
Auto Key Tester: Action-Word Testing with a

General Purpose Keyword-Driven Test

Automation Framework

 Sonu Mittal, Neeraj Gupta

Hindu College of Engineering, Sonepat, India

Abstract— In this paper, we present a tool named

‘AutoKeyTester’ that performs Action-Word Testing based on

Keyword Driven Framework. This tool is developed to provide

an easier approach to Functional Testing and Business Process

testing by passing appropriate Parameters for particular Action

words in the framework. This framework allows reasonably

intuitive tests to be developed and executed without modifying

the test scripts.

Action-Word Testing is a functional testing in which reusable

test components that are assembled into test scripts. It provides

the reusability of test scripts through parameterization and

multiple actions. In AutoKeyTester, the test components are

identified through their corresponding labels, which make tool

more users friendly.

Keywords— Automation, Keyword, Parameterization, Playback,

Testing, Action, Record, Script.

I. INTRODUCTION

 Automation testing means execution of test cases in an

automated way without manual intervention.
[2]

 It reduces the

testing efforts, costs, setup complexities, risk of non coverage

and achieves efficient test execution through reusability,

global visibility and reliability. Automated testing also act as

documentation and has a great training value.

Test Automation has evolved from simple record and play

back to Keyword Driven Testing. Keyword driven testing is a

software testing technique that separates much of the

programming work of test automation from the actual test

design. This allows tests to be developed earlier and makes the

tests easier to maintain. Some key concepts in keyword driven

testing include:

 Keywords, which are typically base level and

describe generalized UI operations such as "click",

"enter", "select"

 Business templates which are typically high level

such as "login", "enter transaction"

 Action Words, or short "Actions", which can be both

base level and high level and in their most general

form allow earlier defined key words to be used to

define higher level action words

This tool records all user actions and stored them in a tabular

format as well as test script. The test scripts are played back to

check whether test pass or fails. These test script can also be

reused by making them parameterized. In traditional tools, the

objects are identified using „Id‟ attribute of the objects. In

AutoKeyTester, the objects are identified by the labels related

to objects. This increases the usability of test scripts and easy

identification of objects.

II. KEYWORD DRIVEN TESTING

 The test automation frameworks have evolved over the time.

They have evolved into three generations. Figure 1 shows

evolution of Test Automation. In the beginning, there was

record and playback script creation. In this, there were only

stand-alone test scripts which don’t require a lot of scripting

and technical expertise. However, these test scripts are

difficult to maintain, no reusability and no extendibility. After

this, comes the Functional Decomposition, which consists of

reusable functional i.e. test modules. This is a modular

approach which provides flexibility, maintainability and

reduces redundancy. But, Functional decomposition has data

within the test scripts which has limited reusability, limited

ease of maintenance and is largely dependent on technical

expertise. To overcome these shortcomings, the data- driven

testing concept comes, in which the test data is taken out of

the test scripts and maintained in external files. This reduces

the size of the test pack greatly and makes the test data

variation easy and similar test cases can be created quickly.

Still, this technique depends upon the technical expertise of

test team and maintenance and perpetuation are issues.

Today, keyword-Driven testing is getting more popular. It

is a technique that separates much of the programming work

from the actual test steps so that the test steps can be

developed earlier and can be maintained with only minor

updates. It is a robust application, in which independent

1944

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21085

reusable keyword libraries are built. Test scripts are easy to

maintain, highly scalable and not dependent on application

availability. However, it is also time consuming and requires

great deal of efforts.

In keyword-driven testing, each keyword corresponds to an

individual testing action like a mouse click, selection of a

menu item, keystrokes, opening or closing a window or other

actions. A keyword-driven test is a sequence of operations, in

a keyword format, that simulate user actions on the tested

application. Basically, to perform any testing actions, testers

simply drag and drop the keyword that corresponds to the

desired operation or they can just record their actions and the

keyword-driven test is built for them. Keywords are organized

into tables that represent a test to be executed. You can create

keyword-driven tests visually by adding and deleting

operations and edit them directly by changing an operation‟s

parameters and position. The easiest way to create keyword-

driven tests is to record them. This technique does not require

testers to know the application‟s internal objects, just a test

plan of what they want to test. After recording, you can

modify the keyword-driven test and customize it to fit your

needs.

