number of

occurrences of template-nodes. A lower-threshold

value of 1 will cause the entire web page to be

regarded as a single template, as the root of the page

always occurs at least once. The upper-threshold

parameter prevents the algorithm from detecting

extremely small HTML constructs like
 as

templates just because they are fairly common in

HTML files. Other than removing small commonly

occurring HTML nodes from consideration, the

upper-threshold does not have significant impact on

the quality of templates detected.

Text based algorithm

The text-based algorithm does not make use of

HTML structural information. The page is pre-

processed to remove all HTML tags, comments, and

text within <script> tags. The resulting detagged

content is typically 2-3 times smaller than the

original HTML. The algorithm operates henceforth

on this representation. The algorithm detects

templates using a two-pass sliding window controlled

by four parameters: a window size W, a fragment

frequency threshold F, a sampling density D, and a

page sample size P. All are described below in more

detail.

First pass: In the first pass, P pages are sampled

uniformly at random from the crawled pages of the

site1 and a window of size W is slid over the text of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

those pages. At each offset, a counter is incremented

for the fragment contained in the window. Those

fragments which occur at least F times in the sample

are passed to the second pass. For efficiency, we

introduce the sampling density parameter D in the

first pass. A counter for a fragment is only kept if the

hash of the fragment is zero modulo D. Thus, only 1

in every D fragments will be considered, but the

down sampling is performed such that if a certain

fragment is counted on one page, it will be counted

on all pages. Other down sampling mechanisms, such

as retaining every Dth fragment, do not have this

essential property. We choose D in order to increase

the likelihood that after the filtering process

concludes, consecutive fragments are contiguous. A

coalescing process in the second pass ensures that the

total volume of template text is counted correctly. A

value of D = 0 in the experiments means all

fragments are used. Second pass: In the second pass,

each page is scanned for these frequent fragments,

and overlapping or contiguous fragments are

coalesced into a single template. At the end of the

second pass, we have a set of template hashes which

are either individual or coalesced fragments. These

hashes are stored in a hash table, so that a new page

can be broken into fragments and scanned quickly for

templates.

HTML Documents and Cluster Initialization

The DOM defines a standard for accessing

documents, like HTML and XML. The DOM

presents an HTML document as a tree structure. The

entire document is a document node, every HTML

element is an element node, the texts in the HTML

elements are text nodes, every HTML attribute is an

attribute node, and comments are comment nodes.

The support of a path is defined as the number of

documents in D, which contain the path. For each

document di, we provide a minimum support

threshold tdi . If a path is contained by a document di

and the support of the path is at least the given

minimum support threshold tdi , the path is called an

essential path of di. For a web document set D with

its path set PD, we use matrix ME with 0/1 values to

represent the documents with their essential paths.

The value at a cell in the matrix ME is 1 if a path pi is

an essential path of a document dj. Otherwise, it is 0.

We next illustrate the representation of a clustering of

web documents. Let us assume that we have m

clusters for a web document set D. A cluster ci is

denoted by Ti is a set of paths representing the

template of ci and Di is a set of documents belonging

to ci. In our clustering model, we allow a document

to be included in a single cluster only.

4. Proposed System

Clustering With MDL Cost

In this module we have clustering algorithm TEXT-

MDL. The input parameter is a set of documents D,

where di is the ith document. The output result is a

set of clusters C, where ci is a cluster represented by

the template paths Ti and the member documents Di.

A clustering model C is denoted by two matrices MT

and MD and the goodness measure of the clustering

C is the MDL cost. TEXT-MDL is an agglomerative

hierarchical clustering algorithm which starts with

each input document as an individual cluster. When a

pair of clusters is merged, the MDL cost of the

clustering model can be reduced or increased. The

procedure GetBestPair finds a pair of clusters whose

reduction of the MDL cost is maximal in each step of

merging and the pair is repeatedly merged until any

reduction is not possible. In order to calculate the

MDL cost when each possible pair of clusters is

merged, the procedure GetMDLCost(ci, cj, C), where

ci and cj are a pair to be merged and C is the current

clustering, is called in GetBestPair and C is updated

by merging the best pair of clusters. GetBestPair

should recalculate the MDL cost reduction of every

pair at each iteration of while loop. We introduce an

approximate MDL cost model and use MinHash to

significantly reduce the time complexity. Get MDL

Cost with the approximate entropy model.

