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Abstract -  Oral Squamous Cell Carcinoma (OSCC) 

accounts for a significant proportion of oral 

malignancies and is often diagnosed at advanced stages 

due to limitations in early screening methods. To 

support timely and objective diagnosis, this study 

presents an automated deep learning–based framework 

for classifying histopathological oral tissue images as 

cancerous or non-cancerous. A Convolutional Neural 

Network (CNN) was trained using a publicly available 

dataset comprising 1,224 Haematoxylins and Eosin–

stained images collected from 230 patients at two 

magnification levels (100× and 400×). Image 

preprocessing and class-aware data augmentation were 

applied to improve learning stability and reduce bias 

arising from class imbalance. The trained model 

achieved a training accuracy of 84% and a test accuracy 

of 77.61%, with high recall for cancerous samples, 

indicating effective sensitivity to malignant tissue 

patterns. Although a performance gap between training 

and validation results suggests moderate overfitting, the 

findings demonstrate that CNN-based analysis of 

histopathological images can serve as a reliable assistive 

tool for oral cancer screening. Future work will focus on 

enhancing generalization through larger, multi-center 

datasets and the evaluation of more advanced network 

architectures. 

 Keywords— Oral cancer detection, Convolutional Neural 

Network, deep learning, histopathological images, medical image 

classification 

I. INTRODUCTION 

 

Oral Squamous Cell Carcinoma (OSCC) represents one 

of the most frequently diagnosed malignancies affecting the 

oral cavity and remains a major public health concern 

worldwide. The incidence of OSCC is particularly high in 

regions where tobacco use, alcohol consumption, and betel 

nut chewing are prevalent, and where access to routine oral 

screening and specialized oncology services is limited. In 

such settings, patients are often diagnosed only after the 

disease has progressed to advanced stages, which 

substantially reduces survival rates and limits treatment 

options. 

OSCC develops from the epithelial lining of the oral 

mucosa and is associated with gradual cellular and tissue-

level alterations, including changes in nuclear morphology, 

epithelial thickness, and tissue organization. During the 

early phases of disease progression, these pathological 

changes may not be easily distinguishable through visual 

inspection alone. Consequently, early-stage lesions are 

frequently overlooked in busy clinical environments or in 

primary healthcare settings with limited diagnostic 

expertise. Histopathological examination following biopsy 

remains the gold standard for diagnosis; however, this 

process is invasive, time-consuming, and dependent on 

expert interpretation, making it impractical for large-scale or 

repeated screening. 

Advances in artificial intelligence, particularly in the 

field of deep learning, have enabled the development of 

automated systems capable of analysing complex medical 

image data with minimal manual intervention. Unlike 

traditional machine learning methods that rely on 

handcrafted features, deep learning models can directly 

learn discriminative representations from raw image inputs. 

Convolutional Neural Networks (CNNs) are especially well 

suited for histopathological image analysis due to their 

ability to model spatial hierarchies and capture subtle 

textural and structural patterns associated with malignant 

transformation. 

Although several CNN-based approaches have been 

reported for oral cancer detection, many existing studies 

focus on limited datasets, employ computationally intensive 

architectures, or demonstrate reduced robustness when 

evaluated across images acquired at different magnification 

levels. In addition, some models prioritize overall accuracy 

without adequately addressing clinically important metrics 

such as sensitivity to cancerous samples. These limitations 

restrict the practical applicability of such systems in real-

world diagnostic settings. 

Motivated by these challenges, the present study 

introduces a CNN-based classification framework designed 

to distinguish between cancerous and non-cancerous oral 

tissue using histopathological images captured at multiple 

magnifications. Emphasis is placed on effective 

preprocessing, data augmentation, and balanced model 

design to achieve reliable performance while maintaining 

computational efficiency. The overarching goal of this work 

is to contribute toward a non-invasive, computer-aided 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010726 Page 1

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



diagnostic approach that can support clinicians by 

facilitating earlier detection of OSCC and reducing delays in 

clinical decision-making. 

 

II. LITERATURE REVIEW 

 

Deep learning techniques, particularly Convolutional Neural 

Networks (CNNs), have become central to recent advances 

in oral cancer image analysis due to their ability to learn 

discriminative representations directly from medical 

imaging data. Unlike conventional machine learning 

approaches that depend on manually engineered features, 

CNN-based models exploit spatial hierarchies and 

contextual information within images, making them well 

suited for identifying pathological patterns in oral tissue. 

