
Automatic Learning based 2D-to-3D Image 

Conversion 
 

Victoria M Baretto 
Dept. of Computer Science and Engineering 

Alva’s Institute of Engineering and Technology (AIET) 

Moodbidri, India 

meetvics.online@gmail.com 
 

Abstract— in the last few years, the availability of 3D content is 

still less than 2D counterpart. Hence many 2D-to-3D image 

conversion methods have been proposed. Methods involving 

human operators have been most successful but also time-

consuming and costly. Automatic methods, that make use of a 

deterministic 3D scene model, have not yet achieved the same 

level of quality for they rely on assumptions that are often 

violated in practice. Here two types of methods are developed. 

The first is based on learning a point mapping from local 

image/ attributes, such as color, spatial position. The second 

method is based on globally estimating the entire depth map of 

a query image directly from a repository of 3D images (image + 

depth pairs or stereo pairs) using a nearest-neighbour 

regression type idea. It demonstrates the ability and the 

computational efficiency of the methods on numerous 2D 

images and discusses their drawbacks and benefits. 

 

Keywords-Stereoscopic images, Image conversion, nearest 

neighbour Classification, Cross-bilateral filtering, 3D images 

 

I. INTRODUCTION 

    The convenience of 3D-capable hardware today, such as 

TVs, Blu-Ray players, gaming consoles, and smart phones, 

is not yet matched by 3D content production. Today there 

exists an urgent need to convert the existing 2D content to 

3D. A typical 2D-to-3D conversion process consists of two 

steps: depth estimation for a given 2D image and depth 

based rendering of a new image in order to form a stereo 

pair. While the rendering step is well understood, the 

challenge is in estimating depth from a single image. 

Therefore, throughout the focus is on depth recovery.  

There are two basic approaches, semi-automatic 

and automatic methods. In the former case a skilled operator 

assigns depth to various parts of an image. Based on this 

sparse depth assignment, a computer algorithm estimates 

dense depth over the entire image or sequence. The 

involvement of a human operator may vary from just a few 

scribbles to assign depth to various locations in an image to 

a precise delimitation of objects and subsequent depth 

assignment to the delineated regions. In the case of 

automatic methods, no operator involvement is needed and a 

computer algorithm automatically estimates the depth for a 

single image. Recently, machine-learning-inspired methods 

have been proposed to automatically estimate the depth map 

of a single monocular image by applying image parsing.  

    The proposed methods carry the “big data” philosophy of 

machine learning. They apply to arbitrary scenes and require 

no manual explanation. Two types of methods are proposed. 

The first one is based on learning a point mapping from 

local image/ attributes, such as color, spatial position, and 

motion at each pixel, to scene-depth at that pixel using a 

regression type idea. The second one is based on globally 

estimating the entire depth map of a query image directly 

from a repository of 3D images (image + depth pairs or 

stereopairs) using a nearest-neighbor regression type idea. It 

introduces local method and evaluates the qualitative 

performance and the computational efficiency of both the 

local and global methods. The improved quality of the depth 

maps produced by the global method relative to state-of-the-

art methods together with up to 4 orders of magnitude 

reduction in computational effort and weakness of the 

methods are also demonstrated. 

 

II. CONVERSION METHODS 

   There are two types of 2D-to-3D image conversion 

methods: semi-automatic methods and automatic methods. 

A. Semi-automatic methods 

Semi-automatic methods are more effective. This method 

has been effectively used commercially by such companies 

as Imax Corp., Digital Domain Productions Inc. etc. In order 

to shorten operator involvement in the process and lower the 

cost while speeding up the conversion, research has recently 

focused on the most labor-intensive steps of the manual 

involvement, namely spatial depth assignment. Liao et al. 

[10] further simplify operator involvement by first 

computing optical flow, then applying structure-from-

motion estimation and finally extracting moving object 

boundaries. The role of an operator is to correct errors in the 

automatically computed depth of moving objects and assign 

depth in undefined areas. 

