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Abstract— Classical control technique is used for attitude 

control of launch vehicles worldwide, because of its established 

history of success. Usual method is to model launch vehicle 

dynamics by linear techniques to achieve adequate stability and 

tracking performance. Common type of feedback control system 

for launch vehicles is the Proportional-Integral (PI) controller 

with appropriate filters to stabilize the lateral bending modes 

and slosh modes and also ensure sufficient robustness margins 

for rigid body. This paper presents a Classical Adaptive 

Augmentation Control (AAC) Algorithm for forward loop gain 

augmentation in real time, to cater to large dispersion in vehicle 

parameters beyond the capability of classical control system. 

The idea is to provide augmentation to a classical control 

designed autopilot when performance enhancement is required 

to tackle off-nominal conditions arising out of modeling errors 

and large dispersion in estimated vehicle parameters (thrust, 

inertia, slosh, aerodynamics, lateral bending modes). There is 

high chance that such large dispersion can arise during initial 

design of a new generation launch vehicle before actual flight. 

Finally, simulation results for several credible launch vehicle 

failure scenarios show that the adaptive controller consistently 

and predictably improves performance and robustness, and 

achieves stability during extreme off-nominal situations. 

 

Keywords—Adaptive Controlt; Augmentation; Parameter 

Uncertainty; Gain Schedulling; Robustness  

I.  INTRODUCTION  

 

As Launch Vehicles pace up along with the development 

of new technologies, the core targets of new designs are to 

enhance payload capability (performance), reliability, and 

safety at decreasing cost. As computational capability has 

become advanced, control algorithms play a major role 

towards achieving this aim. Global control algorithm used in 

current generation launch vehicles is the Proportional Integral 

(PI) control with gain scheduling.  Although much 

advancement have taken place over the last few years, PI with 

gain scheduling control remains dominant due to its strong 

heritage. Generally, attitude control problem is considerate of 

the short period dynamics of the vehicle, where the basic aim 

is to achieve adequate stability and reasonably rapid response 

to input guidance commands, with average passivity to 

external disturbances. Launch vehicles are often 

aerodynamically highly unstable. Despite that, launch vehicle 

dynamics are readily modeled in literature using linear 

techniques to arrive at an autopilot configuration that meets 

the design requirements. For the flight control systems design, 

the consolidations of Blakelock[1], Greensite[2], and 

Garner[5] are quite all-inclusive. 

Major design problems exist because a launch vehicle is 

aerodynamically unstable, highly flexible and additional 

problems due to sloshing of liquid propellants and the inertia 

effects of engines. These problems are seriously aggravated 

for certain advanced launch vehicle configurations. Under 

such a scenario, classical control methods may not be fully 

effective in meeting the robustness margins for very large 

dispersions in vehicle parameters mainly because they are not 

known with sufficient precision before flight. Because a 

failure of any one of components could mean loss of the 

vehicle, an extensive ground testing and evaluation program is 

necessary to provide the maximum confidence for successful 

flight. This has led to the focus in adaptive control technique. 

Greatest benefit of adaptive control that can be exploited is 

the fact that they don’t require a deductive knowledge of the 

launch vehicle parameters with great accuracy. A survey of 

Adaptive Control Systems by Astrom, et al., in [6] clarifies the 

immense potential of the approach. In order to fully extract the 

benefits of adaptive control for a particular application, the 

adaptive control system must be designed with knowledge of 

the complete system to which it is to be applied [7], [8], [9]. 

This includes general features of the aerospace vehicle, such 

as control-structure interaction, sloshing of propellants, 

performance of sensors, and actuator dynamics. Out of the 

many adaptive control schemes, the direct Model Reference 

Adaptive Control (MRAC) shows robustness to uncertainties 

with sometimes improved and more predictable performance, 

[10], [11], [12]. 

An algorithm that relies on model reference-driven gain 

adaptation supplemented by spectral damping is demonstrated 

by Jeb S Orr, et al., in [13]. The focus is on adaptive control 

developments that are specifically tuned for application to 

launch vehicles which maintains consistency with classical 

control system design. 

This paper presents implementation and validation of a 

classical Adaptive Augmentation Control (AAC) algorithm 

for a typical 2nd generation launch vehicle, for performance 

enhancement in the event of large deviations in estimated 

vehicle parameters. AAC provides minimum augmentation 

when vehicle is under the control of classical controller 

within an expected range of parameter variations and 

environment uncertainty. However, if classical controller is 

unable to render sufficient performance due to parameter 

variation, external disturbances etc., the adaptive controller 

modifies the output of the classical feedback control law so as 

to maintain stability and minimize performance loss to the 

maximum possible extent. The analysis reveals that AAC can 

be implemented on board safely without affecting the 
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nominal and off nominal performances within bounds and at 

the same time ensure best results for unpredicted severe 

dispersions thus avoiding vehicle failure possibilities. By 

incorporating the AAC technique, the practice of assessing 

flight control stability using classical gain and phase margins 

is not affected under justifiable assumptions. 

