
Automatic Mapping of Relational Databases

to OWL Antology

Larbi Alaoui
International University of Rabat

11100 Sala Al Jadida, Morocco

Oussama El Hajjamy, Mohamed Bahaj

Department of Mathematics and Informatics

University Hassan I, FSTS

Settat, Morocco

Abstract—Nowadays relational models are most frequently

used to store, treat and extract data. Yet, the increase of

semantic web technologies and the fast development of its

applications based on ontology have made the problem of

migrating RDB to OWL an active research domain. The

difficulties with this problem lay especially in the treatment of

semantic constraints of the data stored in RDB which let the

transition from RDB to OWL require a thorough study of all

characteristics of the data structures to be converted. In this

context, we give a state of the art comparison of existing

mapping methods from RDB to RDF/OWL and propose a novel

migration solution that generalizes these methods, optimizes

constraints extraction and retains the RDB source schema

characteristics. A tool based on our approach has also been

developed and tested to demonstrate the effectiveness and power

of our strategy.

Keywords— web ontology; semantic web; relational database

RDB; OWL

I. INTRODUCTION

The use of ontology has been rapidly growing since the

emergence of the semantic web. However, very large

volumes of data are always stocked in relational databases

and companies do always wish to keep them into existing

systems having in mind the time and money already spent on

them and the multiple associated software tools. Thus, instead

of rebuilding the source databases and in order to make the

existing data available for the semantic web, it is more

suitable to find good solutions for the migration from

relational databases (RDBs) to web databases. In this sense

the research area of migrating relational databases to OWL

ontology has attracted many researchers during the last years

([1]-[12]). This is because of the importance of the OWL

(Ontology Web Language) as a semantic web language.

Indeed OWL which was standardized by W3C in 2004 ([11],

[12]) with its conceptual vocabulary and formal semantics is

built to enrich the transition to semantic web by facilitating

machine interpretability of web contents and making it

possible for applications to process the semantic contents of

web information.

However the existing studies do not provide a complete

solution to the problematic of migrating RDBs to OWL

ontology, and so far there still be no effective proposals that

could be considered as a standard method that preserves the

original structure and constraints of the relational database.

Our aim in this work is to analyze and provide an overview

of RDB to OWL migration issues to identify the weaknesses

and limitations of the different techniques and proposals, and

to identify the differences between them in order to give a

general mapping algorithm that covers all the constraints,

preserves the semantics of RDB data and keeps the

consistency and integrity of data. Our mapping model

involves both the conversion of relational schemas and of

relational data instances. To validate our approach we have

developed a prototype that implements this algorithm and

tested its effectiveness using concrete examples.

The rest of the paper is organized as follows. In section 2

we give a comparison of existing conversion methods from

RDB to OWL. In section 3, we describe our conversion

process by listing mapping rules for RDB tables, constraints

and data. Section 4 provides our mapping algorithm based on

the list of rules. In section 5, we present our tool that

implements our algorithm. A conclusion of our work is the

subject of the last section.

II. COMPARISON OF EXISTING MAPPING

METHODS

In this section, we briefly introduce the methods targeted

by our comparison for mapping relational databases to OWL.

A. RDB and OWL

OWL (Ontology Web Language) was proposed as an

ontology language to fill in the gap that exists between the
current Web contents and the Semantic Web. OWL provides
semantic concepts and structures for the creation of schemas
and related structured data document that can be processed on
the semantic web. Such concepts and structures provided by
OWL are indeed more adequate for learning semantic
information from the huge amounts of data stored in relational
databases which is critical for many web applications.

In a relational database data is stored in tables. A table is

referred to as a relation and is a collection of records of the

same type. Each row of the table represents a record and is a

collection of a fixed number of values of the attributes of the

record. The attributes (also called fields) of the records of a

1988

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041880

International Journal of Engineering Research & Technology (IJERT)

table are also called the columns of the table. The relational

schema of the database defines the structure and integrity

constraints of its relational tables. Although this relational

schema does not say much about the semantics of data, it

contains implicit elements allowing to extract the inside

implicit semantics. Because of all possibilities available in

OWL one can say that associated OWL ontologies are

semantically more expressive than relational schemas. The

detailed conversion process we give in the following will

give more insight into this fact.

