Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

Automated Testing System for Android
Applications based on Dynamic Taint
Propagation

Rakesh M
M.Tech 2" semester
Department of CSE

City engineering college

Abstract: As the increasing downloads of applications via
Android Platform, more and more malicious codes were
injected in those applications. And some problems are caused
by that malicious code such as economic loss and privacy
issues. Android has the highest market share of smartphone
operating system, the security of Android platform is
extremely important. Therefore, the security testing and
evaluation of applications is imperative. Dynamic taint
propagation is the most common method to do the test, but
there are two problems: a) If the custom ROM runs in the
smartphone, the running speed of ROM will be limited to the
smartphone’s battery life and computing power. b) If the
program was running in emulator in PC, the efficiency will be
very poor because of the manual operation for the triggering
action during the running time. The paper presents an
automated testing method which was accomplished in
emulator. In addition, the system will record the tree
structure of Activity and control distribution of each Activity.
The test results showed that the system can trigger all the
controls and compared with manual test, this method was
proven to be more effective and completely.

Keywords: Android Platform, applications, dynamic taint
propagation, automated testing, emulator.

1 INTRODUCTION

According to Jump tap, Android occupied 58.8% of the
mobile market in 2012 and the share was increasing
[1].Corresponds with the growth of Android’s market
share, the number of applications for android had an
explosive growth. Google announced that the download of
its electronic products has exceeded 25 billion and the
applications have exceeded 675 thousand [2]. What came
along with the increasing were lots of problems. Lots of
malicious codes were injected to the hot applications to
execute malicious behaviors and the behaviors led to great
security threats. Common results of malicious behaviors
are divided into two kinds: economic loss and privacy
leakage. The first case is economic loss. In this case, the
application that was injected by malicious code will order
fee-based service via message, or make calls, or surf the
internet in a covert way and lead to economic loss. The
second case is privacy leakage. In this case, the application
that was injected by malicious code will read the privacy
Information such as contact information, location, device

Mukesh Kamath
Associate professor
Department of CSE

City Engineering College

number, messages and schedule without telling the user,
then the information will be delivering to the attacker via
the internet or message. Worse, the malicious code can
control the smartphone to monitor the user. According to
“the report of the security situation of Chinese mobile

phone in 2012” from 360 security center [3], there were

174977 new malware based on mobile in 2012 with a
growth of 1907 percent year-on-year. Among the malware,
there were 123681 new samples that based on Android and
they occupied 71% of all the new samples. During the
results of those malware, economic loss takes the top spot

with 52 percent and the next is privacy leakage with 28

percent. Therefore, it is very important to test the security
of applications based on Android.

2 CURRENT STUDY AND INSUFFICIENCY

According to the study [4-9] of malicious code in the
application, the paper gives a classification; it is showed
inFigure 1.

malicious code
detection technology

N

; & ; Y
signature matching behavior analysis
TRt taint analysis

function call

/ |

\

v \‘ - / g

static dynamic | static dynamic
analysis

| analysis | analysis analysis

Figure 1. Classtfication of Malicious Code Detection
Technology.

Volume 3, | ssue 27

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

Enck [10] put forward a research method named dynamic
taint analysis and had accomplished the design and
implementation of Taint Droid. TaintDroid is a real-time
detection system based on the analysis of dynamic
information flow. The system modifies Android’s
application framework and Dalvik virtual machine, and it
supports four levels’ data tracking: Variable level, method
level, message level and file level. In the system installed
TaintDroid, tags will be attached to the data that came from
the privacy data sources and they will spread with the data
in the system. When the privacy data with those tags are
sent through messages or internet, a warning will be
triggered and this event will be recorded in logs Because of
the good performance that Taint Droid demonstrated in the
aspect of detecting malicious behaviors(especially in the
aspect of privacy leakage), more and more projects are
based on Taint Droid. But there is a problem: the original
Android system was modified when Taint Droid was
installed, this will cause problems in the aspect of stability
and efficiency, so applying Taint Droid in mobile devices
is not appropriate.