The paper is organized in 6 sections. After a brief 

introduction of the topic in section I, section II describes the 

mathematical model of launch vehicle in pitch plane. Classical 

controller design is explained in section III. Section IV deals 

with the classical adaptive augmentation (AAC) scheme and 

its validation is presented in section V. Finally, the paper is 

concluded in section VI. 

II. LAUNCH VEHICLE MODELING 

A. Equations of short period dynamics 

The primary objective of Launch Vehicle Attitude 

Control System is to orient the vehicle along the required 

trajectory in the presence of external disturbances. First step 

towards this is to model the vehicle attitude dynamics taking 

into account aerodynamics, control actuator dynamics, vehicle 

bending, propellant sloshing, variation in center of gravity (cg) 

and moment of inertia etc. as the time progresses. This leads 

to a time variant system. Using time slice approach a short 

period model is evolved [2] which can be assumed time 

invariant for a small duration, so that linear time invariant 

control system principles can be used. Further it is assumed to 

be decoupled in pitch/yaw/roll and planar analysis is carried 

out. Referring to [2],[3], the equations of short period 

dynamics can be represented as 

 

1) Rigid body 

Consider the geometry of vehicle in pitch plane 

represented in Fig 1. 
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Considering the forces and moments acting on the launch 

vehicle due to engine inertia, aerodynamics, elasticity, slosh 

and actuator effects, effective force and moment equations 

may be represented as 

 

 
Fig. 1. Geometry of vehicle in pitch plane 

Force Equation 
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Moment Equation 
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2) Slosh mode 

Fuel-slosh can be a severe issue in space vehicle stability 

and control. Dynamic effects of a sloshing liquid can be 

nearly approximated by replacing the liquid mass with a rigid 

mass and a harmonic oscillator like pendulum. Using the 

pendulum parameters like mass, length, hinge point location 

etc., the equation of motion of the ith pendulum can be 

represented as 
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3) Bending mode 

The elastic deflection at any point along the vehicle 

[3] is given by 
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where )(
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 denotes the normalized mode shape of the ith 

mode in the pitch plane. )(
)(

tq
i

is the generalized co-ordinate 

due to elasticity for the ith mode in the pitch plane. It satisfies 

the equation 
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M are the generalized force and mass 
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4) Actuator 

The second order actuator dynamics may be represented as 

AAwACAwAAwA   2
22

            (10) 

 

5) Nozzle 

The second order nozzle dynamics may be represented as 
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B. State Space Representation 

The complete plant dynamics represented by equations 

(3) to (11) may be expressed in the state space form given by 

BuAxxK                              (12) 
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where 15 states are chosen considering rigid body mode, 3 

bending modes, 1 slosh mode, actuator and nozzle dynamics 

given by 
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The control input is the deflection angle: 

][ cu                                      (15)                                                                         

The output: 

T

rgag
y
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where   is the pitch angle, 
ag

  and 
rg

 represent the pitch 

rate sensed by angle and rate gyros respectively. 

 

The launch vehicle model used for analysis consists of 

two large solid boosters strapped into a liquid core. Initial 

analysis is done at the atmospheric flight stage at a particular 

instant where aerodynamic forces are significant. Using the 

vehicle parameters and by considering the effect of two 

nozzles at the solid boosting phase, the governing equations 

are modified and rearranged to get required state space 

matrices. 

C. Simplified System Modeling 

For the purpose of investigating the general features of a 

highly simplified version of the control system, equations (3)-

(11) may be reduced to any simplified degree. Ignoring the 

effects of bending, sloshing and effects due to actuator 

dynamics, the plant dynamics may be expressed in the 

transfer function form as 
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where the control moment coefficient, 

yyI

clcT
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the aerodynamic moment coefficient, 

yyI

lL 
           (19) 

III. CLASSICAL CONTROL DESIGN METHOD  

 

Autopilot design for a launch vehicle is carried out in a 

conventional way using the classical control techniques [4]. 

This is well established method when performance criteria for 

control system are expressed in terms of undamped natural 

frequency, damping factor, steady state errors gain margins, 

phase margins, etc. The method of pole placement is used for 

control system design of a conventional launch vehicle. Here 

the design/response specifications can be transformed into 

desired locations of dominant closed loop poles. Using the 

model developed, the control system gains are selected so as 

to place the closed loop poles in the above locations. The 

gains are obtained as function of vehicle parameters and 

closed loop poles. 

