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Abstract—3D image and video applications are becoming popular in our 

daily life, especially at home entertainment. Although more and more 3D 

movies are being made, 3D image and video contents are still not rich 

enough to satisfy the future 3d image in market. There is a rising demand 

on new techniques for automatically converting 2d to 3d image. the most 

common method involves human operator and automatic conversion of 

image. The  proposed system methods that are used to convert 2d to 3d 

image includes point mapping from local images which mainly includes 

attributes like color location and motion and global method which mainly 

estimate the depth of an image that are stored in 

repository(depth+image) using a nearest-neighbor regression type idea. 

We demonstrate both the efficacy and the computational efficiency of our 

methods on numerous 2D images and discuss their drawbacks and 

benefits. these method lack behind in time computation hence we present 

a new method support vector machine which increase the time efficiency 

and calculate the depth map of an image and  also use median filter and 

cross bilateral filters to provide high quality images.  

Keywords—Images,Nearest neighbouring search,SVM,Filters. 

I.INTRODUCTION 

Rapid development of 3D displays technologies and image 
has brought 3D into our life. As more facilities and devices are 
3D capable, the demand for 3D image and video contents is 
increasing sharply.However, the tremendous amount of current 
and past media data is in 2D format and 3D stereo contents are 
still not rich now. 

 The availability of 3D-capable hardware today, such as 
TVs, Blu-Ray players, gaming consoles, and smartphones, is 
not yet matched by 3D content production. constantly growing 
in numbers, 3D movies are still an exception rather than a rule, 
and 3D broadcasting (mostly sports) is still minuscule 
compared to 2D broadcasting. The gap between 3D hardware 
and 3D content availability is likely to close in the future, but 
today there exists an urgent need to convert the existing 2D 
content to 3D. A typical 2D-to-3D conversion process consists 
of two steps: depth estimation for a given 2D image and depth-
based rendering of a new image in order to form a 
stereopairimages. 

The methods we propose in this paper, carry the “big 
data”philosophy of machine learning. In consequence, they 
apply toarbitrary scenes and require no manual annotation. Our 
datadrivenapproach to 2D-to-3D conversion has been inspired 
by the recent trend to use large image databases for various 
computer vision tasks, such as object recognition [18] and 
image saliency detection [19]. In particular, we propose anew 
class of methods that are based on the radically different 
approach of learningthe 2D-to-3D conversion from 
examples.We develop two types of methods. The first one is 
based onlearning a point mapping from local image/video 

attributes, such as color, spatial position, and motion at each 
pixel, toscene-depth at that pixel using a regression type idea. 
Thesecond one is based on globally estimating the entire 
depthmap of a query image directly from a repository of 3D 
images(image+depth pairs or stereopairs) using a nearest-
neighbor regression type idea. Early versions of our learning-
based approach to 2D-to-3D image conversion, either suffered 
from high computational complexity [8] or were tested on only 
a single dataset [9]. Here, we introduce the local method and 
evaluate the qualitative performance and the computational 
efficiency of both the local and global methods against those of 
the Make3D algorithm [14] and a recent method proposed by 
Karsch[7]. We demonstrate the improved quality of the depth 
maps produced by our global method relative to stateof- the-art 
methods together with up to 4 orders of magnitude reduction in 
computational effort. We also discuss weaknesses of both 
proposed methods. 

II.EXISTING SYSTEM 

A. Semi-Automatic Method 

To reduce operator involvement in the process and, 
therefore, lower the cost while speeding up the 
conversion,research effort has recently focused on the most 
labor-intensiv steps of the manual involvement, namely spatial 
depth assignment Guttman [6] have proposed a dense depth 
recoveryvia diffusion from sparse depth assigned by the 
operator.In the first step, the operator assigns relative depth to 
imagepatches in some frames by scribbling. In the second step, 
acombination of depth diffusion ,that accounts for local 
imagesaliency and local motion, and depth classification is 
applied.In the final step, disparity is computed from the depth 
field and two novel views are generated by applying half of the 
disparity amplitude. Phan [12] propose a simplified and more 
efficient version of the Guttmann et al. [6] method using scale-
space random walks that they solve with the help of graph cuts. 
Liao [10] further simplify operator involvement by first 
computingoptical flow, then applying structure-from-motion 
estimationand finally extracting moving object boundaries. The 
role ofan operator is to correct errors in the automatically 
computeddepth of moving objects and assign depth in 
undefined areas. 

