
Auto-Deployment of Multi-Tier System in Hybrid Cloud Environment

1Kamalesh Karmakar, 2Priya Roy
1
Department of CSE & IT, Meghnad Saha Institute of Technology, Kolkata, India.

2
CSE, Jadavpur University, Kolkata, India.

Abstract

A large complex Multi-Tier system can be deployed in

Hybrid Cloud Environment according to user’s need.

Present paper discusses Multi-Tier System Deployment

process in Hybrid Cloud Environment using Workflow

along with an example. The definition of Multi-Tier

structure itself dictates the deployment process, leaving

the scope of manual intervention. The system uses the

facilities of scaling up & down to utilize the resources

optimally in case of dynamic user requests.

Keywords – Hybrid Cloud, Multi-Tier System,

Workflow, Workflow Management System.

1. Introduction
A Workflow consists of a sequence of connected

operations declared as work of a person, a group of

persons, an organization of staff, or one or more simple

or complex structure. Workflow serves virtual

representation of actual work and it may be seen as an

abstraction of real work segregated in work-share, work

split or any other types of ordering. The described flow

often refers to a document, which is being transferred

from one step to another. A workflow is a pattern of

activity enabled by a systematic organization of

resources, defined roles and information flows, into a

work process that can be documented. Workflows are

designed to achieve processing intents of some sort,

such as physical transformation, service provision, or

information processing. The term ’workflow’ is used in

computer programming to capture and develop human-

to-machine interaction.

Workflow Management System is developed to

automate and control business process [1, 2].

According to user’s requirement, data store and web

services cross organizational boundaries [3, 4]. A

substantial work has been done for workload

distribution in heterogeneous computing systems in

efficient ways and has been published in [5]. Workflow

based process control has been defined along with

design and application in [6].

In present scenario Virtual Machines (VMs) are

deployed in Hybrid Cloud Environment [7] according

to user’s request. User should run VMs first and then

configure them to build up a computational Cluster or a

Multi-Tier System according to their need. This manual

process is very hard task to a System Administrator. To

reduce this effort of an Administrator and to optimize

start up & configuration time a Management System is

being proposed for Hybrid Cloud Environment. Here,

before VMs deployment, a Deployment Descriptor will

be generated mentioning required software installation

& configuration; and VMs will be deployed

accordingly.

A Workflow Management System for Hybrid Cloud

Environment (WMSHCE) presented here manages and

defines a series of computational tasks within an

organization to produce a final outcome(s). WMSHCE

allows users to define different workflow for different

types of jobs or processes. At each stage in the

workflow, one individual or group is responsible for a

specific task. Once the task is completed, the

WMSHCE ensures that the responsibilities for the next

task for an individual get notified. It also ensures that

the data required for execution are also received. The

designed WMSHCE can optimize redundant tasks and

ensures incomplete tasks to be completed.

In this context in the following sections WMSHCE

will be described in details. In section-2 Multi-Tier

System has been defined followed by working principle

of Workflow in Cloud Environment in section-3. In

section-4, a Workflow generation technique has been

defined for Hybrid Cloud Environment, followed by

Multi-Tier System Deployment and Monitoring in HCE

using Workflow.

2. Multi-Tier System Definition
On this background these subsections discuss the

definition of Multi-Tier System in general and its

applicability in HCE.

2.1. Multi-Tier System --
In traditional system users can run different

application(s) in different tier(s), i.e. Web-Tier,

Application-Tier and DB-Tier. User can deploy a

system with one or multiple tiers containing one or

more servers in every tier performing specific

responsibilities.

3202

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110918

2.2. Multi-Tier System in HCE—

The main reason behind Multi-Tier System

deployment in HCE is to distribute the workload

among different tiers with varying number of servers to

provide scalability. Once a system gets deployed, it is

always possible to add/delete tier(s) itself or to

add/delete servers in a specific tier.

The relationship among multiple servers is defined

in the Multi-Tier System-Definition file. Every tier has

a unique name among all tiers in this descriptor. This

helps users locating servers contained in this tier later

on in actions. The main responsibility of the tier startup

or shutdown sequences are to startup or shutdown the

servers contained in it. Servers are the atomic unit of

artifacts in the Multi-Tier System Definition and

represent the actual machine instances to comprise the

Multi-Tier system.