B. Selected existing RDB to OWL mapping methods

Integration of relational databases is a key issue for the

success of the semantic web since most of web data are stored
in relational databases. To this end methods were proposed
recently for migrating RDBs to OWL to learn ontology from
such data.

For the comparison of existing mapping methods we
consider the methods from the selected works of [1]-[3], [5],
[8] and [10]. The authors in these papers developed mapping
algorithms of RDB to semantic web based on rules related to
the extraction of metadata from the data dictionary of the
relational database. In the following section we give a detailed
comparison of such rules with regards to the different
conversion aspects. Other RDB to OWL mapping works were
also done in [6], [7] and [9], but these could be considered as
part of the selected papers cited above.

C. Comparison of selected works

In this section we investigate the approaches given in the

papers [1]-[3], [5], [8] and [10] we selected for comparison

purposes. We identify their similarities and their differences

as well as their drawbacks. As in these papers we assume that

relational database to be converted is at least in third normal

form.

Relations Conversion

In [3], [1] and [8] all the relations (tables) of the relational

schema are transformed into classes in web ontology.

However, the works in [2], [10] and [5] have excluded the

binary relations of this transformation.

Binary Relations Conversion

Identification of binary relations: It is said that R is a binary

relation between two relations A and B if:

 A≠R and B≠R

 R contains exactly two attributes a and b

 a and b are primary keys in R

 a is a foreign key which references an attribute c in A

 b is a foreign key which references an attribute d in B

In [2], [10] and [5] every binary relation is converted into an

object property "ObjectProperty" by associating with its

domain and its range the two referenced relations. Let’s note

that in [5] another property declared as being the opposite of

the first is generated for every object property. This statement

is done thanks to the "inverseOf" property defined in OWL.

Atributes Conversion

All the methods targeted by our comparison convert the

attributes which are not primary keys or foreign keys into

data type properties "DataTypeProperty", and associate with

its domain and range respectively, the class corresponding to

the field table and the XSD type corresponding to the field

type in RDB.

Primary Key Conversion

All the methods translate primary keys into data type

properties "DataTypeProperty", by associating with its

domain and its range respectively the corresponding field

table class and the XSD type corresponding to field type in

RDB, and add the "inverseFunctionalProperty" property to

prevent null values insertion and duplicates in key fields.

Foreign Key Conversion

The foreign key constraint enables to maintain referential

integrity between the different relations in RDB. This

constraint engenders in all methods an object property

"ObjectProperty" connecting the class representing the

column table to the class representing the table referenced by

the foreign key.

FK and PK in non binary relations

Madelle & al. [8] are the only ones who dealt with the case of

a table that contains a PK and FK attributes and does not

correspond to a binary relation by converting the table into

subclass of the referenced table thanks to "subClassOf"

property defined in OWL.

Cardinality Constraints Conversion

These constraints are considered only in [8] and [5]

 The unique constraint : In [8] Wondu & al. have used the

"inverseFunctionalProperty" property to prevent creation

of individuals having same values for each data type

property that represents an attribute declared as "unique".

In [5] Ling & al. have given value 1 to the

"maxCardinality" of data type property which represents

the attribute declared "unique" to not have different

instances for this property.

 The Not Null constraint: to force insertion of a value for a

"Not Null" attribute of each record, Wondu & al. and Ling

& al. have given the value 1 to the "minCardinality" of the

data type property that represents this attribute.

Transitive Relations

Let R1, R2 and R3 be three different relations. If there is a

relationship between R1, R2 and another relation between R2

and R3, then there is a transitivity chain between R1 and R3.

