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Abstract— in the last few years, the availability of 3D content is
still less than 2D counterpart. Hence many 2D-to-3D image
conversion methods have been proposed. Methods involving
human operators have been most successful but also time-
consuming and costly. Automatic methods, that make use of a
deterministic 3D scene model, have not yet achieved the same
level of quality for they rely on assumptions that are often
violated in practice. Here two types of methods are developed.
The first is based on learning a point mapping from local
image/ attributes, such as color, spatial position. The second
method is based on globally estimating the entire depth map of
a query image directly from a repository of 3D images (image +
depth pairs or stereo pairs) using a nearest-neighbour
regression type idea. It demonstrates the ability and the
computational efficiency of the methods on numerous 2D
images and discusses their drawbacks and benefits.

Keywords-Stereoscopic images, Image conversion, nearest
neighbour Classification, Cross-bilateral filtering, 3D images

. INTRODUCTION

The convenience of 3D-capable hardware today, such as
TVs, Blu-Ray players, gaming consoles, and smart phones,
is not yet matched by 3D content production. Today there
exists an urgent need to convert the existing 2D content to
3D. A typical 2D-to-3D conversion process consists of two
steps: depth estimation for a given 2D image and depth
based rendering of a new image in order to form a stereo
pair. While the rendering step is well understood, the
challenge is in estimating depth from a single image.
Therefore, throughout the focus is on depth recovery.

There are two basic approaches, semi-automatic
and automatic methods. In the former case a skilled operator
assigns depth to various parts of an image. Based on this
sparse depth assignment, a computer algorithm estimates
dense depth over the entire image or sequence. The
involvement of a human operator may vary from just a few
scribbles to assign depth to various locations in an image to
a precise delimitation of objects and subsequent depth
assignment to the delineated regions. In the case of
automatic methods, no operator involvement is needed and a
computer algorithm automatically estimates the depth for a
single image. Recently, machine-learning-inspired methods
have been proposed to automatically estimate the depth map
of a single monocular image by applying image parsing.
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The proposed methods carry the “big data” philosophy of
machine learning. They apply to arbitrary scenes and require
no manual explanation. Two types of methods are proposed.
The first one is based on learning a point mapping from
local image/ attributes, such as color, spatial position, and
motion at each pixel, to scene-depth at that pixel using a
regression type idea. The second one is based on globally
estimating the entire depth map of a query image directly
from a repository of 3D images (image + depth pairs or
stereopairs) using a nearest-neighbor regression type idea. It
introduces local method and evaluates the qualitative
performance and the computational efficiency of both the
local and global methods. The improved quality of the depth
maps produced by the global method relative to state-of-the-
art methods together with up to 4 orders of magnitude
reduction in computational effort and weakness of the
methods are also demonstrated.

1.  CONVERSION METHODS

There are two types of 2D-to-3D image conversion
methods: semi-automatic methods and automatic methods.

A. Semi-automatic methods

Semi-automatic methods are more effective. This method
has been effectively used commercially by such companies
as Imax Corp., Digital Domain Productions Inc. etc. In order
to shorten operator involvement in the process and lower the
cost while speeding up the conversion, research has recently
focused on the most labor-intensive steps of the manual
involvement, namely spatial depth assignment. Liao et al.
[10] further simplify operator involvement by first
computing optical flow, then applying structure-from-
motion estimation and finally extracting moving object
boundaries. The role of an operator is to correct errors in the
automatically computed depth of moving objects and assign
depth in undefined areas.