In addition, TaintDroid also can be applied in emulator, but
the application needs some more manual operations and the
efficiency is low, and there will be some omissions. Mr.Hu
[11] proposed a method that send random data to the
application to trigger the application, the problem is that
there will be no relationships between the triggered events.
Aiming at the above problems, the paper put forward an
automated testing scheme. In this scheme, applications will
be tested in Android emulator and controls of all Activity
in the applications will be triggered automatically.
Compared with manual testing, this scheme is more
efficient and the coverage is higher.

3 SOME AUTOMATED TESTING TOOLS

The Android SDK provides some tools to aid developers in
automated testing work; they are Monkey, MonkeyRunner
and HierarcyViewer.

Monkey, it is a command line tool in PC. It can be used in
the Android emulator or a real device, generating pseudo
random event stream and simulating a click, touch, gesture,
and system events. Its format is as follows:

adb shell monkey [options] The disadvantage of Monkey is
that its test operation is random and cannot be able to
customize, so that it has some limitations. MonkeyRunner,
it provides a set of APIs to control the emulator or device.
Developers can write Python script to call the APIs for
installing and running Android applications, and pressing
key or entering text in applications. But for different
applications, MonkeyRunner needs to write different
Python scripts for testing, workload is too big.
HierarchyViewer, it is a tool designed to help developers
debug and optimize Ul which is provided by the Android.
Through this tool, developers can get the window list of
application which is running on the device, and the control

hierarchy information of interface. But HierarchyViewer
can only view the control structure of current Activity,
when the Activity changes, it cannot be updated in real
time. In conclusion, the three tools provided by the
Android SDK are not effective for automated testing.

4 IMPLEMENTATION OF AUTOMATED TESTING
SYSTEM

4.1 The Framework of Automated Testing System

Automated testing system, running in the host interacts
with the applications which run in the emulator by sockets.
The overall frame structure is shown in Figure 2.In the
figure, ViewServer, provided by Android, is a service
program for the convenience of developers to debug
interface. By using ViewServer, the developers will be able
to get the window list of the application which is running in
the emulator, and the interface information of each
window.The Automated test system mainly includes two
modules: interface analysis and interface interaction. The
main function of interface analysis module is to establish a
connection with ViewServer and get the window list and
control information of the interface through the command
interface provided by ViewServer. Then they can get the
existing triggers on the interface after further analysis. The
interface interaction module bases on control information
of interface analysis module to generate the control
triggering events according to certain order and then send
interactive commands to the application.

automated testing system emulator
interface analysis sendinstructions
ok " View Server
interface information
interface interactive commands AP
interaction module

Figure 2. The Framework of Automated Testing System.

4.2 Interface Analysis

Application usually contains multiple interfaces, and as
they progress through the interaction, the program will
jump between each interface. In order to analysis to all of
the interfaces, interface analysis module records the
hierarchy of the interface, and uses recursion method to
analyze each interface and their interaction. Activity is the
basic interface of Android system. Its call hierarchy
information can use the Activity call graph representation,
as shown in Figure 3. Generally every Android application
has a main interface as the entrance to the program, for
example Main Activity which is shown in the figure. The
program can jump to other interfaces by triggering Controls

Volume 3, | ssue 27

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

on the main interface. In the figure, the Activity such as
Activityl, Activity2 and Activity3, Constitutes the second
layer of Activity call graph, under which there may be
another layer of activity, and thus these Activities form a
tree structure.The call graph of Activity is gradually
established in the process of the whole work in automated
test system. After each complete control trigger, Interface
analysis module can obtain a list of Activity information in
the emulator from ViewServer through the command. If a
new Activity is found, interface analysis module will add it
to the Activity call graph, as a child interface of the
previous Activity.