1989

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041880

International Journal of Engineering Research & Technology (IJERT)

The conversion of these relations is only considered in [5]

thanks to the "TransitiveProperty" property defined in OWL.

Record Conversion

Except [8] which is only interested in relational database

schema conversion, all the methods have converted the

records of the database into OWL individuals.

For each record in the relational table, we generate an

individual and fill it with values of all the record fields,

including the primary keys and foreign keys, these values are

used for assertion of data type property corresponding to this

field.

III. A COMPLETE LIST OF MAPPING RULES

In this section we give a complete list of rules of ontology

construction from relational database schema. The proposed

conversion rules are based on considering all possible cases

in RDB constructs. An algorithm summarizing our approach

in these rules will be given in the following section. The

algorithm and the associated tool can be applied to any

relational database.

Our migration technique is divided into three distinct phases.

The first phase deals with the structure of the relational

database and its significance. In the second phase the

metadata of relational schema is extracted with the record set

of database. In the last phase we describe the process of

migration to generate the structure and data of the OWL

document.

To avoid any ambiguity of interpretation of the different

identifiers of our ontology, we create a model parameterized

by a namespace as follows:

 For classes, the namespace receives

OntologyURI/DatabaseName#tableName

 For properties, the namespaces receives

OntologyURI/DatabaseName#TableName-fieldName.

The different rules are described as follows.

A. mapRelation

Rule 1 “MapNormalRelation()”

Every Normal Relation who is not a binary relation will be

mapped to an OWL Class.

<owl:Class rdf:ID = "TableName"/>

Rule 2 “MapBinaryRelation()”

Every binary relation is converted into two mutually inverse

Object-Properties.

<owl:ObjectProperty rdf :ID="RefTable1_RefTable2">

 <rdfs:domain rdf:resource = "#RefTable1"/>

 <rdfs:range rdf :resource = "#RefTable2"/>

</owl: ObjectProperty >

<owl:ObjectProperty rdf :ID=" RefTable2_RefTable1">

 <rdfs:domain rdf:resource = "#RefTable2"/>

 <rdfs:range rdf :resource = "#RefTable1"/>

 <owl:inverseOf rdf:resource=”#RefTable1_RefTable2”/>

</owl: ObjectProperty >

Rule 3 “MapPKandFKNonBinaryRelation()”

For two different relationships T1 and T2, if the primary key

of T1 is at the same time a foreign key that is referencing a

field in T2, then the generated class from T1 must be a

subclass of the T2 mapping generated class.

The case of empty binary relation does not belong to this

conversion rule since it was not translated to an OWL class.

<owl :class rdf :ID="T1">

 <rdfs :subClassOf rdf :resource="#T2"/>

</owl :class>

Rule 4 “MapTransitiveChain()”

For any relation T1, T2 and T3, if there is a foreign key

relationship between T1 and T2 and if there is also a foreign

key relationship between T2 and T3, then there is a transitive

chain between T1 and T3.

<owl:ObjectProperty rdf :ID="TableName1_TableName3">

 <rdfs:domain rdf:resource = "#TableName1 "/>

 <rdfs:range rdf :resource = "#TableName3 "/>

 <rdf :type rdf :resource="&owl;TransitiveProperty"/>

</owl: ObjectProperty >

B. mapAttribute

Rule 5 “MapNormalAttribute()”

Each normal attribute is converted to a data type property, by

associating with its domain and range respectively the URI of

the class corresponding to the table field and the XSD type

corresponding to the type of the field in the RDB

<owl:DataTypeProperty rdf :ID="AttributeName">

 <rdfs:domain rdf:resource = "#TableName"/>

 <rdfs:range rdf :resource = "&xsd ;AttributeType"/>

</owl:DataTypeProperty>

Rule 6 “MapPK()”

Primary keys attributes are converted to data type properties

by adding the property "InverseFunctionalProperty" to ensure

the uniqueness of their values.