B. Automatic methods

The difficult of depth estimation from a single 2D image is
the main step in 2D-to-3D image conversion. Methods
called multiview stereo, attempt to improve depth by
estimating scene geometry from multiple images not taken
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instantaneously. Such methods are similar in spirit to the
methods proposed here, the main difference is that while
these methods use images known to show the same scene as
the query image, all images accessible in a large repository
and automatically select suitable ones for depth retrieval.
Real-time methods have been implemented in Blu-Ray 3D
players by LG, Samsung, Sony and others. DDD offers its
TriDef 3D software for PCs, TVs and mobile devices.
Recently, machine-learning-inspired techniques employing
image parsing have been used to estimate the depth map of a
single monocular image [14], [11]. Such methods have the
potential to automatically generate depth maps, but work
only on few types of images (mostly architectural scenes).
Metric based on histogram of gradients was used for
selecting most similar depth fields from a database. It has
been observed that there is no significant quality
degradation but a significant reduction of the computational
complexity [9]. Karsch et al. [7] have proposed a depth
extraction method based on SIFT warping that essentially
follows the initial, unnecessarily complex, approach to
depth extraction [8].

I1l.  2D-10-3D CONVERSION BY LEARNING A LOCAL
POINT TRANSFORMATION

This conversion method is presented on the basis of
learning a point transformation that relates local low-level
image or video attributes at a pixel to scene-depth at that
pixel. Once the point transformation is learned, it is applied
to a monocular image, i.e., depth is assigned to a pixel based
on its attributes.

The point transformation is used to compute depth from
image attributes. This transformation can be estimated either
by training on a ground-truth dataset. Let I = {(1%, d%), (1%
d?),...,(1%, d“)} denote a training dataset composed of K pairs
(1% d), where 1* is a color image (usually in YUV format)
and d* is the corresponding depth field. Such a dataset can
be constructed in various ways. One example is the Make3D
dataset [21], [13], [14], NYU Kinect dataset [22], [15].
Examples of low-level video attributes that can be leveraged
to compute relative depth of a pixel include color, spatial
location, and local motion. Due to the dependency of color,
Bluish color is often associated with a distant sky, the
bottom of a picture usually depicts ground close to the
camera and a moving object stays in front of the
background.

Given a training set | consisting of K image-depth pairs, a
general regression function can be learned that maps a tuple
of local features such as (color, location, motion) to a depth
value, i.e.,

f: (color, location, motion) — depth
However, to ensure low run-time memory and processing
costs, it learns a more restricted form of transformation:
f [color, X, motion] = w, f.[color] + w, fi[x] + wy, f,[motion].
It also discusses how the individual color-depth, location
depth, and motion-depth transformations as well as the

weights are learned.
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Figurel. Example of depth estimation from color, spatial location and
motion.

Figure.1 shows a sample video frame with depth maps
estimated from color, location and motion signs separately,
with the final combined depth map. In order to obtain a
color-depth transformation fc, it first transforms the YUV
space to the HSV color space. It is found out that the
saturation component (S) provides little depth discrimination
capacity and therefore it limits the transformation attributes
to hue (H) and value (V). Let [H[x], S “[x], V¥[X]]" be the
HSV components of a pixel at spatial location x quantized to
L levels. The depth mapping, fJ[h, v], h, v=1, ..., L is
computed as the average of depths at all pixels in I with hue
h and value v:

5. HHx] = h, PF[x] = v)d*[x]
11 e 1HAx] = h V¥[x] = v)

PP
Jelh.v] = 5 (1

Where (1) is the indicator function which equals one if A is
true-and equals zero otherwise. In the final step, the local
transformation outputs are linearly combined to produce the
final depth field. While the location-depth weight w, may be
kept constant, the motion-depth weight w,, can be adjusted
in proportion to the number of pixels deemed moving in the
image being converted. Therefore, the color-depth weight w,
equals 1-w,—w,,. Assuming that the image to be converted to
3D is the left image of a fictitious stereopair, the right image
is rendered from the left image and the inferred depth field.

IV. 2D-10-3D CONVERSION BASED ON GLOBAL
NEAREST-NEIGHBOR DEPTH LEARNING

Learning a local point transformation has the undisputed
advantage of computational efficiency — the point
transformation can be learned off-line and applied basically
in real time because it is based on purely local image/video
attributes, such as color, spatial position, and motion at each
pixel. To address this limitation, a second method is
developed that estimates the global depth map of a query
image or video frame directly from a repository of 3D
images (image+depth pairs or stereopairs) using a nearest-
neighbor regression type idea.