 Earlier studies primarily relied on traditional machine 

learning classifiers to predict oral cancer stages or tissue 

abnormalities. For example, Fatihah Mohd et al. [1] 

explored algorithms such as Naïve Bayes, Multilayer 

Perceptron, K-Nearest Neighbours, and Support Vector 

Machines using a reduced feature set. While these methods 

demonstrated improved predictive capability, their 

performance was strongly influenced by feature selection 

and limited scalability to complex image data. Subsequent 

research shifted toward neural network–based approaches, 

as illustrated by Shreyansh A et al. [2], who evaluated 

artificial neural networks and transfer learning models on 

dental radiographic images, highlighting the advantages of 

learned representations over handcrafted features. 

 The generalization ability of CNNs across different 

tissue types and imaging conditions has also been 

investigated. Halicek et al. [3] applied deep convolutional 

models to multiple head and neck cancer datasets, 

demonstrating that CNNs can capture shared morphological 

patterns across related malignancies. However, their work 

also emphasized the sensitivity of model performance to 

dataset size and image acquisition variability. 

 Several studies have focused on modality-specific 

oral cancer detection. Aubreville et al. [4] employed CNNs 

on Confocal Laser Endomicroscopy images using a patch-

based classification strategy, enabling localized tissue 

assessment but increasing computational overhead. In 

contrast, Albalawi et al. [5] adopted a lightweight 

EfficientNet-based architecture for histopathological image 

classification and demonstrated that data augmentation and 

regularization play a critical role in improving robustness 

when training on limited datasets. Optimization-driven 

architectures have also been explored; Nagarajan et al. [6] 

integrated a swarm intelligence optimizer with 

MobileNetV3 to enhance feature learning efficiency, though 

such hybrid approaches may introduce additional 

computational complexity. 

 Comparative analyses of deep learning architectures 

further highlight trade-offs between accuracy and efficiency. 

Das et al. [7] evaluated multiple pretrained CNN models, 

including VGG16, ResNet50, and InceptionNet, reporting 

strong classification performance but at the cost of increased 

model complexity. Similarly, Panigrahi et al. [9] 

demonstrated the effectiveness of transfer learning for oral 

cancer detection, though reliance on large pretrained 

networks may limit deployment in resource-constrained 

clinical settings. Fusion-based methods, as investigated by 

Rahman et al. [8], have shown improved detection reliability 

but require careful integration of multiple classifiers. 

 Beyond oral cancer–specific applications, broader 

studies on histopathological image analysis, such as those 

by Komura et al. [10] and Fu et al. [11], reinforce the 

effectiveness of deep learning for tissue-level cancer 

detection while also emphasizing challenges related to 

dataset diversity and real-world variability. Related work in 

dental imaging by Ramzi Ben Ali et al. [12] further supports 

the applicability of deep neural networks in oral healthcare 

diagnostics. 

 Despite substantial progress, existing approaches 

often face limitations related to computational cost, dataset 

dependency, and reduced robustness across varying 

magnification levels and acquisition conditions. Motivated 

by these observations, the present study aims to develop a 

CNN-based oral cancer classification framework that 

balances detection performance with computational 

efficiency, while maintaining practical relevance for 

histopathological analysis in clinical environments. 

 

                   III. MATERIALS AND DATASET 

 

 This study employs a publicly accessible 

histopathological image dataset obtained from an open 

Kaggle repository to develop and evaluate the proposed 

Convolutional Neural Network (CNN) for oral cancer 

classification. The dataset comprises Hematoxylin and 

Eosin (H&E)–stained oral tissue images representing both 

healthy epithelium and Oral Squamous Cell Carcinoma 

(OSCC), enabling supervised binary classification. 

 A total of 1,224 digitized histopathological images 

acquired from 230 patients are included in the dataset. 

Image acquisition was performed using a Leica ICC50 HD 

digital microscope at two distinct magnification levels, 

allowing the model to learn multi-scale morphological 

characteristics. Specifically, the dataset contains 528 images 

captured at 100× magnification, including 89 normal and 

439 OSCC samples, and 696 images captured at 400× 

magnification, comprising 201 normal and 495 OSCC 

samples. 

 Prior to model training, all images were visually 

inspected and standardized to ensure consistency in 

resolution and color distribution. The dataset was then 

partitioned into training, validation, and testing subsets 

using a stratified split to preserve class balance across all 

subsets. Data augmentation techniques were applied 

exclusively to the training set to enhance sample diversity 

and mitigate overfitting, while validation and test sets were 

kept unaltered to ensure unbiased performance evaluation. 

 Representative examples of normal and cancerous 

histopathological images from the dataset are illustrated in 

Fig.1.demonstrates the visual differences captured at 

varying magnification levels. 
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(a)                                    (b) 

Fig.1. Representative H&E-stained histopathological images from the 

OSCC dataset: (a) normal oral epithelium and (b) oral squamous cell 

carcinoma (OSCC). 