 

B. Automatic methods 

The difficult of depth estimation from a single 2D image is 

the main step in 2D-to-3D image conversion. Methods 

called multiview stereo, attempt to improve depth by 

estimating scene geometry from multiple images not taken 
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instantaneously. Such methods are similar in spirit to the 

methods proposed here, the main difference is that while 

these methods use images known to show the same scene as 

the query image, all images accessible in a large repository 

and automatically select suitable ones for depth retrieval. 

Real-time methods have been implemented in Blu-Ray 3D 

players by LG, Samsung, Sony and others. DDD offers its 

TriDef 3D software for PCs, TVs and mobile devices. 

Recently, machine-learning-inspired techniques employing 

image parsing have been used to estimate the depth map of a 

single monocular image [14], [11]. Such methods have the 

potential to automatically generate depth maps, but work 

only on few types of images (mostly architectural scenes). 

Metric based on histogram of gradients was used for 

selecting most similar depth fields from a database. It has 

been observed that there is no significant quality 

degradation but a significant reduction of the computational 

complexity [9]. Karsch et al. [7] have proposed a depth 

extraction method based on SIFT warping that essentially 

follows the initial, unnecessarily complex, approach to 

depth extraction [8]. 

 

III. 2D-TO-3D CONVERSION BY LEARNING A LOCAL 

POINT TRANSFORMATION 

    This conversion method is presented on the basis of 

learning a point transformation that relates local low-level 

image or video attributes at a pixel to scene-depth at that 

pixel. Once the point transformation is learned, it is applied 

to a monocular image, i.e., depth is assigned to a pixel based 

on its attributes. 

    The point transformation is used to compute depth from 

image attributes. This transformation can be estimated either 

by training on a ground-truth dataset. Let I = {(I
1
, d

1
), (I

2
, 

d
2
),...,(I

K
, d

K
)} denote a training dataset composed of K pairs 

(I 
k
, d

k
), where I

k
 is a color image (usually in YUV format) 

and d
k
 is the corresponding depth field. Such a dataset can 

be constructed in various ways. One example is the Make3D 

dataset [21], [13], [14], NYU Kinect dataset [22], [15]. 

Examples of low-level video attributes that can be leveraged 

to compute relative depth of a pixel include color, spatial 

location, and local motion. Due to the dependency of color, 

Bluish color is often associated with a distant sky, the 

bottom of a picture usually depicts ground close to the 

camera and a moving object stays in front of the 

background. 

    Given a training set I consisting of K image-depth pairs, a 

general regression function can be learned that maps a tuple 

of local features such as (color, location, motion) to a depth 

value, i.e.,  

f : (color, location, motion) → depth 

However, to ensure low run-time memory and processing 

costs, it learns a more restricted form of transformation: 

 f [color, x, motion] = wc fc[color] + wl fl[x] + wm fm[motion]. 

It also discusses how the individual color-depth, location 

depth, and motion-depth transformations as well as the 

weights are learned. 

 

 

 

 

 

Figure1. Example of depth estimation from color, spatial location and 
motion. 

 

Figure.1 shows a sample video frame with depth maps 

estimated from color, location and motion signs separately, 

with the final combined depth map. In order to obtain a 

color-depth transformation fc, it first transforms the YUV 

space to the HSV color space. It is found out that the 

saturation component (S) provides little depth discrimination 

capacity and therefore it limits the transformation attributes 

to hue (H) and value (V). Let [H
k
[x], S 

k
[x], V

k
[x]]

T
 be the 

HSV components of a pixel at spatial location x quantized to 

L levels. The depth mapping, fc[h, v], h, v = 1, ..., L is 

computed as the average of depths at all pixels in I with hue 

h and value v:  

 

  
        

Where (1) is the indicator function which equals one if A is 

true and equals zero otherwise. In the final step, the local 

transformation outputs are linearly combined to produce the 

final depth field. While the location-depth weight wl may be 

kept constant, the motion-depth weight wm can be adjusted 

in proportion to the number of pixels deemed moving in the 

image being converted. Therefore, the color-depth weight wc 

equals 1−wl−wm. Assuming that the image to be converted to 

3D is the left image of a fictitious stereopair, the right image 

is rendered from the left image and the inferred depth field. 