This approach is built upon a key observation and an
assumption. The key observation is that among millions of
3D images available on-line, there likely exist many whose
3D content matches that of a 2D input (query). An
assumption is made that two images that are photometrically
similar also have similar 3D structure (depth). Given a
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monocular query image Q, assumed to be the left image of a
stereopair that is to be computed, relies on the above
observation and assumption to “learn” the entire depth from
a repository of 3D images | and render a stereopair in the
following steps:

e Search for representative depth fields: find k
3D images in the repository | that have most
similar depth to the query image, for example by
performing a k nearest-neighbor (kNN) search
using a metric based on photometric properties.

e Depth fusion: combine the k representative depth
fields, for example, by means of median filtering
filtering across depth field.

e Depth smoothing: process the fused depth field to
remove spurious variations, while preserving depth
discontinuities, for example, by means of cross-
bilateral filtering.

e Stereo rendering: generate the right image of a
fictitious stereopair using the monocular query
image and the smoothed depth field followed by
suitable processing of occlusions and newly-
exposed areas.

The above steps apply directly to 3D images represented as
an image+depth pair. However, in the case of stereopairs a
disparity field needs to be computed first for each left/right
image pair. Then, each disparity field can be converted to a
depth map. Alternatively, the fusion and smoothing can take
place in the space of disparities (without converting to
depth), and the final disparity used for right-image
rendering.

A 3
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Figure 2: Block diagram of overall algorithm

Fig. 3 shows the block diagram of the approach. Qg is the
right image which is being sought for each query image Q,
while dq is the query depth (ground truth) needed to
numerically evaluate the performance of a depth
computation. Again, it is assumed that a 3D dataset | is
available by means of laser range finding, Kinect-based
capture or disparity computation. The goal is to find a depth
estimate d and then a right-image estimate Qg given a 2D
query image Q and the 3D dataset I.
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A. kNN Search

There exist two types of images in a large 3D image

repository: relevant and irrelevant images. Images that are
not photometrically similar to the 2D query need to be
rejected because they are not useful for estimating depth.
One method for selecting a useful subset of depth relevant
images from a large repository is to select only the k images
that are closest to the query where closeness is measured by
distance function capturing global image properties such as
color, texture, edges, etc. The distance function used here is
Euclidean norm of the difference between histograms of
oriented gradients (HOGs) [3] computed from two images.
It also performs a search for top matches to the monocular
query Q among all images inverse of I k=1,.., Kinthe 3D
database I. The search returns an ordered list of image +
depth pairs from the most to the least photometrically
similar via the query and discard all but the top k matches
(kNNs) from this list.
The average photometric similarity between a query and its
k-th nearest neighbor usually decays with the increasing k.
While for large databases, larger values of k may be
appropriate, since there are many good matches, for smaller
databases this may not be true. Therefore, a judicious
selection of k is important. K denotes the set of indices i of
image + depth pairs that are the top k photometrically-
nearest neighbors of the query Q.

B. Depth Fusion

The depth field is computed by applying the median
operator across the KNN depths at each spatial location x as
follows:

d[x] = median{d'[x],¥i € K). (3)
Although these depths are overly smooth, they provide a

globally-correct, although coarse, assignment of distances to
various areas of the scene.

