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Abstract—3D image and video applications are becoming popular in our
daily life, especially at home entertainment. Although more and more 3D
movies are being made, 3D image and video contents are still not rich
enough to satisfy the future 3d image in market. There is a rising demand
on new techniques for automatically converting 2d to 3d image. the most
common method involves human operator and automatic conversion of
image. The proposed system methods that are used to convert 2d to 3d
image includes point mapping from local images which mainly includes
attributes like color location and motion and global method which mainly
estimate the depth of an image that are stored in
repository(depth+image) using a nearest-neighbor regression type idea.
We demonstrate both the efficacy and the computational efficiency of our
methods on numerous 2D images and discuss their drawbacks and
benefits. these method lack behind in time computation hence we present
a new method support vector machine which increase the time efficiency
and calculate the depth map of an image and also use median filter and
cross bilateral filters to provide high quality images.

Keywords—Images,Nearest neighbouring search,SVM,Filters.

I.INTRODUCTION

Rapid development of 3D displays technologies and image
has brought 3D into our life. As more facilities and devices are
3D capable, the demand for 3D image and video contents- is
increasing sharply.However, the tremendous amount of current
and past media data is in 2D format and 3D stereo contents are
still not rich now.

The availability of 3D-capable hardware today, such as
TVs, Blu-Ray players, gaming consoles, and smartphones, is
not yet matched by 3D content production. constantly growing
in numbers, 3D movies are still an exception rather than a rule,
and 3D broadcasting (mostly sports) is still minuscule
compared to 2D broadcasting. The gap between 3D hardware
and 3D content availability is likely to close in the future, but
today there exists an urgent need to convert the existing 2D
content to 3D. A typical 2D-to-3D conversion process consists
of two steps: depth estimation for a given 2D image and depth-
based rendering of a new image in order to form a
stereopairimages.

The methods we propose in this paper, carry the “big
data”philosophy of machine learning. In consequence, they
apply toarbitrary scenes and require no manual annotation. Our
datadrivenapproach to 2D-to-3D conversion has been inspired
by the recent trend to use large image databases for various
computer vision tasks, such as object recognition [18] and
image saliency detection [19]. In particular, we propose anew
class of methods that are based on the radically different
approach of learningthe 2D-to-3D conversion  from
examples.We develop two types of methods. The first one is
based onlearning a point mapping from local image/video
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attributes, such as color, spatial position, and motion at each
pixel, toscene-depth at that pixel using a regression type idea.
Thesecond one is based on globally estimating the entire
depthmap of a query image directly from a repository of 3D
images(image+depth pairs or stereopairs) using a nearest-
neighbor regression type idea. Early versions of our learning-
based approach to 2D-to-3D image conversion, either suffered
from high computational complexity [8] or were tested on only
a single dataset [9]. Here, we introduce the local method and
evaluate the qualitative performance and the computational
efficiency of both the local and global methods against those of
the Make3D algorithm [14] and a recent method proposed by
Karsch[7]. We demonstrate the improved quality of the depth
maps produced by our global method relative to stateof- the-art
methods together with up to 4 orders of magnitude reduction in
computational effort. We also discuss weaknesses of both
proposed methods.

I1.LEXISTING SYSTEM

A. Semi-Automatic Method

To reduce operator involvement in the process and,
therefore, lower the cost while speeding up the
conversion,research effort has recently focused on the most
labor-intensiv steps of the manual involvement, namely spatial
depth assignment Guttman [6] have proposed a dense depth
recoveryvia diffusion from sparse depth assigned by the
operator.In the first step, the operator assigns relative depth to
imagepatches in some frames by scribbling. In the second step,
acombination of depth diffusion ,that accounts for local
imagesaliency and local motion, and depth classification is
applied.In the final step, disparity is computed from the depth
field and two novel views are generated by applying half of the
disparity amplitude. Phan [12] propose a simplified and more
efficient version of the Guttmann et al. [6] method using scale-
space random walks that they solve with the help of graph cuts.
Liao [10] further simplify operator involvement by first
computingoptical flow, then applying structure-from-motion
estimationand finally extracting moving object boundaries. The
role ofan operator is to correct errors in the automatically
computeddepth of moving objects and assign depth in
undefined areas.