<owl:DataTypeProperty rdf :ID="AttributeName ">

 <rdfs:domain rdf:resource = "#TableName "/>

 <rdfs:range rdf :resource = "&xsd : AttributeType "/>

 <rdf :type rdf :resource="&owl;InverseFuctionalProperty"/>

</owl:DataTypeProperty>

1990

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041880

International Journal of Engineering Research & Technology (IJERT)

Rule 7 “MapFK()”
Each foreign key attribute is converted to object property by
associating with its domain and its range respectively, the URI
of the class corresponding to the table of field and the URI of
the class that represents the referenced table. To ensure
atomicity of the attribute we declare the property as
a"functionnalProperty".

<owl:ObjectProperty rdf :ID=TableName_RefTable">

 <rdfs:domain rdf:resource = "#TableName "/>

 <rdfs:range rdf :resource = "#RefTable "/>

 <rdf :type rdf :resource="&owl ;FuctionalProperty"/>

</owl: ObjectProperty >

C. mapConstraint

Rule 8 “MapUniqueAttribute()”
If the attribute is declared as UNIQUE, we set maxCardinality
to 1, to prevent the creation of individuals having the same
value.

<owl:Restriction>

 <owl :onProperty rdf:resource=”#AttributeName”/>

 <owl:maxCardinality> 1 </owl:maxCardinality>

</owl : Restriction >

Rule 9 “MapNotNullAttribute()”

If the attribute is declared as NOT NULL, we set
minCardinality to 1.

<owl:Restriction>

 <owl :onProperty rdf:resource=”#AttributeName”/>

 <owl:minCardinality> 1 </owl:minCardinality>

</owl : Restriction >

Rule 10 “MapUniqueAndNotNullAttribute()”

For a relation and an attribute, the maximal and minimal

cardinality of the property corresponding to the attribute is set

to 1, if the attribute is declared as UNIQUE and NOT NULL

at the same time.

</owl : Restriction >

 <owl :onProperty rdf:resource=”#AttributeName”/>

 <owl:minCardinality> 1</owl:minCardinality>

 <owl:maxCardinality> 1</owl:maxCardinality>

 </owl : Restriction >

D. mapRecordSet

Rule 11 “MapRecords()”

Each record of RDB is converted to an individual of ontology

(or assertion) whose type is the class that represents the

record table. And to guarantee the uniqueness of these

individuals, we propose to give for each of them a name

obtained by concatenating the name of the table and the

primary key value corresponding to the converted record.

<owl :NamedIndividual rdf :ID=" TableName _idTuple">

 <rdf :type rdf :resource="#TableName ">

 <Attribute1 rdf :dataType="&xsd :TypeAttribute1">

 Value </ Attribute1 >

 <Attribute2 rdf :dataType="&xsd :TypeAttribute2">

 Value </ Attribute2 >

 --

 <TableName_RefTable rdf:resource=” idTuple”/>

 (if there is a relationship with other tables)

 </ owl :NamedIndividual>

The following table gives summarizes all mentioned rules
and the approaches that have considered them.

TABLE I. RDB TO OWL MAPPING COMPARISON METHODS

IV. MAPPING ALGORITHM

Considering all results and discussions we gave above we

now want to give our mapping algorithm that takes into

consideration all the aforementioned rules. This algorithm

converted all relations (tables) of our relational schema

including attributes, constraints and transitivity relations.

MapShema(S)

 Input: Schema S

 Begin

 MapRelations(S)

 MapTransitiveChaine(S)

 End

Constraints [3] [1] [2] [10] [8] [5]
Our

approach

MapNormalRelation

MapBinaryRelation

MapNormalAttribute

MapPK

MapPKAndFKNonBi

naryRelation

MapFK

MapUniqueAttribute

MapNotNullAttribute

MapUniqueAndNotN

ullAttribute

MapTransitiveChaine

MapRecordSet

1991

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041880

International Journal of Engineering Research & Technology (IJERT)

Before converting the Relations MapRelations() distinguishes

between three types of relationships:

 A binary relation is translated into ObjectProperty

without converting its attributes;

 A relation that contains a PK and FK attributes is

converted into class, and this class is declared as

subclass of generated class from referenced relation;

 Any other normal relation is converted in OWL class.