C. Cross-Bilateral Filtering of Depth

While the median-based fusion helps make depth more
consistent globally, the fused depth is overly smooth and
locally inconsistent with the query image due to edge
misalignment between the depth fields of the kNNs and the
query image. This results in the lack of edges in the fused
depth where sharp object boundaries should occur and/or the
lack of fused-depth smoothness where smooth depth is
expected. In order to correct this, similarly to Agnot et al.
[1], it applies cross-bilateral filtering (CBF). CBF is a
variant of bilateral filtering, an edge-preserving image
smoothing method that applies anisotropic diffusion
controlled by the local content of the image itself [4]. In
CBF, however, the diffusion is not controlled by the local
content of the image under smoothing but by an external
input. It applies CBF to the fused depth d using the query
image Q to control diffusion. This allows us to achieve two
goals simultaneously: alignment of the depth edges with
those of the luminance Y in the query image Q and local
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noise/granularity suppression in the fused depth d. This is
implemented as follows:

Zd .

R Zm - Ve (FTx] - 7))

Yhe, (Y1x] - FTy]),
4

Where inverse of d is the filtered depth field and hy(x) =
exp(—||x||*/26%)/2nc? is a Gaussian weighting function. Note
that the directional smoothing of d is controlled by the query
image via the weight hg (Y[X] — Y[y]). For large luminance
discontinuities, the weight he (Y[X]-Y[y]) is small and thus
the contribution of d[y] to the output is small. However,
when Y[y] is similar to Y[x] then hs (Y[X] — Y[y]) is
relatively large and the contribution of d[y] to the output is
larger. In essence, depth filtering (smoothing) is happening
along (and not across) query edges. The depth field is
overall smooth (slowly varying) while depth edges, if any,
are aligned with features in the query image. The filtered
depth preserves the global properties captured by the
unfiltered depth field d, and is smooth within objects and in
the background. At the same time it keeps edges sharp and
aligned with the query image structure.

D. Stereo Rendering

In order to generate an estimate of the right image Qg from
the monocular query Q, a disparity 6 from the estimated
depth d needs to be computed. Assuming that the fictitious
image pair (Q,Qr) was captured by parallel cameras with
baseline B and focal length f, the disparity is simply d[X, Y]
= Bf /d[x], where x = [x, y]T. It forwards projects the 2D
query Q to produce the right image:

Qrlx+3[x,yl.y]=Q[x.y] (6))

While rounding the location coordinates (X + &[X, y], y) to
the nearest sampling grid point. It handles occlusions by
depth ordering: if (x; + &[x;, yil, i) = (X + a[x;, yil, vi) for
some i, j, it assigns to the location (x; + a[x;, yi], ¥;) in QR an
RGB value from that location (x;, y;) in Q whose disparity
a[xi, yi] is the largest. In newly-exposed areas, i.e., for X;
such that no x; satisfies (x;, yi) = (xi + a[xi, yil, i), Applying
a more advanced depth-based rendering method would only
improve this step of the proposed 2D-to-3D conversion.

V. EXPERIMENTAL RESULTS

The approach has been tested on two datasets: the
Make3D dataset #1 [21], [13], [14] composed of 534
outdoor images with depth fields captured by a laser range
finder and the NYU Kinect dataset [22], [15] composed of
1449 pairs of RGB images and corresponding depth fields.
Note that the Make3D images are of 240x320 resolution but
the corresponding depth fields are only of 55x305 spatial
resolution and relatively coarse quantization. On the other
hand, the Kinect dataset consists of both images and depth
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fields at 640x480 resolution and the depth precision is
relatively high (11 bits).

In order to evaluate the performance of the proposed
algorithms quantitatively, leave-one-out cross-validation
(LOOCV) was applied as follows. One image+depth pair
from a database was selected as the 2D query (Q, dg)
treating the remaining pairs as the 3D image repository |
based on which a depth estimate the inverse of d and a right-
image estimate Qg are computed. As the quality metric, it is
used normalized cross-covariance between the estimated
depth d and the ground-truth depth d as follows:

— Y@ - gl -py)  ©

C=—

"T\'er.“rd@ X
Where N is the number of pixels in d and dg, pd and pdq are
the empirical means of d and dq, respectively, while o4 and
o4o are the corresponding empirical standard deviations. The
normalized cross-covariance C takes values between - 1 and
+1 (for values close to +1 the depths are very similar and for
values close to -1 they are complementary).