B. Automatic Method

Several electronics manufacturers have developed real-time
2D-t0-3D converters that rely on stronger assumptions
andsimpler processing than the methods discussed above, e.g.,-
moving or larger objects are assumed to be closer to theviewer,
higher frequency of texture is assumed to belong toobjects
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located further away, etc. Although such methods maywork
well in specific scenarios, in general it is very difficult,if not
impossible, to construct heuristic assumptions that cover all
possible background and foreground combinations.

The problem of depth estimation from a single 2D
image,which is the main step in 2D-to-3D conversion, can
beformulated in various ways, for example as a shape
fromshadingproblem [20]. However, this problem s
severelyunder-constrained; quality depth estimates can be
found onlyfor special cases. Other methods, often called multi-
viewstereo, attempt to recover depth by estimating scene
geometryfrom multiple images not taken simultaneously. For
example, amoving camera permits structure-from-motion
estimation [17]while a fixed camera with varying focal length
permits depthfrom-defocus estimation [16]. Both are examples
of the useof multiple images of the same scene captured at
differenttimes or under different exposure conditions.

I11.PROPOSED SYSTEM

A.LOCAL POINT TRANSFORMATION

The first class of conversion methods we are presenting is
based on learning a point transformation that relates local
lowlevelimage or video attributes at a pixel to scene-depth at
thatpixel. Once the point transformation is learned, it is
appliedto a monocular image, i.e., depth is assigned to a pixel
based on its attributes. This is in contrast to methods described
where the entire depth map of a query is estimated directly
from a repository of 3D images (image+depth pairs or
stereopairs) using a nearest-neighbor regression type idea.

A pivotal element in this approach is a point transformation
used to compute depth from image attributes. This
transformationcan be estimated either by training on -a
groundtruth dataset, the approach we take in this paper, or
defined heuristically.

Let I = {(I_f dl),(l_'f, dz)(ﬁ d")}denote a training

dataset composed of K pairs (F; d") Whereﬁis a color
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image (usually in YUV format) and dkis this a color image
(usually in YUV format) and d,is the corresponding depth
field. We assume that all images and depth fields have the
same spatial dimensions. Such a dataset can be constructed in
various ways. One example is the Make3D dataset [13], [14],
[21] that consists of images and depth fields captured outdoors
by a laser range finder. Another example is the NYU Kinect
dataset [15], [22] containing over 100 k images and depth
fields captured indoors using a Kinectcamera.

Given a training set | consisting of K image-depth pairs,

one can, in principle, learn a general regression function that
maps a tuple of local features such as (color,location,motion)
to a depth value, i.e.

f: (color, location,motion) —depth.

However, to ensure low run-time memory and processing
costs, we learn a more restricted form of transformation:

f [color, x,motion] = w, f, [color]+w; f; [X]+w,, w,, [motion].

We now discuss how the individual color-depth,
locationdepth, and motion-depth transformations as well as the
weights are learned.

Fig. 1 shows a sample video frame with depth maps estimated
from color, location and motion cues separately, as well as the
final combined depth map. In order to obtain a color depth
transformation fc.we first transform the YUV space, commonly
used in compressed images and videos, to the HSV color space.
We found out that the saturation component (S) provides little
depth discrimination capacity and therefore we limit the
transformation attributes to hue (H) and value (V). Let [H¥[x],
Sk [x], VK[X]]T be the HSV components of a pixel at spatial
location x quantized to L levels. The depth mapping fc[h, v], h,
v =1, .., Liscomputed as the average of depths at all pixels in
I with hue h and value v:

S B (R [x]=h VK [x]=v)d¥ [x]
f.[h,v] = K T (HE [x]=h VK [x]=v)

@)

Fig.1. Example of depth estimation from color spatial and location and motion.
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where 1(A) is the indicator function which equals one if A is
true and equals zero otherwise.