III. REUSABILITY

Some software development tools automate the testing by

recording tests that are run, allowing "playback" of the

recorded test scripts. However, an entire test script is rarely, if

ever, applicable to more than one release of one application.

Data-driven testing provides some modularity by keeping test

input and output values separate from the test procedure, but

the procedure itself is still in a monolithic script. Keyword-

Driven testing breaks the test procedure into logical

components that can then be used repeatedly in the assembly

of new test scripts. These logical components form the basis

for the reusability in the Keyword Testing. The reusability can

carried in two ways i.e. by making test script parameterized or

by dividing the test script into multiple business logics called

actions.

Parameterization allows us to use various values for the

parameter at run time. It reduces time, effort and cost by

eliminating the several runs of recording modules. While

testing a web application, it may be required to check how the

web application performs the same operations with multiple

sets of data. For example, how a Web application responds to

twenty separate sets of data is to be checked. There are two

ways to do this test for twenty different sets of data. Twenty

separate tests are recorded, each with its own set of data.

Alternatively, a test is recorded, and the values of the objects

in this test are made variable for parameterization. This saves

the nineteen runs of the recording process. This single test

with the help of parameterization can be played twenty times

using a different set of data each time. Each test run is called

iteration. All iterations are numbered. Later is an efficient

approach and involves the reusability of Test Script. For

example, the authentication page is signed in with “sonia.123”

as user ID and “passXXXX” as password. The “sonia.123” is

a constant value, which means that “sonia.123” is the user ID

each time the test is run. The user ID can be changed into a

variable, so that a different user id can be used for each test

run. In the parameterized Keyword user ID, two different user

ids can be added for example “son_mittal” and

“neeraj_gupta”. The tool can be test the application with this

different data without the need of recording with these data.

Actions divide the whole test script into various business

logical sections. Actions can be reusable action or nested

action. In Reusable action, the same test is run multiple times.

The nested action is the action within an action, which helps in

achieving modularity in test. When a new test is created, it is

represented as a single action. By dividing the tests into

multiple actions, more modular and efficient tests can be

designed. This is another feature of reusability of keywords

that makes Keyword Driven Testing more efficient and

modular than the Data Driven Testing. To explain this we take

the whole example of the below online shopping web

application. This can be divided into several distinct

processes or actions which are as follows:

The online shopping web application is logged in.

The products are added to cart.

Another action for logged out from the web application.

The above test can also be parameterized for ten different

product adding to cart. This parameterized test now can be run

ten times using ten different sets of data. With the help of

Multiple Action, the test can also be organized so that only the

second procedure runs ten times, simulating a single user

logging in, adding ten products to cart, and logging out. This

can be done by dividing the test into different actions. This

saves the nine runs of Logged-in and Logged-out process.

IV. KEYWORD DRIVEN ADVANTAGES

Test Script more lucid – Keyword tables are often more lucid

than regular test scripts, because the Keyword tables have

manual test procedures. The keywords are typically test object

components that make reading a keyword data table similar to

reading a collection of sentences, which is easier than reading

code statements that don’t mirror natural language.

Reusability – Reusability is even further increased with a

Keyword Driven framework, because most of the functions

are created in such a way to not only be reusable for multiple

tests within a single application, but also for tests across

multiple applications.

More standardization – The increase of reusable framework

components is followed by increased standardization. The

added advantage that the Keyword Framework has over

Functional Decomposition, however, is that standards are by

default imposed through the implementation of a Keyword

framework. Provided that the framework components are

created with appropriate standards, they will be invoked in the

keyword data tables with every use of the framework’s

keywords. Standardization helps with script maintenance,

because it decreases guess work involved in figuring out what

a script does and how best to fix it.