 

IV. PROPOSED METHODOLOGY 

 This section describes the proposed deep learning 

framework for automated oral cancer detection from 

histopathological images. The methodology is designed to 

balance classification accuracy and computational efficiency 

for practical clinical deployment. 

A. Overview of the Proposed System 

 The proposed system follows a sequential processing 

pipeline as illustrated in Fig. 3.2 The block diagram of the 

proposed oral cancer detection system illustrates the 

sequential flow of operations involved in automated 

classification. The process begins with the acquisition of 

input medical images, specifically histopathological images 

of oral tissue. These images are subjected to an image 

preprocessing stage that includes resizing, normalization, 

and enhancement to ensure uniform input quality. An 

optional image segmentation step may be employed to 

isolate regions of interest and focus the analysis on lesion-

affected areas. The processed images are then forwarded to 

the Convolutional Neural Network (CNN) for feature 

extraction, where relevant spatial and textural characteristics 

are learned automatically. During the model training phase, 

these features are used to optimize the network parameters 

using labeled data. Performance evaluation is subsequently 

performed using standard metrics to assess classification 

reliability, and finally, the trained system generates a 

prediction indicating whether the input image corresponds 

to cancerous or non-cancerous oral tissue. In addition, the 

modular structure of the system ensures that each processing 

stage can be independently analyzed and optimized. This 

design flexibility allows improvements in preprocessing or 

feature extraction without affecting the overall framework. 

The CNN-based approach reduces reliance on manual 

feature engineering and subjective interpretation. 

Furthermore, the automated workflow minimizes diagnostic 

variability and supports consistent decision-making. 

Overall, the proposed system is designed to function as an 

effective computer-aided diagnostic tool for assisting 

clinicians in oral cancer detection. 

 

Fig. 3.2. Block diagram of the proposed CNN-based oral cancer 

detection system. 

B. Image Preprocessing 

 Histopathological images often exhibit variations in 

resolution, staining intensity, and illumination, which can 

adversely affect model learning. To address this, all images 

are resized to a fixed spatial resolution compatible with the 

CNN input layer. Pixel intensity normalization is applied to 

scale image values into a consistent range, thereby 

improving numerical stability during training. 

 To enhance generalization and reduce sensitivity to 

spatial orientation, data augmentation techniques including 

random rotations and horizontal/vertical flipping are applied 

during training. These transformations increase effective 

sample diversity without altering the underlying tissue 

structure. Augmentation is strictly limited to the training set 

to prevent information leakage into validation and test data. 

A representative example illustrating the effect of 

preprocessing is shown in Fig. 3.3. 

 

 
Fig. 3.3. Representative histopathological image before and after 

preprocessing 
 

C. CNN Architecture Design 

 The proposed CNN architecture is specifically 

tailored for binary classification of histopathological oral 
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tissue images and is illustrated in Fig. 3.4. The network 

consists of multiple convolutional blocks followed by fully 

connected layers. 

 Each convolutional block comprises a convolutional 

layer with small-sized kernels (e.g., 3×3) to capture fine-

grained cellular and textural patterns, followed by a 

Rectified Linear Unit (ReLU) activation to enable efficient 

gradient propagation. Max-pooling layers are introduced 

after selected convolutional blocks to reduce spatial 

resolution while retaining salient features, thereby lowering 

computational complexity and improving robustness to 

minor spatial variations. 

 As the network depth increases, the number of feature 

maps is progressively expanded to allow learning of higher-

level representations, such as nuclei arrangement and tissue 

irregularities associated with malignancy. The final 

convolutional output is flattened into a one-dimensional 

feature vector, which is passed through fully connected 

layers for high-level feature integration. Dropout 

regularization is incorporated in these layers to reduce co-

adaptation of neurons and mitigate overfitting. 

 The output layer consists of a single neuron with a 

sigmoid activation function, enabling probabilistic binary 

classification between cancerous and non-cancerous tissue 

classes. 

 

 
 

Fig. 3.4  Architecture of the proposed Convolutional Neural Network 

(CNN) for histopathological oral cancer classification. 

 

D. Model Training Strategy 

 

 The CNN model is trained using a supervised 

learning approach with labeled histopathological images. 

The dataset is divided into training, validation, and testing 

subsets using a stratified splitting strategy to preserve class 

distribution across all subsets. 

 Model optimization is performed using the Adam 

optimizer due to its adaptive learning rate capability and 

stable convergence behavior in deep networks. Binary cross-

entropy is employed as the loss function, as it is well suited 

for two-class classification problems. Training is conducted 

over a fixed number of epochs with an empirically selected 

batch size. Validation loss and accuracy are monitored 

during training, and the model exhibiting the best validation 

performance is retained for final testing. 