MainActivity
G Y e
Activityl Activity2 Activity3

l ¥ | 4

Figure 3. The Activity Call Graph.

When entering a new Activity, Interface analysis module
will obtain the layout of control of the current interface and
Carry on the analysis. The returning information of
ViewServer contains the type, coordinates, width and
margin attribute information of each control.Interface
analysis module parses all information of the control and
classifies in accordance with the control types. One kind is
editable text control and another kind is clickable control.
In Android system, the editable text control contains
EditText and AutoCompleteTextView and the clickable
control contains Button, ImageButton, ToggleButton,
RadioButtonCheckBox, and so on. Interface analysis
module can carry out the analysis of the control and
compute the control center coordinates, according to the
margin and width information of the control, so that the
Interface interaction module works when the control
triggers.

The basic attributes of each control include the width,
height, left margin top margin, respectively is
layout_width, layout_height, mLeft and mTop. According
to these properties, the center coordinate of the control can
be calculated. The center coordinates (x_center, y_center)
is shown below.

x_center = mLeft + layout width/2 y center = mTop +
layout_height/2

But mLeft and mTop, respectively is the margin of the
current conrtol relative to its parent control. So x_center
and y_center need to add the relative coordinates of the left
and top margins of its parent control, until to the root node.

The pseudo code is shown as follows.
while (! rootNode)

{

x_center += mLeft; y_center += mTop;

}

After getting the center coordinate, the system uses adb
shell to simulate click event. A Button, for example, if its

center coordinates is (40, 200), the click code
follows

is shown as

Adb shell sendevent /dev/input/event0 3 0 40 adb shell

sendevent /dev/input/event0 3 1 200

Adb shell sendevent /dev/input/event0 1 330
sendevent /dev/input/event0 0 0 0

Adb shell sendevent /dev/input/event0 1 330
sendevent /dev/input/event0 0 0 O

Start.

1 adb shell

0 adb shell

T 1
Analysis controls of lump to a new
The current Activity. r Activity?
i{ N T
Sends a broadcast If thereis
m=u=:=t.7v nottriggered Getlist !
Call Activity. Control? Information.
Returns to T
Upper Activity. v =
Are thereany Trlgtgelr
upper controls.
Activity;?
N
v
Are there no

call Activity2—"
I

N
v

End.

Figure 4. The Workflow of Automated Testing System.

4.3 Interface Interaction

In order to let the malicious act hidden in

application

enforce as much as possible, automated interactive engine
requires all the Activity invoked, and triggers all the
controls on the interface as comprehensive as possible.

There are two main types of call way for
Android system. One calls through triggering
the interface, and another calls through radio
the Android system. Considering the two

Activity in
controls on
message of
cases, the

interface interaction module first calls the Activity which
can be invoked, by triggering interface controls. Then after
all the invoked controls are triggered, the interface
interaction module will query whether all the Activity

Volume 3, | ssue 27

Published by, www.ijert.org

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

stated in the AndroidManifest.xml file are invoked. If there
is any, the interface interaction module will generate radio
news to call, according to the trigger condition stated by
Activity, and then it will analysis and trigger all the
controls of the Activity. As to control trigger order, the
general design of the program will allow users to input text
messages first and then click on the button. So, after getting
the control information of interface analysis module, the
interface interaction module of automated interactive
engine will first the trigger the click and input events for
text control, and then trigger the click event for the button.
The workflow of automated testing system is shown in
Figure 4.

5 TESTING
5.1 Testing Environment
The testing environment is shown in Table 1.
5.2 Testing Method

Testing purpose is to prove that automated testing system
can complete the operations of all the controls in the
applicationthe most intuitionistic testing method is
observing the application interfaces. But it’s subjective and
cannot quantitative, so in this paper, we put forward a kind
of objective testing method. We chose 10 popular
applications and 10 new applications from an app store.
Then respectively use human interaction and automated
testing system for application testing. Based on a platform
named Droid Box, and the testing results is shown in Table
2.