Estimation of MDL Cost with MinHash

We will present how we can estimate the MDL cost

of a clustering by MinHash not only to reduce the

dimensions of documents but also to find quickly the

best pair to be merged in the MinHash signature

space. The Jaccard’s coefficient between two sets S1

and S2 and the Min-Wise independent permutation is

a well-known Monte Carlo technique that estimates

the Jaccard’s coefficient by repeatedly assigning

random ranks to the universal set and comparing the

minimum values from the ranks of each set. Consider

a set of random permutations on a universal set U and

a set S1. Let P be the rank of rj in a permutation and

is called minwise independent if we have for every

set S1 and every S2. Then, for any sets S1, S2 MDL

cost estimation by MinHash. Now we present the

procedure GetHashMDLCost. Note that we estimate

the MDL cost, but do not generate the template paths

of each cluster. Thus, Tk of ck is initialized as the

empty set. Instead of the template paths, the signature

of ck is maintained to estimate the MDL cost. After

finishing clustering, a postprocessing is needed to get

the actual template paths. We refer to the processing

as the template path generation step.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

Clustering with MinHash

When we merge clusters hierarchically, we select two

clusters which maximize the reduction of the MDL

cost by merging them. Given a cluster ci, if a cluster

cj maximizes the reduction of the MDL cost, we call

cj the nearest cluster of ci. In order to efficiently find

the nearest cluster of ci, we use the heuristic, we can

reduce the search space to find the nearest cluster of a

cluster ci. The previous search space to find the

nearest cluster of ci was the same as the number of

current clusters. But, the search space becomes the

number of clusters whose Jaccard’s coefficient with

ci is maximal. The Jaccard’s coefficient can be

estimated with the signatures of MinHash and

clusters whose Jaccard’s coefficient with ci is

maximal can be directly accessed in the signature

space. we provide the procedures to find the best pair

using MinHash. In TEXT-MDL, the GetBestPair is

replaced by GetInitBestPair and the GetBestPair is

replaced by GetHashBestPair. In GetInitBestPair, we

first merge clusters with the same signature of

MinHash. Next, for each cluster ci, we get clusters

with the maximal Jaccard’s coefficient estimated by

the signatures of MinHash and compute the MDL

cost of each pair. In GetHashBestPair, the steps are

similar to those in GetInitBestPair.

Algorithms:

Algorithm 1: HTML Cluster Initialization

Step 1: Input HTML or XML documents

Step 2: Retrieve document node from every HTML

page.

Step 3: Retrieve texts nodes from the HTML pages

Step4: Compute support of a path as number of

documents, which contain the path

Step 5: Input minimum support threshold

Step 6: Compute clustering of web documents

Algorithm 2: Clustering MDLCost

Step 1: Input set of documents D

Step 2: Create two matrices MT and MD

Step 3: Merge pair of clusters and compute MDL cost

of the clustering

Step 4: Compute GetBestPair to finds a pair of

clusters

Step 5: Iteratively check for reduction by repeatedly

merging

 Algorithm 3: MDLCostMinHash

Step 1: Input the clustering Matrix

Step 2: Reduce dimensions of documents to find best

pair to be merged

Step 3: Compute Jaccard’s coefficient by repeatedly

assigning random ranks

Step 4: Compute GetHashMDLCost

Step 5: Apply post processing to get the actual

template paths.

Algorithm 4: ClusteringMinHash

Step 1: Select two clusters which maximize the

reduction of the MDL cost

Step 2: Reduce the search space to find the nearest

cluster

Step 3: Check Jaccard’s coefficient is maximal

Step 4: Merge clusters with the same signature of

MinHash

Step 5: Compute the MDL cost of each pair

5. Conclusion

Searching for information about people in the web is

one of the most common activities of internet users.

Around 30 percent of search engine queries include

person names. However, retrieving information about

people from web search engines can become difficult

when a person has nicknames or name aliases. For

example, the famous Japanese major league baseball

player Hideki Matsui is often called as Godzilla on

the web. A newspaper article on the baseball player

might use the real name, Hideki Matsui, whereas a

blogger would use the alias, Godzilla, in a blog entry.

We will not be able to retrieve all the information

about the baseball player, if we only use his real

name. Identification of entities on the web is difficult

for two fundamental reasons: first, different entities

can share the same name (i.e., lexical ambiguity);

second, a single entity can be designated by multiple

names (i.e., referential ambiguity). For example, the

lexical ambiguity considers the name Jim Clark.

Aside from the two most popular namesakes, the

formula-one racing champion and the founder of

Netscape, at least 10 different people are listed

among the top 100 results returned by Google for the

name. On the other hand, referential ambiguity

occurs because people use different names to refer to

the same entity on the web.