 

E. Performance Evaluation Metrics 

 

 The trained CNN model is evaluated on an 

independent test dataset to assess its generalization 

capability. Multiple performance metrics are used to provide 

a comprehensive evaluation, including accuracy, precision, 

recall, F1-score, and the area under the receiver operating 

characteristic curve (AUC–ROC). 

 While accuracy reflects overall classification 

correctness, recall is emphasized due to its clinical 

importance in minimizing false negatives during cancer 

detection. Precision evaluates the reliability of positive 

predictions, and the F1-score provides a balanced measure 

of precision and recall. The AUC–ROC metric is used to 

analyze the model’s discriminative ability across varying 

decision thresholds. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

 

 This section presents the experimental results 

obtained from training and testing the proposed CNN model 

for oral cancer detection using histopathological images. 

 

A. Experimental Results 

 

 The proposed CNN model was trained for multiple 

epochs using labeled cancerous and non-cancerous oral 

images. The model performance was evaluated on training, 

validation, and test datasets. Fig. 4.1and Fig. 4.2 illustrates 

the training and validation accuracy and loss curves. 

 As shown in Fig. 4.1 and Fig. 4.2, the training 

accuracy increases steadily and reaches 83.47%, while the 

training loss decreases consistently, indicating effective 

learning. In contrast, the validation accuracy peaks at 

approximately 62% and shows fluctuations in later epochs, 

suggesting potential overfitting and the need for improved 

regularization or increased dataset diversity. 

 
Fig. 4.1. Training accuracy 

Fig. 4.2. loss accuracy 
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To further analyze the classification performance, a 

confusion matrix is generated on the test dataset, as shown 

in Fig. 4.2. The confusion matrix indicates that the proposed 

model correctly classifies a large number of cancerous and 

non-cancerous samples, demonstrating its effectiveness in 

oral 

 
Fig. 4.2. Confusion matrix of the proposed CNN model. 
 

A quantitative evaluation of the proposed CNN model is 

conducted using standard classification metrics, including 

precision, recall, F1-score, and accuracy. The classification 

report indicates that the model achieves a precision of 0.88 

and a recall of 0.92 for cancerous samples, demonstrating 

high sensitivity, which is essential in medical diagnosis. For 

normal tissue samples, the precision and recall values are 

0.70 and 0.61, respectively. The overall accuracy of the 

model is 84%, with macro and weighted average F1-scores 

of approximately 0.78, indicating balanced performance 

across both classes. 

 The final evaluation on the test dataset yields a 

testing accuracy of 77.61%. Although the testing 

performance is slightly lower than the training accuracy, the 

results demonstrate that the proposed CNN model is capable 

of effectively distinguishing between cancerous and non-

cancerous oral tissues. Sample prediction results for normal 

and cancerous tissue images are shown in Fig. 4.3 and Fig. 

4.4, respectively.  

 
 

 

 

 

 

 

 

 

 

Fig. 4.3. Sample histopathological image of normal oral tissue. 

 

 

 

 

 

 

 

 

 

 
Fig. 4.4. Sample histopathological image of cancerous oral tissue. 

 

B. Discussion 

  Overall, the experimental results demonstrate that the 

proposed CNN model is effective in distinguishing 

cancerous and non-cancerous oral tissues from 

histopathological images. The high recall achieved for 

cancerous samples highlights the model’s ability to 

minimize false negatives, which is critical in medical 

diagnosis. Although a performance gap between training 

and validation accuracy indicates moderate overfitting, the 

obtained results remain promising. Future improvements 

can be achieved by incorporating larger datasets, enhanced 

data augmentation, regularization, and transfer learning 

techniques to further improve generalization performance. 

 

VI.  CONCLUSION 

 This study investigated the application of a 

Convolutional Neural Network (CNN) for oral cancer 

detection using histopathological image data. The 

experimental results demonstrate that the proposed CNN 

model effectively learns discriminative features from oral 

tissue images and achieves reliable classification 

performance. The observed trends in training and validation 

accuracy and loss indicate stable convergence and 

satisfactory generalization capability. Confusion matrix 

analysis further confirms that the model correctly identifies 

a substantial proportion of both cancerous and non-

cancerous samples. Moreover, the obtained precision, recall, 

and F1-score values highlight the robustness of the proposed 

approach, particularly in detecting cancerous tissues, which 

is a critical requirement in clinical diagnosis. Overall, the 

results validate the suitability of CNN-based methods for 

automated oral cancer detection and suggest that the 

proposed model can serve as a supportive decision-making 

tool for healthcare professionals. Future work will focus on 

improving generalization through larger multi-center 

datasets and the integration of advanced deep learning 

architectures. 
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