Table 1: Average and median normalized cross covariance C computed
across all images in the Make3D Dataset.

Local Global Make3D | Karsch
et. al.
Median | Median+CBF
Average | 0.59 0.78 0.80 0.78 0.73
C
Median | 0.61 0.85 0.86 0.78 0.79
C

Table | shows experimental results obtained from 534
LOOCV tests on the Make3D dataset #1 using various
algorithms. The performance of each algorithm has been
captured by the average and median of cross-covariance C
(6) across all LOOCYV tests. The local method has been
trained on the Make3D and Kinect datasets, respectively,
i.e., the transformations fc and f, (transformation f;,, is not
used since both datasets contain only still images), have
been learned by analysing depth color and depth-location
relationships in all image-depth pairs of either dataset. It
used weights w, = 0.3 and w, = 0.7 in the experiments. The
global method and the method by Karsch et al. [7] have no
training phase but learn the depth from k best examples
found for each query image. As it has already mentioned,
the Make3D algorithm [14] has been trained on the Make3D
dataset and there is no option available to re-train it on the
Kinect dataset. Clearly, for both datasets the global method
with cross bilateral filtering of the fused depths outperforms
all other algorithms, although the same algorithm without
the filtering performs very similarly. The numerical gain
from filtering the fused depth is rather small since its
greatest impact is at depth edges (re-alignment with edges in
the query image). Consequently, it affects the normalized
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cross covariance at just a few pixels. The Make3D algorithm
performs almost as well as the global method on the
Make3D dataset. However, this result is biased towards high
values of C since the test images in the LOOCYV test include
images from the database on which the Make3D algorithm
was trained (400 training images). Not surprisingly, the
same algorithm applied to the Kinect dataset fairs rather
poorly but, it has been already mentioned, re-training was
not possible. The Karsch et al. method does not perform as
well as the global algorithm on either dataset. Finally, the
local method achieves a consistent but low performance
which is not surprising given its simplicity.

In addition to LOOCYV tests on the Make3D dataset #1,
where the test image may belong to the set of original 400
training images, it also applied the test used by Saxena et al.
[14]. Namely, the 534 images of this dataset were divided
into 134 test images and 400 training images (on which the
Make3D algorithm was trained). It selected the test image
from the test set and used the training set to find the k
nearest neighbors.

This is to be expected since LOOCV uses more training
images. The performance of the local method appears to be
only marginally affected. This can be attributed to the use of
a fixed point mapping. Both Make3D and the global method
with CBF experience a significant performance drop but
Make3D continues to trail behind the method. The method
of Karsch et al. appears to be more robust, even improving
slightly in terms of the average C value, but it takes about 2
hours to execute while processing 12 images in parallel. In
contrast, Make3D takes about 30mins and the global method
with CBF takes about 1 second to process.

VI. CONCLUSION

A new class of methods is proposed to aim at 2D-to-3D
image conversion that is based on the radically different
approach of learning from examples. One method that is
proposed is based on learning a point mapping from local
image attributes to scene-depth. The other method is based
on globally estimating the entire depth field of a query
directly from a repository of image+depth pairs using
nearest-neighbor-based regression. It objectively validates
the algorithms’ performance against state-of-the-art
algorithms. While the local method was outperformed by
other algorithms, it is extremely fast as it is, basically, based
on table look-up. However, the global method performed
better than the state-of-the-art algorithms in terms of
cumulative performance across two datasets and two testing
methods, and has done so at a fraction of CPU time.
Anaglyph images produced by the algorithms result in a
comfortable 3D experience but are not completely void of
distortions. Clearly, there is room for improvement in the
future. With the continuously increasing amount of 3D data
on-line and with the rapidly growing computing power in
the cloud, the proposed framework seems a promising
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alternative to operator-assisted 2D-t0-3D image and video
conversion.
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