On this background the following section discusses

the working principle of generic Workflow and a

demonstration of a Workflow in cloud environment.

3. Working Principle of Workflow in Cloud

Workflow automates the transfer of information to

support the flow of work of business process governed

by rules or procedures to deploy any system or service

automatically, therefore delays are minimized,

processes get speed up, and cost savings are realized. A

workflow consists of a sequence of connected steps

defined in a XML file, known as System Definition

File (SDF). A sample SDF file structure has been

shown in appendix. In case of parallel processing where

two or more tasks are performed concurrently,

workflow is important to resolve their dependencies.

Therefore the workflow is very important for the

computing in Cloud and for the end users. WMS itself

eliminates unnecessary steps to improve efficiency and

controls whole process based on user’s requirement.

Workflow empowers administrators to manage the

business process under the control of WMS. The

procedures are formally documented and followed

exactly, ensuring that the work is performed

automatically in the way planned in SDF. The term

flow refers to two things, one is referring the flow of

information from process to process and the other

refers the flow of activities to be done.

The deployed systems are generic and can perform

synchronous or asynchronous tasks. If at that moment

system deployment is not possible in Hybrid Cloud

Environment, the workflow does not block any running

service, it just informs the user replying with a pending

message. It controls the delivery of process of

applications or services in on-demand Cloud

Environment. Here OpenSymphony [8] Workflow has

been used to deploy the systems on the Cloud

Environment.

In existing system, VMs are deployed in Cloud

Environment manually. In this proposed model VMs

are deployed in Cloud Environment using Workflow to

reduce deployment and configuration cost. In the

remaining section the background of designing a

Workflow for Cloud Environment will be discussed.

Here a scenario is being considered to deploy Multi-

Tier System. A computational Cluster consists of

multiple servers. Here one server acts as front end to

distribute workload among other Computational Nodes

(CNs). Computational nodes are registered to Cluster

Controller (CC). To deploy this Cluster, firstly CC

should run before deploying CNs. When CC gets an IP

address CN will be deployed. Post-script will run in CC

to register CNs to form a Computational Cluster. Based

on resource usage Computational Cluster can be scaled

up/down.

The SDF file is generated after submitting user’s

requirement from the User interface (shown in Figure

5).

Figure 1. Working Principle of Workflow

In Figure-1 working Principle of Workflow has been

defined with respect to Cloud Environment. In the

proposed model, firstly Servers are booted and start

execution based on Workflow1 defined in System

Definition File (SDF). Later on program control goes to

Workflow2 to check IP addresses of those deployed

Servers. After getting IP addresses, program control is

transferred to Workflow3 to run post-script commands.

In Workflow4, based on resource utilization Systems

are scaled-up or scaled-down to provide high

performance in optimal way considering 80% of

resource utilization as critical value.

When new job request comes to the system and

resource utilization is more than the critical value, the

system needs to scale-up for assigning the task to the

new server. When resources are underutilized new jobs

3203

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110918

are distributed in such a way that few servers can be

shut down. During scaling up the number of server

added to the system cannot exceed the maximum value

of required server as defined in SDF. The similar

concept is applicable during scaling down, where each

tier should have at least one server. If the minimum and

maximum values of required servers are same then the

system could not be scaled up or scaled down. In this

situation if new job request arrives and resource

utilization is more than the critical value then the job

could not be assigned to any server immediately, those

will be queued.

In this context following section describes the

working principle of OSWorkflow, design technique of

proposed Workflow for Cloud using OSWorkflow.

4. Designing Workflow for Cloud using

OpenSymphony for Proposed Model

OpenSymphony is an Open Source project dedicated

to providing enterprise class J2EE components.

OSWorkflow is fairly different from most other

workflow systems available, both commercially and in

the open source world as it’s extremely flexible can be

plugged in to almost any need or existing application.

OSWorkflow can be considered as a low level

workflow implementation. Situations like loops and

conditions that might be represented by a graphical

icon in other workflow systems must be coded in

OSWorkflow.

OSWorkflow is based on the concept of the Finite

State Machine allowing a simple XML file to be

translated into business workflow process. Each state is

represented by the combination of step ID and status. A

transition from one state to another occurs, when an

action is performed. There is always at least one active

state during the lifetime of a workflow.