B. Automatic Method 

Several electronics manufacturers have developed real-time 
2D-to-3D converters that rely on stronger assumptions 
andsimpler processing than the methods discussed above, e.g.,-
moving or larger objects are assumed to be closer to theviewer, 
higher frequency of texture is assumed to belong toobjects 
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located further away, etc. Although such methods maywork 
well in specific scenarios, in general it is very difficult,if not 
impossible, to construct heuristic assumptions that cover all 
possible background and foreground combinations. 

The problem of depth estimation from a single 2D 
image,which is the main step in 2D-to-3D conversion, can 
beformulated in various ways, for example as a shape 
fromshadingproblem [20]. However, this problem is 
severelyunder-constrained; quality depth estimates can be 
found onlyfor special cases. Other methods, often called multi-
viewstereo, attempt to recover depth by estimating scene 
geometryfrom multiple images not taken simultaneously. For 
example, amoving camera permits structure-from-motion 
estimation [17]while a fixed camera with varying focal length 
permits depthfrom-defocus estimation [16]. Both are examples 
of the useof multiple images of the same scene captured at 
differenttimes or under different exposure conditions. 

III.PROPOSED SYSTEM 

 

A.LOCAL POINT TRANSFORMATION 

The first class of conversion methods we are presenting is 

based on learning a point transformation that relates local 

lowlevelimage or video attributes at a pixel to scene-depth at 

thatpixel. Once the point transformation is learned, it is 

appliedto a monocular image, i.e., depth is assigned to a pixel 

based on its attributes. This is in contrast to methods described 

where the entire depth map of a query is estimated directly 

from a repository of 3D images (image+depth pairs or 

stereopairs) using a nearest-neighbor regression type idea. 

 

A pivotal element in this approach is a point transformation 

used to compute depth from image attributes. This 

transformationcan be estimated either by training on a 

groundtruth dataset, the approach we take in this paper, or 

defined heuristically.  

Let 𝐼 =   𝐼1 ,     𝑑1 ,  𝐼2 ,     𝑑2 , … ,  𝐼𝑘 ,     𝑑𝑘  denote a training 

dataset composed of K pairs  𝐼𝑘 ,     𝑑𝑘  where𝐼1,     is a color 

image (usually in YUV format) and dkis this a color image 

(usually in YUV format) and 𝑑𝑘 is the corresponding depth 

field. We assume that all images and depth fields have the 

same spatial dimensions. Such a dataset can be constructed in 

various ways. One example is the Make3D dataset [13], [14], 

[21] that consists of images and depth fields captured outdoors 

by a laser range finder. Another example is the NYU Kinect 

dataset [15], [22] containing over 100 k images and depth 

fields captured indoors using a Kinectcamera. 

 

Given a training set I consisting of K image-depth pairs, 

one can, in principle, learn a general regression function that 

maps a tuple of local features such as (color,location,motion) 

to a depth value, i.e. 

 

f : (color, location,motion) →depth. 

 

However, to ensure low run-time memory and processing 

costs, we learn a more restricted form of transformation: 

 

f [color, x,motion] = 𝑤𝑐𝑓𝑐  [color]+𝑤𝑖𝑓𝑖  [x]+𝑤𝑚𝑤𝑚 [motion]. 

 

We now discuss how the individual color-depth, 

locationdepth, and motion-depth transformations as well as the 

weights are learned. 
Fig. 1 shows a sample video frame with depth maps estimated 
from color, location and motion cues separately, as well as the 
final combined depth map. In order to obtain a color depth 
transformation fc.we first transform the YUV space, commonly 
used in compressed images and videos, to the HSV color space. 
We found out that the saturation component (S) provides little 
depth discrimination capacity and therefore we limit the 

transformation attributes to hue (H) and value (V ). Let [Hk[x], 

Sk  [x], Vk[x]]T be the HSV components of a pixel at spatial 
location x quantized to L levels. The depth mapping fc[h, v], h, 
v = 1, ..., L is computed as the average of depths at all pixels in 
I with hue h and value v: 

fc h, v =
  lx

K
k =1  Hk  x =h,Vk  x =v dk [x]

  lx
K
k =1  Hk  x =h,Vk  x =v 

           (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Example of depth estimation from color spatial and location and motion. 
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where 1(A) is the indicator function which equals one if A is 

true and equals zero otherwise. 

