
Automated Testing System for Android

Applications based on Dynamic Taint

Propagation

Rakesh M

M.Tech 2nd semester

Department of CSE

City engineering college

Mukesh Kamath
Associate professor

Department of CSE

City Engineering College

Abstract: As the increasing downloads of applications via

Android Platform, more and more malicious codes were

injected in those applications. And some problems are caused

by that malicious code such as economic loss and privacy

issues. Android has the highest market share of smartphone

operating system, the security of Android platform is

extremely important. Therefore, the security testing and

evaluation of applications is imperative. Dynamic taint

propagation is the most common method to do the test, but

there are two problems: a) If the custom ROM runs in the

smartphone, the running speed of ROM will be limited to the

smartphone’s battery life and computing power. b) If the

program was running in emulator in PC, the efficiency will be

very poor because of the manual operation for the triggering

action during the running time. The paper presents an

automated testing method which was accomplished in

emulator. In addition, the system will record the tree

structure of Activity and control distribution of each Activity.

The test results showed that the system can trigger all the

controls and compared with manual test, this method was

proven to be more effective and completely.

Keywords: Android Platform, applications, dynamic taint

propagation, automated testing, emulator.

1 INTRODUCTION

According to Jump tap, Android occupied 58.8% of the

mobile market in 2012 and the share was increasing

[1].Corresponds with the growth of Android’s market

share, the number of applications for android had an

explosive growth. Google announced that the download of

its electronic products has exceeded 25 billion and the

applications have exceeded 675 thousand [2]. What came

along with the increasing were lots of problems. Lots of

malicious codes were injected to the hot applications to

execute malicious behaviors and the behaviors led to great

security threats. Common results of malicious behaviors

are divided into two kinds: economic loss and privacy

leakage. The first case is economic loss. In this case, the

application that was injected by malicious code will order

fee-based service via message, or make calls, or surf the

internet in a covert way and lead to economic loss. The

second case is privacy leakage. In this case, the application

that was injected by malicious code will read the privacy

Information such as contact information, location, device

number, messages and schedule without telling the user,

then the information will be delivering to the attacker via

the internet or message. Worse, the malicious code can

control the smartphone to monitor the user. According to

“the report of the security situation of Chinese mobile

phone in 2012” from 360 security center [3], there were

174977 new malware based on mobile in 2012 with a

growth of 1907 percent year-on-year. Among the malware,

there were 123681 new samples that based on Android and

they occupied 71% of all the new samples. During the

results of those malware, economic loss takes the top spot

with 52 percent and the next is privacy leakage with 28

percent. Therefore, it is very important to test the security

of applications based on Android.

2 CURRENT STUDY AND INSUFFICIENCY

According to the study [4-9] of malicious code in the

application, the paper gives a classification; it is showed

inFigure 1.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

1

Enck [10] put forward a research method named dynamic

taint analysis and had accomplished the design and

implementation of Taint Droid. TaintDroid is a real-time

detection system based on the analysis of dynamic

information flow. The system modifies Android’s

application framework and Dalvik virtual machine, and it

supports four levels’ data tracking: Variable level, method

level, message level and file level. In the system installed

TaintDroid, tags will be attached to the data that came from

the privacy data sources and they will spread with the data

in the system. When the privacy data with those tags are

sent through messages or internet, a warning will be

triggered and this event will be recorded in logs Because of

the good performance that Taint Droid demonstrated in the

aspect of detecting malicious behaviors(especially in the

aspect of privacy leakage), more and more projects are

based on Taint Droid. But there is a problem: the original

Android system was modified when Taint Droid was

installed, this will cause problems in the aspect of stability

and efficiency, so applying Taint Droid in mobile devices

is not appropriate.

In addition, TaintDroid also can be applied in emulator, but

the application needs some more manual operations and the

efficiency is low, and there will be some omissions. Mr.Hu

[11] proposed a method that send random data to the

application to trigger the application, the problem is that

there will be no relationships between the triggered events.

Aiming at the above problems, the paper put forward an

automated testing scheme. In this scheme, applications will

be tested in Android emulator and controls of all Activity

in the applications will be triggered automatically.

Compared with manual testing, this scheme is more

efficient and the coverage is higher.

3 SOME AUTOMATED TESTING TOOLS

The Android SDK provides some tools to aid developers in

automated testing work; they are Monkey, MonkeyRunner

and HierarcyViewer.

Monkey, it is a command line tool in PC. It can be used in

the Android emulator or a real device, generating pseudo

random event stream and simulating a click, touch, gesture,

and system events. Its format is as follows:

adb shell monkey [options] The disadvantage of Monkey is

that its test operation is random and cannot be able to

customize, so that it has some limitations. MonkeyRunner,

it provides a set of APIs to control the emulator or device.