Fig.2. Color-depth Transformation

Fig. 2(a) shows the transformation fc computed from a dataset
Iof, mostly, outdoor scenes. Note a large dark patch around
reddish colors indicating that red elements of a scene are
located closer to the camera. A large bright patch around
bright-bluish colors is indicative of a far-away sky. The bright
patch around yellow-orange colors is more difficult to classify
but may be due to the distant sun as many videos have been
captured outdoors.The location-depth transformation f;is
simply the average depth computed from all depth maps in Iat
the same location:

filx]= £ 2k d¥ [x] [2]

In addition to color and spatial attributes, video sequences
may contain motion attributes relevant to depth recovery. In
this case, local motion between consecutive video frames'is of
interest. The underlying assumption in the motion-depth
transformation is that moving objects are closer to the viewer
than the background. In order to estimate the motion-depth
transformation f,,, the basic idea is to first compute local
motion between consecutive video frames, then extract a
moving object mask from this motion, and, finally, assign a
distinct depth (smaller than that of the background) to this
mask. This brings the moving objects closer to the viewer. The
estimation of local motion may be accomplished by any
optical flow method, e.g., [2], but may also require global
motion compensation, e.g., [5], in order to account for camera
movements. A simple thresholding of the magnitude of local
motion produces a moving object’s mask. However, since
such masks are often noisy some form of smoothing may be
needed. Cross-bilateral filtering [4] controlled by the
luminance of the video frame, in which the estimated local
motion is anchored, usually suffices.In the final step, the local
transformation outputs are linearly combined to produce the
final depth field.

B.GLOBALNEAREST-NEIGHBOR DEPTH LEARNING

While 2D-to-3D conversion based on learning a local point

transformation has the undisputed advantage of computational
efficiency — the point transformation can be learned off-
lineand applied basically in real time — the same
transformation isapplied to images with potentially different
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global 3D scenestructure. This is because this type of
conversion, althoughlearning-based, is based on purely
localimage/video attributes, such as color, spatial position, and
motion at each pixel. To address this limitation, in this section
we develop a second method that estimates the globaldepth
map of a query image or video frame directly from a
repository of 3D images

(image+depth pairs or stereopairs) using a nearest-neighbor
regression type idea.The approach we propose here is built
upon a key observation and an assumption.

The following steps are:

e search for representative depth fields: find k 3D
images in the repository | that have most similar
depth to the query image, for example by performing
a k nearest-neighbor (kNN) search using a metric
based on photometric properties,

e depth fusion: combine the k representative depth
fields,for example, by means of median filtering
across depthfields

"/N)hrng;)

/ ! search for

A representative depth
|
other knn result

first image first image
with light i
£
second second
m

with light

image input

image input

depth
estimation

A
Cuidep

send data query depth image image

Jimage query query query

right image,
Query image

Fig.3. Block diagram of global method.

e depth smoothing: process the fused depth field to
remove spurious variations, while preserving
depth,for example, by means of cross-
bilateralfiltering,

e stereo rendering: generate the right image of a
fictitiousstereopair using the monocular query image
and thesmoothed depth field followed by suitable
processingof  occlusions and  newly-exposed
areas.directly to 3D images represented as an
image+depth pair.However, in the case of stereopairs
a disparity field needsto be computed first for each
left/right image pair. Then,each disparity field can be
converted to a depth map.

1) kNN Search
There exist two types of images in a large 3D image repository
those that are relevant for determining depth in a 2D query
image, and those that are irrelevant. Images that are not
photometrically similar to the 2D query need to berejected
because they are not useful for estimating depth(as per our
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assumption). Note that although we might misssome depth-
relevant images, we are effectively limiting thenumber of
irrelevant images that could potentially be moreharmful to the
2D-to-3D conversion process. The selection ofa smaller subset
of images provides the added practical benefitof
computational tractability when the size of the repository is
very large. One method for selecting a useful subset of depth-
relevant images from a large repository is to select only the k
images that are closest to the query where closeness is
measured by some distance function capturing global image
properties such as color, texture, edges, etc. As this distance
function, we use the Euclidean norm of the difference between
histograms oforiented gradients (HOGs) [3] computed from
two images.Each HOG consists of 144 real values (4 X4
blocks with9 gradient direction bins) that can be efficiently
computed.We perform a search for top matches to our

monocular query Q among all imagesﬁ, k=1,.. Kinthe 3D
databasel. The search returns an ordered list of
image+depthpairs,from the most to the least photometrically
similar vis-a-vis thequery. We discard all but the top k matches
(kNNs) from thislist.