 

IV. 2D-TO-3D CONVERSION BASED ON GLOBAL 

NEAREST–NEIGHBOR DEPTH LEARNING 

    Learning a local point transformation has the undisputed 

advantage of computational efficiency – the point 

transformation can be learned off-line and applied basically 

in real time because it is based on purely local image/video 

attributes, such as color, spatial position, and motion at each 

pixel. To address this limitation, a second method is 

developed that estimates the global depth map of a query 

image or video frame directly from a repository of 3D 

images (image+depth pairs or stereopairs) using a nearest-

neighbor regression type idea.  

  This approach is built upon a key observation and an 

assumption. The key observation is that among millions of 

3D images available on-line, there likely exist many whose 

3D content matches that of a 2D input (query). An 

assumption is made that two images that are photometrically 

similar also have similar 3D structure (depth). Given a 
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monocular query image Q, assumed to be the left image of a 

stereopair that is to be computed, relies on the above 

observation and assumption to “learn” the entire depth from 

a repository of 3D images I and render a stereopair in the 

following steps: 

 Search for representative depth fields: find k 
3D images in the repository I that have most 
similar depth to the query image, for example by 

performing a k nearest-neighbor (kNN) search 

using a metric based on photometric properties. 

 Depth fusion: combine the k representative depth 

fields, for example, by means of median filtering 

filtering across depth field. 

 Depth smoothing: process the fused depth field to 

remove spurious variations, while preserving depth 

discontinuities, for example, by means of cross-

bilateral filtering. 

 Stereo rendering: generate the right image of a 

fictitious stereopair using the monocular query 

image and the smoothed depth field followed by 

suitable processing of occlusions and newly-

exposed areas.  

The above steps apply directly to 3D images represented as 

an image+depth pair. However, in the case of stereopairs a 

disparity field needs to be computed first for each left/right 

image pair. Then, each disparity field can be converted to a 

depth map. Alternatively, the fusion and smoothing can take 

place in the space of disparities (without converting to 

depth), and the final disparity used for right-image 

rendering.  

 

  

 

 
 

 

  

 

 

 

 

 

 
Figure 2: Block diagram of overall algorithm 

Fig. 3 shows the block diagram of the approach. QR is the 

right image which is being sought for each query image Q, 

while dQ is the query depth (ground truth) needed to 

numerically evaluate the performance of a depth 

computation. Again, it is assumed that a 3D dataset I is 

available by means of laser range finding, Kinect-based 

capture or disparity computation. The goal is to find a depth 

estimate d and then a right-image estimate QR given a 2D 

query image Q and the 3D dataset I. 
 

A. kNN Search 

   There exist two types of images in a large 3D image 

repository: relevant and irrelevant images. Images that are 

not photometrically similar to the 2D query need to be 

rejected because they are not useful for estimating depth. 

One method for selecting a useful subset of depth relevant 

images from a large repository is to select only the k images 

that are closest to the query where closeness is measured by 

distance function capturing global image properties such as 

color, texture, edges, etc. The distance function used here is 

Euclidean norm of the difference between histograms of 

oriented gradients (HOGs) [3] computed from two images. 

It also performs a search for top matches to the monocular 

query Q among all images inverse of I
k
, k = 1,..., K in the 3D 

database I. The search returns an ordered list of image + 

depth pairs from the most to the least photometrically 

similar via the query and discard all but the top k matches 

(kNNs) from this list. 

 The average photometric similarity between a query and its 

k-th nearest neighbor usually decays with the increasing k. 

While for large databases, larger values of k may be 

appropriate, since there are many good matches, for smaller 

databases this may not be true. Therefore, a judicious 

selection of k is important. K denotes the set of indices i of 

image + depth pairs that are the top k photometrically-

nearest neighbors of the query Q. 

 

B. Depth Fusion 

    The depth field is computed by applying the median 

operator across the kNN depths at each spatial location x as 

follows: 

 
Although these depths are overly smooth, they provide a 

globally-correct, although coarse, assignment of distances to 

various areas of the scene. 

 

C. Cross-Bilateral Filtering of Depth 

    While the median-based fusion helps make depth more 

consistent globally, the fused depth is overly smooth and 

locally inconsistent with the query image due to edge 

misalignment between the depth fields of the kNNs and the 

query image. This results in the lack of edges in the fused 

depth where sharp object boundaries should occur and/or the 

lack of fused-depth smoothness where smooth depth is 

expected. In order to correct this, similarly to Agnot et al. 