Developers can write Python script to call the APIs for

installing and running Android applications, and pressing

key or entering text in applications. But for different

applications, MonkeyRunner needs to write different

Python scripts for testing, workload is too big.

HierarchyViewer, it is a tool designed to help developers

debug and optimize UI which is provided by the Android.

Through this tool, developers can get the window list of

application which is running on the device, and the control

hierarchy information of interface. But HierarchyViewer

can only view the control structure of current Activity,

when the Activity changes, it cannot be updated in real

time. In conclusion, the three tools provided by the

Android SDK are not effective for automated testing.

4 IMPLEMENTATION OF AUTOMATED TESTING

SYSTEM

4.1 The Framework of Automated Testing System

Automated testing system, running in the host interacts

with the applications which run in the emulator by sockets.

The overall frame structure is shown in Figure 2.In the

figure, ViewServer, provided by Android, is a service

program for the convenience of developers to debug

interface. By using ViewServer, the developers will be able

to get the window list of the application which is running in

the emulator, and the interface information of each

window.The Automated test system mainly includes two

modules: interface analysis and interface interaction. The

main function of interface analysis module is to establish a

connection with ViewServer and get the window list and

control information of the interface through the command

interface provided by ViewServer. Then they can get the

existing triggers on the interface after further analysis. The

interface interaction module bases on control information

of interface analysis module to generate the control

triggering events according to certain order and then send

interactive commands to the application.

4.2 Interface Analysis

Application usually contains multiple interfaces, and as

they progress through the interaction, the program will

jump between each interface. In order to analysis to all of

the interfaces, interface analysis module records the

hierarchy of the interface, and uses recursion method to

analyze each interface and their interaction. Activity is the

basic interface of Android system. Its call hierarchy

information can use the Activity call graph representation,

as shown in Figure 3. Generally every Android application

has a main interface as the entrance to the program, for

example Main Activity which is shown in the figure. The

program can jump to other interfaces by triggering Controls

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

2

on the main interface. In the figure, the Activity such as

Activity1, Activity2 and Activity3, Constitutes the second

layer of Activity call graph, under which there may be

another layer of activity, and thus these Activities form a

tree structure.The call graph of Activity is gradually

established in the process of the whole work in automated

test system. After each complete control trigger, Interface

analysis module can obtain a list of Activity information in

the emulator from ViewServer through the command. If a

new Activity is found, interface analysis module will add it

to the Activity call graph, as a child interface of the

previous Activity.

When entering a new Activity, Interface analysis module

will obtain the layout of control of the current interface and

Carry on the analysis. The returning information of

ViewServer contains the type, coordinates, width and

margin attribute information of each control.Interface

analysis module parses all information of the control and

classifies in accordance with the control types. One kind is

editable text control and another kind is clickable control.

In Android system, the editable text control contains

EditText and AutoCompleteTextView and the clickable

control contains Button, ImageButton, ToggleButton,

RadioButtonCheckBox, and so on. Interface analysis

module can carry out the analysis of the control and

compute the control center coordinates, according to the

margin and width information of the control, so that the

Interface interaction module works when the control

triggers.

The basic attributes of each control include the width,

height, left margin top margin, respectively is

layout_width, layout_height, mLeft and mTop. According

to these properties, the center coordinate of the control can

be calculated. The center coordinates (x_center, y_center)

is shown below.

x_center = mLeft + layout_width/2 y_center = mTop +

layout_height/2

But mLeft and mTop, respectively is the margin of the

current conrtol relative to its parent control. So x_center

and y_center need to add the relative coordinates of the left

and top margins of its parent control, until to the root node.

The pseudo code is shown as follows.

while (! rootNode)

{

x_center += mLeft; y_center += mTop;

}

After getting the center coordinate, the system uses adb

shell to simulate click event. A Button, for example, if its

center coordinates is (40, 200), the click code is shown as

follows

Adb shell sendevent /dev/input/event0 3 0 40 adb shell

sendevent /dev/input/event0 3 1 200

Adb shell sendevent /dev/input/event0 1 330 1 adb shell

sendevent /dev/input/event0 0 0 0

Adb shell sendevent /dev/input/event0 1 330 0 adb shell

sendevent /dev/input/event0 0 0 0

4.3 Interface Interaction

In order to let the malicious act hidden in application

enforce as much as possible, automated interactive engine

requires all the Activity invoked, and triggers all the

controls on the interface as comprehensive as possible.