Here is a code segment to define the ’state’ of a

machine-
<unconditional-result old-status=”Finished”

status=”Queued” step=”2” />

The following line shows the way how an action is

performed in a Workflow-
workflow.doAction (workflowId, stepId,

information);

Figure 2. Architecture of Workflow in Cloud

In this context the Architecture of Workflow is

being described as shown in Figure 2. The Workflow

engine is a component in a workflow automation

program that knows all the procedures, steps in a

procedure and rules of each step. The workflow engine

determines whether a process is ready to move to the

next step. Here the Workflow Engine controls all the

steps and actions performed by the Workflow. Control

node collects the information about user application

from the end user over Internet. Then it checks for the

availability of services from the cloud resource

provider. If the service is available but not running in

the server then the workflow first starts up the service

and then give permission to end user to access the

application. If there is no service available right at that

moment, it informs the end user replying with a

pending message for some time. After giving the

permission to access the application control node

monitors the whole automation process.

4.1. Steps & Actions
A Step is simply a workflow position. As a simple

workflow progress it moves from one Step to another.

Actions specify the transaction that can take place

within a Step. At the beginning of Workflow Steps are

not defined. The user must take some Actions to start

up the processes and to set possible Actions to start the

Workflow specified in <initial-actions>.

In Figure-3 an initial action is defined for starting a

Workflow and after finishing this action the flow of

control will go to step-1.
<initial-actions>

 <action id=”1” name=”Start Workflow”>

 <results>

 <unconditional-result old-status=”Finished”

status=”Queued” step=”1”/>

 </results>

 </action>

</initial-actions>

Figure 3. Structure of Initial Actions

3204

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110918

Two actions (ex. runInstance and copyFile) have

been shown in the following Figure 4. The old status

attribute is used to denote what should be entered in the

history table for the current state to denote that it has

been completed. In almost all cases, this will be

’Finished’.

<steps>

<step id=”1” name=”Starting Step1”>

<actions>

<action id=”2” name=”runInstance”>1.12”

<results>

<unconditional-result old-status=”Finished”

status=”Underway” step=”1”/>

</results>

<post-functions>

<function type=”beanshell” name=”bsh.function”>

<arg name=”script”>

<![CDATA[

import com.xerox.amazonws.ec2.Jec2;

import com.xerox.amazonws.ec2.LaunchConfiguration;

import com.xerox.amazonws.ec2.ReservationDescription;

import com.xerox.amazonws.ec2.InstanceType;

ReservationDescription runInst =

transientVars.get(”ec2”).runInstances(transientVars.get(”lc

”));

]]>

</arg>

</function>

</post-functions>

</action> <action id=”3” name=”copyFile”>

<results>

<unconditional-result old-status=”Finished”

status=”Queued” step=”2”/>

</results>

<post-functions>

<function type=”beanshell” name=”bsh.function”>

<arg name=”script”>

<![CDATA[

.......

]]>

</arg>

</function>

</post-functions>

</action>

</actions>

</step>

.......

<steps>

Figure 4. Structure of Steps and Actions

The actions as specified above are of limited use.

For example, it is possible for a user to call action3

without first having called action2.

4.2. Workflow Status
It is a string, and it describes the status of a

workflow within a particular step. A workflow consists

of multiple steps to represent the flow. For the current

step, there may be multiple actions. An action may be

set to run automatically or be selected to be run

programmatically through user interaction. Each action

has at least one unconditional result and zero or more

conditional results. If multiple conditional results are

specified, the first result for which all conditions are

met is executed. If no conditional results are specified,

or if no conditions are satisfied, then the unconditional

result is executed.

In this context the next section discusses Multi-Tier

System Deployment & Monitoring in Cloud

Environment.

5. Multi-Tier System Deployment &

Monitoring Using Workflow in Cloud
In this proposed model to deploy a Multi-Tier

system in Hybrid Cloud Environment a SDF is

required. This file consists of all the information about

the system that contains how many tiers and how many

servers to launch, which tier consists how many servers

and the specification about the servers. To deploy a

system the user just need to click the Deploy button

after providing information about the system through

this Hybrid Cloud web interface. User does not need to

write any SDF. The system definition file will be

generated automatically getting input from the user. A

system can contain one or more than one tier and a tier

may contain one or more than one server. Thus a user

can get a Multi-Tier system containing many tiers and

servers.