 

 

 
Fig.2. Color-depth Transformation 

 

Fig. 2(a) shows the transformation fc computed from a dataset 

𝐼of, mostly, outdoor scenes. Note a large dark patch around 

reddish colors indicating that red elements of a scene are 

located closer to the camera. A large bright patch around 

bright-bluish colors is indicative of a far-away sky. The bright 

patch around yellow-orange colors is more difficult to classify 

but may be due to the distant sun as many videos have been 

captured outdoors.The location-depth transformation 𝑓𝑙 is 

simply the average depth computed from all depth maps in 𝐼at 

the same location: 

 

𝑓𝑙[x]=
1

𝐾
 𝑑𝐾𝐾

𝐾=1 [𝑥]                                [2] 

 

In addition to color and spatial attributes, video sequences 

may contain motion attributes relevant to depth recovery. In 

this case, local motion between consecutive video frames is of 

interest. The underlying assumption in the motion-depth 

transformation is that moving objects are closer to the viewer 

than the background. In order to estimate the motion-depth 

transformation 𝑓𝑚 , the basic idea is to first compute local 

motion between consecutive video frames, then extract a 

moving object mask from this motion, and, finally, assign a 

distinct depth (smaller than that of the background) to this 

mask. This brings the moving objects closer to the viewer. The 

estimation of local motion may be accomplished by any 

optical flow method, e.g., [2], but may also require global 

motion compensation, e.g., [5], in order to account for camera 

movements. A simple thresholding of the magnitude of local 

motion produces a moving object’s mask. However, since 

such masks are often noisy some form of smoothing may be 

needed. Cross-bilateral filtering [4] controlled by the 

luminance of the video frame, in which the estimated local 

motion is anchored, usually suffices.In the final step, the local 

transformation outputs are linearly combined to produce the 

final depth field. 

 
B.GLOBALNEAREST-NEIGHBOR DEPTH LEARNING 

 

While 2D-to-3D conversion based on learning a local point 

transformation has the undisputed advantage of computational 

efficiency – the point transformation can be learned off-

lineand applied basically in real time – the same 

transformation isapplied to images with potentially different 

global 3D scenestructure. This is because this type of 

conversion, althoughlearning-based, is based on purely 

localimage/video attributes, such as color, spatial position, and 

motion at each pixel. To address this limitation, in this section 

we develop a second method that estimates the globaldepth 

map of a query image or video frame directly from a 

repository of 3D images 

(image+depth pairs or stereopairs) using a nearest-neighbor 

regression type idea.The approach we propose here is built 

upon a key observation and an assumption. 

The following steps are: 

 search for representative depth fields: find k 3D 

images in the repository I that have most similar 

depth to the query image, for example by performing 

a k nearest-neighbor (kNN) search using a metric 

based on photometric properties, 

 depth fusion: combine the k representative depth 

fields,for example, by means of median filtering 

across depthfields 

 
 

Fig.3. Block diagram of global method. 

 

 

 depth smoothing: process the fused depth field to 

remove spurious variations, while preserving 

depth,for example, by means of cross-

bilateralfiltering, 

 stereo rendering: generate the right image of a 

fictitiousstereopair using the monocular query image 

and thesmoothed depth field followed by suitable 

processingof occlusions and newly-exposed 

areas.directly to 3D images represented as an 

image+depth pair.However, in the case of stereopairs 

a disparity field needsto be computed first for each 

left/right image pair. Then,each disparity field can be 

converted to a depth map. 

 

1) kNN Search 

There exist two types of images in a large 3D image repository 

those that are relevant for determining depth in a 2D query 

image, and those that are irrelevant. Images that are not 

photometrically similar to the 2D query need to berejected 

because they are not useful for estimating depth(as per our 
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assumption). Note that although we might misssome depth-

relevant images, we are effectively limiting thenumber of 

irrelevant images that could potentially be moreharmful to the 

2D-to-3D conversion process. The selection ofa smaller subset 

of images provides the added practical benefitof 

computational tractability when the size of the repository is 

very large. One method for selecting a useful subset of depth-

relevant images from a large repository is to select only the k 

images that are closest to the query where closeness is 

measured by some distance function capturing global image 

properties such as color, texture, edges, etc. As this distance 

function, we use the Euclidean norm of the difference between 

histograms oforiented gradients (HOGs) [3] computed from 

two images.Each HOG consists of 144 real values (4 ×4 

blocks with9 gradient direction bins) that can be efficiently 

computed.We perform a search for top matches to our 

monocular query Q among all images𝐼𝑘    , k = 1, ..., K in the 3D 

databaseI. The search returns an ordered list of 

image+depthpairs,from the most to the least photometrically 

similar vis-à-vis thequery. We discard all but the top k matches 

(kNNs) from thislist. 