[1], it applies cross-bilateral filtering (CBF). CBF is a 

variant of bilateral filtering, an edge-preserving image 

smoothing method that applies anisotropic diffusion 

controlled by the local content of the image itself [4]. In 

CBF, however, the diffusion is not controlled by the local 

content of the image under smoothing but by an external 

input. It applies CBF to the fused depth d using the query 

image Q to control diffusion. This allows us to achieve two 

goals simultaneously: alignment of the depth edges with 

those of the luminance Y in the query image Q and local 
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noise/granularity suppression in the fused depth d. This is 

implemented as follows: 

 
Where inverse of d is the filtered depth field and hσ(x) = 

exp(−||x||
2
/2σ

2
)/2πσ

2
 is a Gaussian weighting function. Note 

that the directional smoothing of d is controlled by the query 

image via the weight hσe (Y[x] − Y[y]). For large luminance 

discontinuities, the weight hσe (Y[x]−Y[y]) is small and thus 

the contribution of d[y] to the output is small. However, 

when Y[y] is similar to Y[x] then hσe (Y[x] − Y[y]) is 

relatively large and the contribution of d[y] to the output is 

larger. In essence, depth filtering (smoothing) is happening 

along (and not across) query edges. The depth field is 

overall smooth (slowly varying) while depth edges, if any, 

are aligned with features in the query image. The filtered 

depth preserves the global properties captured by the 

unfiltered depth field d, and is smooth within objects and in 

the background. At the same time it keeps edges sharp and 

aligned with the query image structure. 

 

D. Stereo Rendering 

   In order to generate an estimate of the right image QR from 

the monocular query Q, a disparity δ from the estimated 

depth d needs to be computed. Assuming that the fictitious 

image pair (Q,QR) was captured by parallel cameras with 

baseline B and focal length f , the disparity is simply δ[x, y] 

= Bf /d[x], where x = [x, y]T. It forwards projects the 2D 

query Q to produce the right image: 

 

QR[x+δ[x,y],y]=Q[x.y]                          (5) 

While rounding the location coordinates (x + ä[x, y], y) to 

the nearest sampling grid point. It handles occlusions by 

depth ordering: if (xi + ä[xi, yi], yi) = (xj + ä[xj, yi], yi) for 

some i, j, it assigns to the location (xi + ä[xi, yi], yi) in QR an 

RGB value from that location (xi, yi) in Q whose disparity 

ä[xi, yi] is the largest. In newly-exposed areas, i.e., for xj 

such that no xi satisfies (xj, yi) = (xi + ä[xi, yi], yi), Applying 

a more advanced depth-based rendering method would only 

improve this step of the proposed 2D-to-3D conversion. 

V. EXPERIMENTAL RESULTS 

    The approach has been tested on two datasets: the 

Make3D dataset #1 [21], [13], [14] composed of 534 

outdoor images with depth fields captured by a laser range 

finder and the NYU Kinect dataset [22], [15] composed of 

1449 pairs of RGB images and corresponding depth fields. 

Note that the Make3D images are of 240×320 resolution but 

the corresponding depth fields are only of 55×305 spatial 

resolution and relatively coarse quantization. On the other 

hand, the Kinect dataset consists of both images and depth 

fields at 640×480 resolution and the depth precision is 

relatively high (11 bits). 

  In order to evaluate the performance of the proposed 

algorithms quantitatively, leave-one-out cross-validation 

(LOOCV) was applied as follows. One image+depth pair 

from a database was selected as the 2D query (Q, dq) 

treating the remaining pairs as the 3D image repository I 

based on which a depth estimate the inverse of d and a right-

image estimate QR are computed. As the quality metric, it is 

used normalized cross-covariance between the estimated 

depth d and the ground-truth depth dq as follows: 

 

Where N is the number of pixels in d and dQ, µd and µdQ are 

the empirical means of d and dQ, respectively, while σd and 

σdQ are the corresponding empirical standard deviations. The 

normalized cross-covariance C takes values between - 1 and 

+1 (for values close to +1 the depths are very similar and for 

values close to -1 they are complementary). 