A web interface (shown in Figure 5) has been

developed to deploy Multi-Tier system in Hybrid

Cloud Environment. The user can set some ’post-

startup’ functions before system deployment. This

’post-startup’ command will be executed just after

running a server.

The designing of a system-definition file can be

divided into two steps - the first step is to define the

system artifacts that is the information about the

system, tiers and servers; and the second step is to

define the tasks to be done to configure the server that

is the command and action.

3205

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110918

Figure 5. Multi-Tier System Deployment

5.1. Run Time Aspect
After getting the SDF, the application starts a

workflow to handle some events. The event may be
startup, shut-down, scaling-up or scaling-down. When
the application encounters the startup event on a server,
it invokes the startup sequence and goes through a set of
predefined states until the server is started. After starting
the server post-startup commands are executed. The
post-startup commands could be any arbitrary shell-
script to be run on the server just started. User can
invoke the custom-event from the UI manually by
pressing the events button; if the handler for the event is
a scaling activity or a shutting-down activity the
corresponding actions will be performed by the
application.

5.2. Start-up
When the application encounters the startup event

on a server defined in the input Multi-Tier SDF, it
invokes the startup sequence as it has been defined and
goes through a set of predefined states until the server is
started. When it is accessible the system is configured
by executing some pre-defined post-startup commands.
The generic startup activity sequence has a timeout to
prevent the corresponding activities running for too long
time; which user can customize. The default timeout is
1800 seconds. If a server takes more time than the
timeout to startup then it will be automatically
discarded. The startup sequence has provision for
defining user-defined actions to be invoked after the
generic startup activities are performed. For this user
needs to add a post-startup element under the startup
definition. One sample Startup Script has been shown in
Figure 6.

<startup timeout=”600”/>

 <post-startup>

 </post-startup>

</startup>

Figure 6. Sample Startup Script

5.3. Post-Start-up
Post-startup command is executed just after the

server startup. The post-startup section in deployment
definition file contains some script. The post-startup
command may be any arbitrary shell-script defined by

the user. One sample Post-Startup script has been shown
in Figure 7.

<post-startup>

 <command type=”script” name=”installjdk.sh”>

 <![CDATA[

 #!/bin/sh

 echo jdk is going to be installed............

 yum install jdk -y

 echo jdk has been installed............

]]>

 </command>

</post-startup>

Figure 7. Sample Post-Startup Script

5.4. Scale-up
The system will be deployed based on user defined

number of servers. It is possible to scale-up the system
manually or automatically. If the CPU load exceeds
certain limit, the applications scale-up the system by
adding node or server to the system automatically. Also
a user can scale it up manually. The scale-up is guided
by the workflow specialized to do the needful. Scale-up
is limited by the maximum count of servers. It implies
that that a workflow will increase the count of servers
by a value defined by user.

5.5. Scale-down
Beside scale-up the system can be scale-down

automatically or manually by a user. Scale-down is also
guided by a workflow defined to it. Scale-down is
limited by the minimum count of servers. It implies that
a workflow will decrease the count of servers by a value
defined by user.

5.6. Shutdown
All servers have their own shutdown sequence with

customizable timeout. On timeout the server will be
shutdown and the rest of the system will continue.
Basically the shutdown event is invoked by the user.
Workflow startup and shutdown time is mentioned as
shown in Figure 8 below.

<workflow>

 <startup timeout=”1500”/>

 <shutdown timeout=”900”/>

</workflow>
Figure 8. Sample Shutdown Scrip

6. Conclusion
In this paper, a Multi-Tier system deployment

technique on Hybrid Cloud Environment has been
discussed using Workflow. A web interface has been
developed; through which user can deploy a Multi-Tier
system just once clicking the Deploy button specifying
the requirements. User can access private and public
cloud through this common interface.

3206

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110918

Here a structure of SDF is given where more than
one server is defined within a tier, but all the servers
will deploy on the same cloud (either in private or
public Cloud). In future work, some research will be
done to deploy servers on different Cloud Environment
defining in same system definition file.

7. References

[1] G. Kappel, S. Rausch-Schott, W. Retschitzegger; “A
Framework for Workflow Management Systems Based on
Objects, Rules and Roles”; ACM Computing Surveys
Electronic Symposium on Object-Oriented Application
Frameworks, 2000.