Name Parameter

CPU Intel® Core™ i7-2600K 3 40GHz
RAM 16.00 GB

Virtual machine VMware® Workstation 9.0.1

oS Ubuntu 12.04 LTS 32bit

Android version Android2.3.3

Table 1. The testing environment.

Privacy type Human interaction | Automated testing Scale
IMSI 6 6 15%
IMEI 18 18 45%
ICCID 4 4 10%
Phone number 2 2 5%
Location 4 4 10%
Contacts 0 1 2.5%
SMS 1 1 2.5%

Table 2. The testing results of applications.

5.3 Testing Results and Analysis

From the table, we can see that compared to human
interaction and automated testing system, the results are
basically identical. The leak of contacts in an application
has not been detected in human interaction, but in the
automated testing system it has been found. The cause of
this situation is that a button has not been triggered in
human interaction.As can be seen from the testing results,
compared to human interaction, the test completeness of
the automated testing system has been well-documented.
When the number of applications rises sharply, the
advantages of the automated testing system will be better

manifested. That is, when testing the same amount of
applications, time is rarely used by the automated testing
system needs, and efficiency is improved greatly. More
than that, it can also avoid the undetected controls or
Activities in human interaction.

6 CONCLUSION

This paper puts forward and implements the automated
testing system, which is applied in the Android emulator
and combined with dynamic taint propagation. It greatly
improves the testing efficiency and coverage compared to
previous way of human interaction. Not only to the current
Android security research it provides the reference, but also
can be reference by other mobile intelligent terminal OS.

REFERENCES

[1]dumptap,”Android and iPhone Now Hog 91% of Mobile OS Market
Share", 2013, available online from:
http://www.jumptap.com/blog/android-and-iphone-now-hog-91-of-
mobile-os-market-share

[2]91 Wireless,"The report of mobile application development trend in Q3
of 2012", 2012, available online from:
http://www.eguan.cn/download/zt.php?tid=1167

[3]360 Security Center,"The report of the security situation of Chinese
mobile phone in 2012", 2012, available online from:
http://shouji.360.cn/securityReportlist/securityReport_9 5.html

[4]N. Idika, and A. P. Mathur,"A survey of malware detection
techniques,”" Department of Computer Science, Purdue University,
Tech. Rep., 2007. [5]Vinod P., and V. Laxmi, M. S. Gaur,"Survey
on malware detection methods," 3rd Hackers’ Workshop on
Computer and Internet Security, March 17-19, 2009, pp.74-79.

[6]G. Hu, and D. Venugopal,"A malware signature extraction and
detection method applied to mobile networks," Proceedings of the
26th IEEE International Performance Computing and
Communications Conference, 2007, pp.19-26. [7]D. Venugopal, and
G. Hu,"Efficient signature based malware detection on mobile
devices," Mobile Information Systems, 2008, 4(1), pp.33-49.

[8]A.-D. Schmidt, F. Peters, F. Lamour, and S. Albayrak,"Monitoring
Smartphones for Anomaly Detection,” in MOBILWARE 2008,
International Conference on MOBILe Wireless MiddleWARE,
Operating Systems, and Applications, Innsbruck, Austria, 2008,
pp.92-106.

[9]M. Chandramohan, and H. Tan,"Detection of Mobile Malware in
the Wild," Volume:PP, Issue:99, IEEE Early Access, 2012, 45(9),
pp.65-71.

[10]W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth,"TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones," Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, Berkeley, CA, USA: USENIX Association, 2010,
pp.1-6.

[11] C. Hu, I. Neamtiu,"Automating GUI testing for Android
applications,” Proceedings of the 6th International Workshop on
Automation of Software Test, New York, NY, USA: ACM, 2011,
pp.77-83.

Volume 3, | ssue 27

Published by, www.ijert.org 4