Non technical nature– Working with keyword data tables for

everyday application automation is a lot less technical than

working with code statements. Therefore individuals that are

1945

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21085

not as technical can be brought onto the team to help create

automated tests.

Test script development early – This framework increases

the ability for automation to begin before the application is

delivered. Using information gathered from Requirements or

other documentation, keyword data tables can be created that

mirror corresponding manual test procedures.

More traceability– Given the fact that keyword data tables so

closely resemble a manual test procedure, it becomes simpler

to trace actions in automated tests to actions in manual tests.

In addition, there will be greater reuse of manual test

procedures.

Easy Error handling– Patch work error handling solutions on

a script by script basis are difficult to introduce and maintain.

With reusable Keyword framework components, error

handling can be introduced that reaches multiple scripts across

multiple applications. This will ultimately improve the

effectiveness of unattended execution of the test scripts.

V. KEYWORD DRIVEN CHALLENGES

Need technical expertise – While the technical nature of

creating automated tests within the framework is decreased,

the technical skills required to create and maintain the

framework itself is greatly increased from that required for

Functional Decomposition frameworks. There are numerous

dependencies and relationships that must be understood and

maintained, as well as advanced tool components and

structures.

No Intuition – In order to effectively implement a Keyword

framework, reliance on intuition must be reduced, while

reliance on standards must be increased. While some standards

are automatically imposed, with this type of framework, many

standards are not, so there’s an ongoing effort to ensure

resources are aware of standards, understand them, and are

able to effectively implement them. Increased documentation

will probably be required to identify framework features,

particularly documentation that chronicles the keywords that

exist as part of the framework that may be used.

Requires more management – Management support is a

challenge for any automation effort, but it is particularly

difficult with Keyword Driven frameworks. There must be

strong management support, however, for the time and

resources necessary for creating and maintaining the

structures, documentation, and personnel (both technical and

non-technical).

Restrictive – For technically adept resources that are tasked

with day-to-day automation of a software application,

Keyword frameworks may be overly restrictive. They may be

perceived as an entity that “ties their hands” into automating

in a “standard” way at the expense of automating in the most

efficient way for a particular application, or particular feature

within an application. Keyword applications typically require

increased “public relations” work to sale the approach to both

resources and management.

6. AutoKeyTester

AutoKeyTester is an automated testing tool that performs

Keyword Driven Testing for any desired web application like

authentication page, online shopping web application, online

reservation web application, etc. Figure 1 shows the main

window of AutoKeyTester It will perform the functional

testing on a complete, integrated web application to evaluate

the web application's compliance with its specified

requirements. AutoKeyTester performs recording, playback,

test result reporting, parameterization, creation of multiple

actions, and maintenance of Object Repository.

Figure 1: AutoKeyTester

First, a web application is taken which is needed to be tested.

To start the process of recording, enter the URL of the desired

web application (Figure 2). An online shopping web

application is taken here, as an example. As user navigates the

Web application, the AutoKeyTester records all user actions

(Figure3). User logins the application and provides the

Personal details, the Click Button is clicked and Details

entered successfully web page opens. These operations form

the basis of the test. The tool records all the operations

performed in the Web browser until the recording is stopped.

Figure 2: Recording Page

1946

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21085

Figure 3: User Actions

When the recording is stopped, a test script file is generated.

This generated test script file containing all user actions, is

saved. The user actions will comprise of items clicked, items

selected, value typed etc, during the recording procedure. The

tool will also generate steps in the table format (Figure 4),

representing each operation performed in the form of

Keyword, Label, Type, Value and Operation. For example,

User name, Vehicle checkbox and Submit button are the

keywords. The Labels are the label tags or any text before the

keyword. It helps in making the test script more users friendly

because user identifies the keyword in a web page through its

label, not with its name or id. The Type shows the type of the

Keyword like text, radio button, checkbox, submit, URL, etc.

The Value represents values entered by the user in the items.

The Operation includes the click, select, set, open, etc. The

test Script will be useful in the play back of a test and

reusability of the test script i.e. parameterization and multiple

actions.