6. Future Work
We propose as future work a lexical-pattern-based

approach to extract aliases of a given name. We use a

set of names and their aliases as training data to

extract lexical patterns that describe numerous ways

in which information related to aliases of a name is

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org

presented on the web. Next, we substitute the real

name of the person that we are interested in finding

aliases in the extracted lexical patterns, and download

snippets from a web search engine. We extract a set

of candidate aliases from the snippets. The candidates

are ranked using various ranking scores computed

using three approaches: lexical pattern frequency, co-

occurrences in anchor texts, and page counts-based

association measures. Moreover, we integrate the

different ranking scores to construct a single ranking

function using ranking support vector machines. We

evaluate the proposed method using three data sets:

an English personal names data set, an English

location names data set, and a Japanese personal

names data set. The proposed method reported high

MRR and AP scores on all three data sets and

outperformed numerous baselines and a previously

proposed alias extraction algorithm. Discounting co-

occurrences from hubs is important to filter the noise

in co-occurrences in anchor texts. For this purpose,

we proposed a simple and effective hub discounting

measure. Moreover, the extracted aliases significantly

improved recall in a relation detection task and

render useful in a web search task.

Refernces

[1] A. Arasu and H. Garcia-Molina, “Extracting

Structured Data from Web Pages,” Proc. ACM

SIGMOD, 2003.

[2] D. Chakrabarti, R. Kumar, and K. Punera, “Page-

Level Template Detection via Isotonic Smoothing,”

Proc. 16th Int’l Conf. World Wide Web (WWW),

2007.

 [3] J. Cho and U. Schonfeld, “Rankmass Crawler: A

Crawler with High Personalized Pagerank Coverage

Guarantee,” Proc. Int’l Conf. Very Large Data Bases

(VLDB), 2007.

[4] V. Crescenzi, P. Merialdo, and P. Missier,

“Clustering Web Pages Based on Their Structure,”

Data and Knowledge Eng., vol. 54, pp. 279- 299,

2005.

[5] M. de Castro Reis, P.B. Golgher, A.S. da Silva,

and A.H.F. Laender, “Automatic Web News

Extraction Using Tree Edit Distance,” Proc. 13th Int’l

Conf. World Wide Web (WWW), 2004.

[6] D. Gibson, K. Punera, and A. Tomkins, “The

Volume and Evolution of Web Page Templates,”

Proc. 14th Int’l Conf. World Wide Web (WWW),

2005.

[7] K. Lerman, L. Getoor, S. Minton, and C.

Knoblock, “Using the Structure of Web Sites for

Automatic Segmentation of Tables,” Proc. ACM

SIGMOD, 2004.

[8] B. Long, Z. Zhang, and P.S. Yu, “Co-Clustering

by Block Value Decomposition,” Proc. ACM

SIGKDD, 2005.

[9] F. Pan, X. Zhang, and W. Wang, “Crd: Fast Co-

Clustering on Large Data Sets Utilizing Sampling-

Based Matrix Decomposition,” Proc. ACM

SIGMOD, 2008.

[10] K. Vieira, A.S. da Silva, N. Pinto, E.S. de

Moura, J.M.B. Cavalcanti, and J. Freire, “A Fast and

Robust Method for Web Page Template Detection

and Removal,” Proc. 15th ACM Int’l Conf.

Information and Knowledge Management (CIKM),

2006.

[11] Y. Zhai and B. Liu, “Web Data Extraction Based

on Partial Tree Alignment,” Proc. 14th Int’l Conf.

World Wide Web (WWW), 2005.

 [13] H. Zhao, W. Meng, and C. Yu, “Automatic

Extraction of Dynamic Record Sections from Search

Engine Result Pages,” Proc. 32nd Int’l Conf. Very

Large Data Bases (VLDB), 2006.

[14] S. Zheng, D. Wu, R. Song, and J.-R. Wen, “Joint

Optimization of Wrapper Generation and Template

Detection,” Proc. ACM SIGKDD, 2007.

Biography

 T.Prathibha , is pursuing her M.Tech in Software

Engineering (Dept.of CSE) in SSJ Engineering

College, vattinagulapally, hyderabad , A.P and India.

Her areas of interests are data mining and knowledge

Discovery, Software Engineering, software project

management, Testing, Network Security, unified

modeling language, and Mobile computing, DBMS.

 B.Sukumar,Assistant professor of CSE Department

has a profound teaching experience presently

working in SSJ Engineering College, vattinagulapally

village, Hyderabad ,AP, India.

His area of interest includes Networking, Mobile

communications.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

6www.ijert.org

Arram Sriram, Assistant professor of IT Department,

Anurag Group of Institutions, Ghatkesar, Ranga

Reddy, A.P and India. His areas of interests are data

mining and knowledge Discovery, Software

Engineering, software project management, Testing,

Network Security, unified modeling.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

7www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

8www.ijert.org