MapRelations(S)

 Input: Schema S, Table T

 Begin

 For each Ti in S loop

 If (isBinaryRelation(Ti)=true) then

 MapBinaryRelation(Ti)

 Else if (isPKandFKNonBinaryRelation(Ti)=true)

 then

 MapPKandFKNonBinaryRelation(Ti)

 MapAttributes(Ti)

 Else

 MapNormalRelation(Ti)

 MapAttributes(Ti)

 End if

 End loop

End

Before converting attributes of non-binary relations

MapAttributes uses the meta-data from the data dictionary to

define the associated field types:

 If a field is a primary key we converted it into a Data

Type Property with MapPK() function.

 If a field is a foreign key, two inverse object property

are generated thanks to MapFK() function.

 For any other attribute we use MapNormalAttribute()

to convert it.

MapAttributes(T)

 Input: Table T, Attribute A

 Begin

 For each Ai in T loop

 If (isPK(Ai)=true) then

 MapPK(Ai)

 Else if (isFK(Ai)=true) then

 MapFK(Ai)

 Else

 MapNormalAttribute(Ai)

 MapConstraints(Ai)

 End if

 End loop

 End

mapConstraint() algorithm maps relational database

constraints into OWL as follows:

 If the attribute has a unique constraint, the maximum

cardinality of the property is set to one.

 On the other hand if the attribute has a NOT NULL

constraint, the minimum cardinality of the property is

set to 1.

 If the attribute has the both constraint previously

cited, the minimum and the maximum cardinality of

the property are set to 1.

MapConstraints(A)

 Input: Attribute A

 Begin

 If ((isUniqueAttribute(A)=true)and

 (isNotNullAttribute(A)=true)) then

 MapUniqueAndNotNullAttribute(A)

 Else if (isUniqueAttribute(A)=true) then

 MapUniqueAttribute(A)

 Else if (isNotNullAttribute(A)=true) then

 MapNotNullAttribute(A)=true)

 End if

 End

 MapTransitiveProperty() finds all transitive relations in the

relational data base and convert them to object property by

adding the “TransitiveProperty”.

MapTransitiveProperty(S)

 Input: Schema S, Table T, Attribute A

 Begin

 For each Ti in S loop

 For each Aj in Ti loop

 If (isFK(Aj)=true) then

 T’ = getReferencedTable(Aj, Ti)

 If ((Ti != T’) and (isBinaryRelation(Ti)=false)

 then

 CheckTransitiveRelations(Ti, T)

 End if

 End if

 End loop

 End loop

 End

CheckTransiveRelation(T, T’)

 Input: Table T, Table T’, Attribute A

 Begin

 For each Ai in T loop

 if (isFK(Ai)=true) then

 T” = getReferencedTable(Aj, T’)

 If ((T’ != T”) and (T != T”)) then

 CreateTranstiveRelation(T, T”)

 End if

 End if

 End loop

 End

1992

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041880

International Journal of Engineering Research & Technology (IJERT)

V. IMPLEMENTATION AND VALIDATION

In this section we devote our study to a simple example of

a relational database schema, shown in Figure 1

To demonstrate the effectiveness and validity of our method,
we developed a prototype that reads the relational database
directly and generates the resulting OWL schema and
instances documents.

To develop our prototype, we used Java as a programming

language because Java is an object-oriented language, is

compatible with all operating systems and can encode

algorithms effectively.

To store the data and metadata we used Mysql DBMS which

contains system tables that define the structure of the

database (including names of tables, columns, constraints, ...).

Our implementation can however also work with any other

relational database system.

We used the JDBC-API to establish a connection with the

migrated database. This API allows full access to relational

database metadata and quickly retrieves a description of the

tables and constraints of the database from data dictionaries.