[2] F. Leymann and D. Roller; Production workflow: concepts and
techniques; Prentice-Hall, 2000.

[3] W. Aalst; “Process-Oriented Architectures for Electronic
Commerce and Interorganizational Workflow”; Inf. Systems,
Vol. 24/8, 1999.

[4] U. Dayal, M. Hsu, R. Ladin, Business Process Coordination -
State of the Art, Trends, and Open Issues; Proc. of the 27th
VLDB Conference, 2001.

[5] Laine, J.M.; Midorikawa, E.T.; Efficient Strategies for
Workload Distribution in Heterogeneous Computing Systems;
Computational Science and Engineering Workshops, 2008.
CSEWORKSHOPS '08. 11th IEEE International Conference.

[6] Michael zur Muehlen, Workflow-based Process Controlling.
Foundation, Design, and Application of Workflow-driven
Process Information Systems; Logos Verlag Berlin, 2004,
ISBN 3-8325-0388-9.

[7] Verlag Berlin, 2004, ISBN 3-8325-0388-9.K. Karmakar,
P. Roy, Infrastructure Oriented Hybrid Cloud Architecture;
International Journal of Innovations in Engineering &
Technology (IJIET), Vol. 3, Issue 1, October 2013

[8] http://opensymphony.com/osworkflow

Appendix

A. Sample Structure of SDF

<system>

<name>System1</name>
<tiers>

<tier>

<name>web-tier</name>
<servers>

<server>

<name>web-server</name>
<noOfServer>1</noOfServer>

<imageIdentifier>emi-D7621489</imageIdentifier>

<keypair>suvo-key</keypair>
<kernelImage>eki-8A131363</kernelImage>

<ramdiskImage>eri-E7CE147B</ramdiskImage>

<instanceType>m1.large</instanceType>
<securityGroup>default</securityGroup>

<availabilityZone>SMCC-JU-1</availabilityZone>

<workflow>
<startup timeout=”600”>

<post-startup>

</post-startup>
</startup>

<shutdown/>

</workflow>
</server>

</servers>

</tier>
<tier>

<name>app-tier</name>

<servers>
<server>

<name>app-server1</name>

<noOfServer>1</noOfServer>
<imageIdentifier>emi-A10213AB</imageIdentifier>

<keypair>my-key</keypair>

<kernelImage>eki-12731539</kernelImage>
<ramdiskImage>eri-0CC41526</ramdiskImage>

<instanceType>m1.small</instanceType>

<securityGroup>kk-sec</securityGroup>
<availabilityZone>SMCC-JU-1</availabilityZone>

<workflow>

<startup timeout=”600”>
<post-startup>

</post-startup>

</startup>
<shutdown/>

</workflow>

</server>
<server>

<name>app-server2</name>

<noOfServer>1</noOfServer>
<imageIdentifier>emi-F03A116E</imageIdentifier>

<keypair>suvo-key</keypair>
<kernelImage>eki-EDA914A1</kernelImage>

<ramdiskImage>eri-08F514FE</ramdiskImage>

<instanceType>m1.xlarge</instanceType>
<securityGroup>default</securityGroup>

<availabilityZone>SMCC-JU-2</availabilityZone>

<workflow>
<startup timeout=”600”>

<post-startup>

<command type=”script” name=”installjdk.sh”>
<![CDATA[

#!/bin/sh

echo jdk is going to be installed............
yum install jdk -y

echo jdk has been installed............

]]>
</command>

</post-startup>

</startup>
<shutdown/>

</workflow>

</server>
</servers>

</tier>

<tier>
<name>web-tier</name>

<servers>

<server>
<name>db-server1</name>

<noOfServer>2</noOfServer>

<imageIdentifier>emi-96901396</imageIdentifier>

<keypair>test</keypair>

<kernelImage>eki-0EED1525</kernelImage>

<ramdiskImage>eri-962E134E</ramdiskImage>
<instanceType>m1.large</instanceType>

<securityGroup>default</securityGroup>

<availabilityZone>SMCC-JU-1</availabilityZone>
<workflow>

<startup timeout=”600”>

<post-startup>
</post-startup>

</startup>

3207

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110918

<shutdown/>
</workflow>

</server>

</servers>
</tier>

</tiers>

</system>

3208

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110918