 

Fig. 4 shows search results for two outdoor query images 

performed on the Make3D dataset #1. Although none of the 

fourkNNs perfectly matches the corresponding 2D query, the 

general underlying depth is somewhat related to that expected 

in the query.  In Fig. 5.we show search results for two indoor 

query images (office and dining room) performed on the NYU 

Kinect dataset. While some of the retained images share local 

3D structures with the query image .The average photometric 

similarity between a query and its k-th nearest neighbor 

usually decays with the increasing k. While for large 

databases, larger values of k may be appropriate, since there 

are many good matches, for smaller databases this may not be 

true. Therefore, a judicious selection of k is important. We 

discuss the choice of k. We denote by K the set of indices i of 

image+depth pairs that are the top k photometrically-nearest 

neighbors of the query Q. 

 

 

2D Query: Buildings 

 
Fig.4. RGB image and depth field of two 2D queries (left column), and their 

four nearest neighbors (columns 2–5) retrieved using the Euclidean norm on 
the difference between histograms of gradients. 

 

 

2D Query :Dining room 

 
 

 
 
Fig. 5. RGB image and depth field of two 2D queries (left column), and their 

four nearest neighbors (columns 2-5) retrieved using the Euclidean norm on 

the difference between histograms of gradients. 

2) Depth Fusion 

In general, none of the NN image+depth pairs (I i,di ), i ∈K 

match the query Q accurately (Figs. 4 and 5). However,the 

location of some objects (e.g., furniture) and parts of the 

background (e.g., walls) is quite consistent with those 

intherespective query. If a similar object (e..g, building, table) 
appears at a similar location in several kNN images, it is likely 

that such an object also appears in the query, and the depth 

field being sought should reflect this. We compute this depth 

field by applying the median operator across the kNN depths 

at each spatial location x as follows: 

 

d[x]= median{di [x] ∀i ∈K}(3) 

 

3) Cross-Bilateral Filtering (CBF) of Depth 

While the median-based fusion helps make depth more 

consistentglobally, the fused depth is overly smooth and 

locallyinconsistent with the query image due to edge 

misalignmentbetween the depth fields of the kNNs and the 

query image.This, in turn, often results in the lack of edges in 

the fuseddepth where sharp object boundaries should occur 

and/orthe lack of fused-depth smoothness where smooth depth 

is expected.In order to correct this, similarly to Agnot[1],we 

apply cross-bilateral filtering (CBF). CBF is a variant 

of bilateral filtering, an edge-preserving image smoothing 

method that applies anisotropic diffusion controlled by the 

local content of the image itself [4]. In CBF, however, the 

diffusion is not controlled by the local content of the image 

under smoothing but by an external input. We apply CBF to 

the fused depth d using the query image Q to control diffusion. 

This allows us to achieve two goals simultaneously: alignment 

of the depth edges with those of the luminance Y in the query 

imageQ and local noise/granularity suppression in the fused 

depthd. This is implemented as follows: 

 

     (4)  

 

Where 𝑑 the filtered depth field and ℎ𝑒(x)=exp(−
 𝑥 /2𝜎2)/2π𝜎2is a Gaussian weighting function.The 
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directional smoothing of d is controlled by the query image 

via the weight ℎ𝜎𝑒
(Y [x]−Y [y]). For largeluminance 

discontinuities, the weight ℎ𝜎𝑒
(Y [x]−Y [y]) is small and thus 

the contribution of d[y] to the output is small. However, 

when Y [y] is similar to Y [x] then ℎ𝜎𝑒
(Y [x]−Y [y])is 

relatively large and the contribution of d[y] to the output is 

larger. In essence, depth filtering (smoothing) is happening 

along (and not across) query edges. 

 

4) Stereo Rendering 

In order to generate an estimate of the right image QR fromthe 

monocular query Q, we need to compute a disparity δ fromthe 

estimated depth 𝑑 . Assuming that the fictitious image pair(Q, 

𝑄𝑅
 ) was captured by parallel cameras with baseline Band focal 

length f , the disparity is simply δ[x, y] = B f/ 𝑑 [x],where x 

=[𝑥, 𝑦]𝑇 .We forward-project the 2D query Q toproduce the 

right image: 

 

  𝑄𝑅
 [x + δ[x, y], y] = Q[x, y]    (5) 

 

while rounding the location coordinates (x +δ[x, y], y) to the 

nearest sampling grid point. We handle occlusions by depth 

ordering: if (xi + δ[xi , yi], yi) = (x j +δ[x j , yi], yi) for some 

i, j , we assign to the location (xi + δ[xi , yi], yi) in  QR an 

RGB value from that location (xi , yi) in Q whose disparity 

δ[xi , yi] is the largest. In newly-exposed areas, i.e., for x j 

such that no xi satisfies (x j , yi) = (xi + δ[xi , yi], yi),we apply 

simple inpainting using inpaint_nans from matlab 

Central.Applying a more advanced depth-based rendering 

method would only improve this step of the proposed 2D-to- 

3D conversion. 