There are two main types of call way for Activity in

Android system. One calls through triggering controls on

the interface, and another calls through radio message of

the Android system. Considering the two cases, the

interface interaction module first calls the Activity which

can be invoked, by triggering interface controls. Then after

all the invoked controls are triggered, the interface

interaction module will query whether all the Activity

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

3

stated in the AndroidManifest.xml file are invoked. If there

is any, the interface interaction module will generate radio

news to call, according to the trigger condition stated by

Activity, and then it will analysis and trigger all the

controls of the Activity. As to control trigger order, the

general design of the program will allow users to input text

messages first and then click on the button. So, after getting

the control information of interface analysis module, the

interface interaction module of automated interactive

engine will first the trigger the click and input events for

text control, and then trigger the click event for the button.

The workflow of automated testing system is shown in

Figure 4.

5 TESTING

5.1 Testing Environment

The testing environment is shown in Table 1.

5.2 Testing Method

Testing purpose is to prove that automated testing system

can complete the operations of all the controls in the

applicationthe most intuitionistic testing method is

observing the application interfaces. But it’s subjective and

cannot quantitative, so in this paper, we put forward a kind

of objective testing method. We chose 10 popular

applications and 10 new applications from an app store.

Then respectively use human interaction and automated

testing system for application testing. Based on a platform

named Droid Box, and the testing results is shown in Table

2.

5.3 Testing Results and Analysis

From the table, we can see that compared to human

interaction and automated testing system, the results are

basically identical. The leak of contacts in an application

has not been detected in human interaction, but in the

automated testing system it has been found. The cause of

this situation is that a button has not been triggered in

human interaction.As can be seen from the testing results,

compared to human interaction, the test completeness of

the automated testing system has been well-documented.

When the number of applications rises sharply, the

advantages of the automated testing system will be better

manifested. That is, when testing the same amount of

applications, time is rarely used by the automated testing

system needs, and efficiency is improved greatly. More

than that, it can also avoid the undetected controls or

Activities in human interaction.

6 CONCLUSION

This paper puts forward and implements the automated

testing system, which is applied in the Android emulator

and combined with dynamic taint propagation. It greatly

improves the testing efficiency and coverage compared to

previous way of human interaction. Not only to the current

Android security research it provides the reference, but also

can be reference by other mobile intelligent terminal OS.

REFERENCES

[1]Jumptap,"Android and iPhone Now Hog 91% of Mobile OS Market

Share", 2013, available online from:
http://www.jumptap.com/blog/android-and-iphone-now-hog-91-of-

mobile-os-market-share

[2]91 Wireless,"The report of mobile application development trend in Q3
of 2012", 2012, available online from:

http://www.eguan.cn/download/zt.php?tid=1167

[3]360 Security Center,"The report of the security situation of Chinese
mobile phone in 2012", 2012, available online from:

http://shouji.360.cn/securityReportlist/securityReport_9 5.html
[4]N. Idika, and A. P. Mathur,"A survey of malware detection

techniques," Department of Computer Science, Purdue University,

Tech. Rep., 2007. [5]Vinod P., and V. Laxmi, M. S. Gaur,"Survey
on malware detection methods," 3rd Hackers’ Workshop on

Computer and Internet Security, March 17-19, 2009, pp.74-79.

[6]G. Hu, and D. Venugopal,"A malware signature extraction and
detection method applied to mobile networks," Proceedings of the

26th IEEE International Performance Computing and

Communications Conference, 2007, pp.19-26. [7]D. Venugopal, and
G. Hu,"Efficient signature based malware detection on mobile

devices," Mobile Information Systems, 2008, 4(1), pp.33-49.

[8]A.-D. Schmidt, F. Peters, F. Lamour, and S. Albayrak,"Monitoring
Smartphones for Anomaly Detection," in MOBILWARE 2008,

International Conference on MOBILe Wireless MiddleWARE,

Operating Systems, and Applications, Innsbruck, Austria, 2008,
pp.92-106.

[9]M. Chandramohan, and H. Tan,"Detection of Mobile Malware in

the Wild," Volume:PP, Issue:99, IEEE Early Access, 2012, 45(9),
pp.65-71.

[10]W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth,"TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones," Proceedings of the 9th

USENIX conference on Operating systems design and

implementation, Berkeley, CA, USA: USENIX Association, 2010,
pp.1-6.

[11] C. Hu, I. Neamtiu,"Automating GUI testing for Android

applications," Proceedings of the 6th International Workshop on
Automation of Software Test, New York, NY, USA: ACM, 2011,

pp.77-83.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

4