Fig. 4 shows search results for two outdoor query images
performed on the Make3D dataset #1. Although none of the
fourkNNs perfectly matches the corresponding 2D query, the
general underlying depth is somewhat related to that expected
in the query. In Fig. 5.we show search results for two indoor
query images (office and dining room) performed on the NYU
Kinect dataset. While some of the retained images share local
3D structures with the query image .The average photometric
similarity between a query and its k-th nearest neighbor
usually decays with the increasing k. While for “large
databases, larger values of k may be appropriate, since there
are many good matches, for smaller databases this may not be
true. Therefore, a judicious selection of k is important. We
discuss the choice of k. We denote by K the set of indices i of
image+depth pairs that are the top k photometrically-nearest
neighbors of the query Q.

2D Query: Buildings

Fig.4. RGB image and depth field of two 2D queries (left column), and their
four nearest neighbors (columns 2-5) retrieved using the Euclidean norm on
the difference between histograms of gradients.
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Fig. 5. RGB image and depth field of two 2D queries (left column), and their
four nearest neighbors (columns 2-5) retrieved using the Euclidean norm on

the difference between histograms of gradients.

2) Depth Fusion

In general, none of the NN image+depth pairs (1 i,di ), i €K
match the query Q accurately (Figs. 4 and 5). However,the
location of some objects (e.g., furniture) and parts of the
background (e.g., walls) is quite consistent with those
intherespective query. If a similar object (e..g, building, table)
appears at a similar location in several KNN images, it is likely
that such an object also appears in the query, and the depth
field being sought should reflect this. We compute this depth
field by applying the median operator across the kNN depths
at each spatial location x as follows:

d[x]= median{di [x] Vi €K} (3)

3) Cross-Bilateral Filtering (CBF) of Depth

While the median-based fusion helps make depth more
consistentglobally, the fused depth is overly smooth and
locallyinconsistent with the query image due to edge
misalignmentbetween the depth fields of the kNNs and the
query image.This, in turn, often results in the lack of edges in
the fuseddepth where sharp object boundaries should occur
and/orthe lack of fused-depth smoothness where smooth depth
is expected.In order to correct this, similarly to Agnot[1],we
apply cross-bilateral filtering (CBF). CBF is a variant

of bilateral filtering, an edge-preserving image smoothing
method that applies anisotropic diffusion controlled by the
local content of the image itself [4]. In CBF, however, the
diffusion is not controlled by the local content of the image
under smoothing but by an external input. We apply CBF to
the fused depth d using the query image Q to control diffusion.
This allows us to achieve two goals simultaneously: alignment
of the depth edges with those of the luminance Y in the query
imageQ and local noise/granularity suppression in the fused
depthd. This is implemented as follows:

dlx] = ﬁ Z A5V, (x — ¥)Ao (FIx] — FI¥D.
yIxl = > Ao (x — ¥, (¥Tx] — ¥T¥D.

4
Where dthe filtered depth field and h,(X)=exp(—
llx|l/262)12zc?is a Gaussian weighting function.The
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directional smoothing of d is controlled by the query image
via the weight h, (Y [x]-Y [y]). For largeluminance
discontinuities, the weight h,, (Y [x]-Y [y]) is small and thus
the contribution of dly] to the output is small. However,
when Y [y] is similar to Y [x] then h, (Y [x]-Y [y])is
relatively large and the contribution of d[y] to the output is
larger. In essence, depth filtering (smoothing) is happening
along (and not across) query edges.