Table 1: Average and median normalized cross covariance C computed 

across all images in the Make3D Dataset. 

 
  

Local 

 

Global 

 

Make3D 

 

Karsch 

et. al. 

Median     Median+CBF 

Average 

C 

0.59 0.78 0.80 0.78 0.73 

Median 
C 

0.61 0.85 0.86 0.78 0.79 

 

 

Table I shows experimental results obtained from 534 

LOOCV tests on the Make3D dataset #1 using various 

algorithms. The performance of each algorithm has been 

captured by the average and median of cross-covariance C 

(6) across all LOOCV tests. The local method has been 

trained on the Make3D and Kinect datasets, respectively, 

i.e., the transformations fc and fl (transformation fm is not 

used since both datasets contain only still images), have 

been learned by analysing depth color and depth-location 

relationships in all image-depth pairs of either dataset. It 

used weights wc = 0.3 and wl = 0.7 in the experiments. The 

global method and the method by Karsch et al. [7] have no 

training phase but learn the depth from k best examples 

found for each query image. As it has already mentioned, 

the Make3D algorithm [14] has been trained on the Make3D 

dataset and there is no option available to re-train it on the 

Kinect dataset. Clearly, for both datasets the global method 

with cross bilateral filtering of the fused depths outperforms 

all other algorithms, although the same algorithm without 

the filtering performs very similarly. The numerical gain 

from filtering the fused depth is rather small since its 

greatest impact is at depth edges (re-alignment with edges in 

the query image). Consequently, it affects the normalized 
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cross covariance at just a few pixels. The Make3D algorithm 

performs almost as well as the global method on the 

Make3D dataset. However, this result is biased towards high 

values of C since the test images in the LOOCV test include 

images from the database on which the Make3D algorithm 

was trained (400 training images). Not surprisingly, the 

same algorithm applied to the Kinect dataset fairs rather 

poorly but, it has been already mentioned, re-training was 

not possible. The Karsch et al. method does not perform as 

well as the global algorithm on either dataset. Finally, the 

local method achieves a consistent but low performance 

which is not surprising given its simplicity.  

     In addition to LOOCV tests on the Make3D dataset #1, 

where the test image may belong to the set of original 400 

training images, it also applied the test used by Saxena et al. 

[14]. Namely, the 534 images of this dataset were divided 

into 134 test images and 400 training images (on which the 

Make3D algorithm was trained). It selected the test image 

from the test set and used the training set to find the k 

nearest neighbors.  

    This is to be expected since LOOCV uses more training 

images. The performance of the local method appears to be 

only marginally affected. This can be attributed to the use of 

a fixed point mapping. Both Make3D and the global method 

with CBF experience a significant performance drop but 

Make3D continues to trail behind the method. The method 

of Karsch et al. appears to be more robust, even improving 

slightly in terms of the average C value, but it takes about 2 

hours to execute while processing 12 images in parallel. In 

contrast, Make3D takes about 30mins and the global method 

with CBF takes about 1 second to process. 

 

VI. CONCLUSION 

A new class of methods is proposed to aim at 2D-to-3D 

image conversion that is based on the radically different 

approach of learning from examples. One method that is 

proposed is based on learning a point mapping from local 

image attributes to scene-depth. The other method is based 

on globally estimating the entire depth field of a query 

directly from a repository of image+depth pairs using 

nearest-neighbor-based regression. It objectively validates 

the algorithms’ performance against state-of-the-art 

algorithms. While the local method was outperformed by 

other algorithms, it is extremely fast as it is, basically, based 

on table look-up. However, the global method performed 

better than the state-of-the-art algorithms in terms of 

cumulative performance across two datasets and two testing 

methods, and has done so at a fraction of CPU time. 

Anaglyph images produced by the algorithms result in a 

comfortable 3D experience but are not completely void of 

distortions. Clearly, there is room for improvement in the 

future. With the continuously increasing amount of 3D data 

on-line and with the rapidly growing computing power in 

the cloud, the proposed framework seems a promising 

alternative to operator-assisted 2D-to-3D image and video 

conversion. 
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