Fig. 1. Relational Database Schema Overview

The mapping test between our example of relational database
and owl ontology is shown by the sample screenshots in
Figure 2 and Figure 3.

Fig. 2. Resulting mapping of RDB schema

Fig. 3. Resulting mapping of RDB data

Figure 4 shows the resulting RDF graph of ontology with two
levels, the schema level and the assertions level.

Fig. 4. the OntoGraph schema of resulting mapping

VI. CONCLUSION

In this paper we addressed the problem of automatic
conversion of relational databases into OWL ontologies which
has become one of the most attracting research area to enrich
the success of semantic web. We especially gave a thorough
analysis and comparison of existing direct automatic mapping
methods from RDB to OWL, extracted weaknesses and
limitations of theses methods. As a result we gave a complete
list of elements that are crucial for the conversion and a

1993

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041880

International Journal of Engineering Research & Technology (IJERT)

complete list of associated mapping rules. This has allowed us
to build an associated general and complete mapping
algorithm that covers different aspects of the relational model
which are relevant for the mapping process. The algorithm
deals among others with various multiplicities for
relationships, relation transitivity and constraints such as
primary key, foreign key, UNIQUE and NOT NULL
constraints. The algorithm first converts the RDB schema into
an ontology model and converts in a second step the RDB data
into instances of the result ontological schema. The results
obtained from our prototype prove the accuracy and
performance of our mapping strategy.

REFERENCES

[1] J. Bakkas, M. Bahaj, “Direct Migration Method of RDB to Ontology

while Keeping Semantics,” International Journal of Computer Science
and Information Security, vol. 65, No. 3, March 2013.

[2] J. Bakkas, M. Bahaj, “Generating of RDF graph from a relational
database using Jena API,” International Journal of Engineering and
Technology, vol. 5, No. 2, Apr-May 2013.

[3] N. Gherabi, K. Addakiri, and M. Bahaj, “Mapping relational database
into OWL Structure with data semantic preservation,” International
Journal of Computer Science and Information Security, vol. 10, No. 1,
January 2012.

[4] G. Klyne and J. Carroll, “Resource Description Framework (RDF)
Concepts and abstract syntax. W3C Recommendation 10 February

2004,” World Wide Web Consortium. http://www.w3.org/TR/rdf-
concepts/.

[5] H. Ling, S. Zhou “Mapping Relational Databases into OWL
Ontology,” International Journal of Engineering and Technology , Vol .
5, No. 6 , Dec 2013-Jan.

[6] M. Li, X. Y. Du and S. Wang , “Learning Ontology From Relational
Database,” Proceedings of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005.

[7] M. R. Louhdi, H. Behja and S. O. EL Alaoui, “A novel Method for
Generating an e-learning ontology,” International Journal of Data
Mining & Knowledge Management Process (IJDKP), Vol.3, No.6,
November 2013.

[8] W. Y. Mallede, F. Marir, and V. T. Vassilev, “Algorithms for Mapping
RDB Schema to RDF for Facilitating Access to Deep Web ,” WEB
2013 : The First International Conference on Building and Exploring
Web Based Environments, IARIA, 2013.

[9] C.Ramathilagam, M. L. Valarmathi, “A Framework for OWL DL
based Ontology construction fro Relational Database using Mapping
and Semantic Rules,” International Journal of Computer Applications
(0975– 8887), Volume 76– No.17, August 2013.

[10] J. F. Sequeda, M. Arenas, D. P. Miranker “On Directly Mapping
Relational Databases to RDF and OWL,” International World Wide
Web Conference committee (IW3C2), WWW 2012, April 16–20, 2012,
Lyon, France.

[11] OWL, “Web Ontology Language (OWL),”
http://www.w3.org/2004/OWL, 2004.

[12] W3C, OWL Working Group, “OWL 2 Web ontology language
document overview. W3C Recommendation 27 October 2009,”
http://www.w3.org/TR/owl2-overview/.

1994

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041880

International Journal of Engineering Research & Technology (IJERT)