When the test is play backed, the tool runs the saved test script

file. The recorded web application opens in the web browser

and all steps are performed automatically, as it was originally

recorded in the test. When the test run is completed, it displays

the results of the run (whether a test is passed or failed) in the

test result page. The Test Results window opens, which

contains the result summary of the test execution. Object

Repository is a centralized place for storing the properties of

objects available in AUT (Application under Test). The

keywords can be added in the object repository, either

manually or at the time of recording. All software applications

and websites are developed using many different components

or small units are known as Objects. Each object is identified

on the basis of the object type. Each object has properties (for

example name, title, caption, color and size) and specific set

of method, which help in identification of an object.

Figure 4: Keyword Tabular View

The Test scripts can be added, deleted and modified. The test

script modification helps in the parameterization of the test as

well as during the division of a test into multiple actions.

While testing a web application, there may be a need to check

how the web application performs the same operations with

multiple sets of data. A test is recorded, and the values of the

objects in this test are made variable for parameterization.

This saves the nineteen runs of the recording process. This

single test with the help of parameterization can be played

1947

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21085

twenty times using a different set of data each time. In the

above example, an excel containing different values for the

keywords are uploaded in this tool. The tool will first check

for that number of keywords in the excel sheet should not be

greater than the number of keywords in original recorded test

script. After that, tool will check for correct keywords and

generate the different test scripts for each set of values. The

tool can be test the desired application with this different data

without the need of recording with these data. Figure 5 shows

the parameterization and Figure 6-7 shows the automated play

back of parameterization results without doing recording

process.

Figure 5: Parameterization

Figure 6: Automated Playback of Parameterization Result for Value1

1948

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21085

Figure 7: Automated Playback of Parameterization Result for Value2

 VI.

CONCLUSION

In this paper, we investigate the concept, benefit, challenges

and various tools for the Keyword

Driven Testing. We design

a tool named “AutoKeyTester”

which performs Keyword

Driven Testing to test all functional aspects of any web

application. AutoKeyTester

is not a simple recording and play

back tool, but it also provides other features like test reporting,

parameterization, Keyword extraction, etc. In this, labels are

also mapped with keywords to make test scripts more users

friendly. Our future work will focus on the creation of module

for multiple action and optimization of whole process.

 REFERENCES

[1]

http://en.wikipedia.org/wiki/Software_testing

[2]

Jingfan Tang, Xiaohua Cao,Albert Ma, “Towards Adaptive Framework

of Keyword Driven Automation Testing”, International Conference on

Automation and Logistics Qingdao, China September 2008, pp-1631-
1637.

[3]

Juha Rantanen,”Acceptance Test-Driven Development with Keyword-

Driven Test Automation Framework in an Agile Software Project”
Helsinki University of Technology, Department of Computer Science

and Engineering, Software Business and Engineering Institute. 2007, pp.
1-102 .

[4]

Ayal Zylberman and Aviram Shotten, “Test Language: Introduction to

Keyword Driven Testing”. 2010, pp 1-7

[5]

http://www.forrester.com

[6]

Jie Hui, Lan Yuqing, Luo Pei, Gao Jing, Guo Shuhang, “LKDT: A

Keyword-Driven Based Distributed Test Framework”, International
Conference on Computer Science and Software Engineering, 2008, pp.

719-722

[7]

Pekka Laukkanen, “Data-Driven and Keyword-Driven Test Automation
Frameworks”, Helsinki University

of Technology, Department of

Computer Science and Engineering Software Business and Engineering

Institute. 2007, pp. 1-102

[8]

Tommi Takala, Mika Maunumaa, and Mika Katara. ”An Adapter

Framework for Keyword-Driven Testing”, Department of Software

Systems, Tampere University of Technology, Finland. Ninth
International Conference on Quality Software. 2009, pp. 201-210

[9]

Bharath Anand R., Harish Krishnankutty, kaushik Ramakrishnan,

Venkatesh V.C.,” Business Rules-

Based Test Automation-

A novel
Approach for accelerated testing”. 2007, pp. 1-12

1949

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21085