 

Query image Q Query depth d Local method 

 
Global method  Make3D 

 
 
Fig.6.Query images from Fig. 5and depth fields: of the query, depth estimated 

by the local transformation method, depth estimated by the global 

transformation method (with CBF) and depth computed using the Make3D 
algorithm. 

 

In Fig. 6, we show an example of median-fused depth field 

after cross-bilateral filtering. Clearly, the depth field is overall 

smooth (slowly varying) while depth edges, if any, are aligned 

with features in the query image. Fig.7. compares the fused 

depth before cross-bilateral filtering and after. The filtered 

depth preserves the global properties captured by the 

unfiltered depth field d, and is smooth within objects and in 

the background. At the same time it keeps edges sharp and 

aligned with the query image structure. 

 

Query image Q Query depth 𝑑𝑄  Global(median) 

 
 

Global(median+CBF) Make3D 

 
 
Fig. 7. Query images from Fig. 6 and depth fields: of the query, estimated 
depth by the global method after median-based fusion and after the same 

fusion and CBF, and depth computed using the Make3D algorithm. 

 
 

In order to evaluate the performance of the 

proposedalgorithms quantitatively, we first applied leave-one-

out cross-validation (LOOCV) as follows. We selected one 

image+depth pair from a database as the 2D query (Q, 

dQ)treating the remaining pairs as the 3D image repository 

𝐼based on which a depth estimate d^ and a right-image 

estimate𝑄^𝑅are computed. As the quality metric, we used 

normalizedcross-covariance between the estimated depth 

d^and the ground-truth depth dQdefined as follows: 

 

C=
1

𝑁𝜎𝑑 𝜎𝑑𝑄

 (𝑑 𝑥 − 𝜇𝑑 )(𝑑𝑄[x]-𝜇𝑑𝑄
)              (6) 

 

whereN is the number of pixels in 𝑑 and 𝑑𝑄 , 𝜇𝑑𝑄
and 𝜇𝑑 are the 

empirical means of 𝑑 and 𝑑𝑄 , respectively, while 𝜎𝑑  and 

𝜎𝑑𝑄
are the corresponding empirical standard deviations.The 

normalized cross-covariance C takes values between −1 and 

+1 (for values close to +1 the depths are very similar and for 

values close to −1 they are complementary). 

 

5) Support Vector Machine 

The SVM method in general it is a set of labeled sample data 

in order to classify new sample data. To use SVM, you train 

the algorithm by providing it with example data that you have 

grouped into a series of categories. Then, when you provide 

the algorithm with new, unknown data, it assigns that data to 

one of your given categories based on its resemblance to the 

known training data.It mainly distinguish the objects in a 

given image using HOG and SVM uses a subset of training 

point also known as support vectors to classify different 

objects hence it is more efficient and which helps in 

conversion of 2D to 3D images in less time compare to 

proposed system i.e local and global methods. we can compute 

efficient time computation.  
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Fig.8. Block Diagram of SVM and filters used for conversion of 2d to 3D 

images. 

 
 

The above fig.9.which uses the svm to convert 2D to 3D 

image using mask and cross bilateral filters.The advantage 

over local and global methods s during the conversion the time 

taken by the svm is very less i.e. about 5-6 seconds whereas 

the global and local takes 10-12 seconds. 
 

IV.CONCLUSION 

We have proposed a new class of methods 2D-to-3D image 

conversion that are based on the different approach of 

learning. One method is local point mapping from local image 

attributes to scene-depth. The second method is based on 

globally estimating the entire depth field of a query directly 

from a repository of image +depth pairs using nearest 

neighbor-based regression. These method overcome the 

disadvantage of existing system.While the local method 

perform extremely fast as it is, basically, based on table 

lookup. However, our global method performed better than the 

previous method in terms of cumulative performance across 

two datasets and two testing methods, and has done so at a 

fraction of CPU time.The support vector machine which 

provide better time computational efficiency.With the 

continuously increasing amount of 3D data on-line and with 

the rapidly growing computing power in the cloud, the 

proposed framework seems a promising alternative to 

operator-assisted 2D-to-3D image and video conversion. 
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