4) Stereo Rendering

In order to generate an estimate of the right image QR fromthe
monocular query Q, we need to compute a disparity 6 fromthe
estimated depth d. Assuming that the fictitious image pair(Q,
Qr) was captured by parallel cameras with baseline Band focal
length f, the disparity is simply 8[x, y] = B f/ d[x],where x
=[x, y]".We forward-project the 2D query Q toproduce the
right image:

Qrlx+ olx,yl,yl = Qlx, Y] (5)

while rounding the location coordinates (x +J[x, y1, y) to the
nearest sampling grid point. We handle occlusions by depth
ordering: if (xi+ J[xi, yil, yi)= (xj+5[xj, yil, yi) for some

i, j , we assign to the location (xi + J[xi, yil, yi) in QR an
RGB value from that location (xi , yi) in Q whose disparity
dlxi, yil isthe largest. In newly-exposed areas, i.e., for X
such that no xi satisfies (x j, yi) = (xi + d[xi, yil, yi),we apply
simple inpainting using inpaint_nans from matlab
Central.Applying a more advanced depth-based rendering
method would only improve this step of the proposed 2D-to-
3D conversion.

Query image Q Query depthd  Local method

Global method

Make3D

Fig.6.Query images from Fig. 5and depth fields: of the query, depth estimated
by the local transformation method, depth estimated by the global
transformation method (with CBF) and depth computed using the Make3D
algorithm.

In Fig. 6, we show an example of median-fused depth field
after cross-bilateral filtering. Clearly, the depth field is overall
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smooth (slowly varying) while depth edges, if any, are aligned
with features in the query image. Fig.7. compares the fused
depth before cross-bilateral filtering and after. The filtered
depth preserves the global properties captured by the
unfiltered depth field d, and is smooth within objects and in
the background. At the same time it keeps edges sharp and
aligned with the query image structure.

Global(median)

Query image Q  Query depth d,,
i 17
- A [E L

Global(median+CBF) Make3D
I

e

Fig. 7. Query images from Fig. 6 and depth fields: of the query, estimated
depth by the global method after median-based fusion and after the same
fusion and CBF, and depth computed using the Make3D algorithm.

In order to evaluate the performance of the
proposedalgorithms quantitatively, we first applied leave-one-
out cross-validation (LOOCV) as follows. We selected one
image+depth pair from a database as the 2D query (Q,
dQ)treating the remaining pairs as the 3D image repository
Ibased on which a depth estimate d* and a right-image
estimateQ”zare computed. As the quality metric, we used
normalizedcross-covariance between the estimated depth
d “and the ground-truth depth dqdefined as follows:

C=——%(dM — pg) (dg[X]Ha,) 6)

Naaon

whereN is the number of pixels in dand dg. Ha,and pgare the

empirical means of dand dg, respectively, while o; and
g are the corresponding empirical standard deviations.The

normalized cross-covariance C takes values between —1 and
+1 (for values close to +1 the depths are very similar and for
values close to —1 they are complementary).

5) Support Vector Machine

The SVM method in general it is a set of labeled sample data
in order to classify new sample data. To use SVM, you train
the algorithm by providing it with example data that you have
grouped into a series of categories. Then, when you provide
the algorithm with new, unknown data, it assigns that data to
one of your given categories based on its resemblance to the
known training data.lt mainly distinguish the objects in a
given image using HOG and SVM uses a subset of training
point also known as support vectors to classify different
objects hence it is more efficient and which helps in
conversion of 2D to 3D images in less time compare to
proposed system i.e local and global methods. we can compute
efficient time computation.
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Fig.8. Block Diagram of SVM and filters used for conversion of 2d to 3D
images.

The above fig.9.which uses the svm to convert 2D to 3D
image using mask and cross bilateral filters.The advantage
over local and global methods s during the conversion the time
taken by the svm is very less i.e. about 5-6 seconds whereas
the global and local takes 10-12 seconds.

IV.CONCLUSION

We have proposed a new class of methods 2D-to-3D image
conversion that are based on the different approach of
learning. One method is local point mapping from local image
attributes to scene-depth. The second method is based on
globally estimating the entire depth field of a query directly
from a repository of image +depth pairs using nearest
neighbor-based regression. These method overcome the
disadvantage of existing system.While the local method
perform extremely fast as it is, basically, based on table
lookup. However, our global method performed better than the
previous method in terms of cumulative performance across
two datasets and two testing methods, and has done so at a
fraction of CPU time.The support vector machine which
provide better time computational efficiency.With the
continuously increasing amount of 3D data on-line and with
the rapidly growing computing power in the cloud, the
proposed framework seems a promising alternative to
operator-assisted 2D-to-3D image and video conversion.
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