Control system design is carried out in two phases, first 

for a simplified model without slosh and flexibility. Gains are 

selected for good tracking, rapid response and good damping 

ensuring the system stability as the time progresses. In the 

next step a suitable compensator is designed to stabilize the 

bending modes and sloshing modes as well as improving the 

rigid body margins in presence of  higher order dynamics. 

A. Simplified Autopilot Architecture 

1) Block diagram of simplified Autopilot 

 

The block diagram of launch vehicle rigid body model 

with a simplified autopilot is shown in fig.2. AK  is the 

forward loop gain and RK , the rate gyro gain. 

 
Fig. 2. Block diagram of Simplified Autopilot 

 

The closed loop transfer function of the simplified rigid 

body model is given by 

 
   

)(
21)(

)(

















cA
Ks

R
K

cA
Ks

cA
K

sHsG

sG

sc

s
              (20) 

2) Design of simplified Autopilot 

In the transfer function given by equation (20), the 

values of AK , the forward loop gain and RK , the rate gyro 

gain at a particular time instant have to be determined. The 

characteristic equation of the simple rigid body model with 

simplified autopilot is given by 

0)(
2
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Equation (21) can be compared with the characteristic 

equation of a typical second order system 

0
2

2
2

 ns
n

s                             (22) 

where 
n

 and  represent the undamped natural frequency 

and damping factor respectively 

 

Comparing (21) & (22), we get 

BuKAxKx
11 
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From (18) and (19), we have 

c =5.35 and  =1.8                              (25) 

 

For a desirable rigid body natural frequency n =3 rad/sec 

and damping factor,  = 0.75, and substituting the same in 

(23) & (24) gives  

AK = 2 and RK = 0.44                              (26)                                            

An increase in value of AK  provides best performance 

and decrease the steady state error associated, but it affects 

the stability features. Hence Proportional Integral Control 

strategy may be introduced to maintain required performance 

capability without losing stability.  

B. PI Controller Architecture 

 
Fig.3.  Classical Controller Architecture 

 

The block diagram/architecture of PI controlled system is 

shown in fig. 3. Design of classical controllers like P/PI/PID 

controllers can be done using the classical root locus 

technique based on time domain approach where a controller 

can be designed in cascade with the system to have a pair of 

dominant closed loop poles which satisfy specified time 

domain specifications 
n

 and  . Here, without changing the 

position of already placed dominant poles significantly, 

damping factor is slightly changed so as to eliminate steady 

state error.  

 

If   ddDds AG   is the open loop transfer 

function of the system and   DdscG  is the transfer 

function of PID controller with respect to the dominant pair 

pole ( ds ) location, satisfying the magnitude condition for 

dominant pole pair to be on the root locus, the proportional, 

integral and derivative gains of a PID controller in general 

can be derived as  
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where iK is determined such that specified error constant is 

met. For designing PI controller, the value of 
d

K  is assumed 

to be zero in (27).  Hence the design equations are 
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The dominant pole for     =0.75 and     n =3 rad/s, 


6.13899.2  D

d
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Referring to Fig. 2., 










2

)1(
)()(

s

sRKcAK
sHsG                         (31) 

With respect to the dominant pole location, 
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Integral constant, iK  and proportional constant pK are 

obtained from equation (29) as 

13.0 
p

KiK                            (33) 

The controller transfer function becomes  

)
3.0

1()(
ss

iK
pKscG                    (34) 

The designed values are applied on simplified system 

model as well as the complete plant model with a suitable 

compensator designed (a lag filter) for phase stabilization and 

tuned until a stable system with satisfactory performance is 

achieved. 

 

IV. CLASSICAL ADAPTIVE AUGMENTATION 

CONTROL ALGORITHM DESIGN 

A. Control Architecture 

 
Fig.4.  Classical Adaptive Augmentation Control  

 

Fig. 4 represent the block diagram of augmented Adaptive 

Control. By working as an augmenting controller rather than 

the primary method of accommodating the changing flight 

scenarios, the design preserves the strength of classical 

controller during nominal situations 
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B. Zones Of Adaptation 

The three main zones where adaptation is expected to 

work are the following 

 

    • Respond to tracking error 

    • Respond to undesirable control-structure interaction  

    • Return to baseline control design during nominal cases  

C. Adaptation Law [14] 

A multiplicative first-order adaptation law is used, 

                                                                                 (35)                                                                                                                                  

                                                                                   

 

where re  is the model error, sdy  is the damper signal and a, 

b, c represents the error gain, damper gain and nominal gain 

respectively. The error term responds to tracking error, the 

damper term during control-structure interaction and the 

nominal term for automatic re-convergence to PI controller, 

when adaptation is not needed. An upper and lower bound to 

adaptation is provided given by maxk and 0k . For at least 6 

dB robustness gain margin which corresponds to a magnitude 

of 2, maxk is chosen as 1.5 and 0k is chosen as 0.5. 

The output of the adaptive law is the adaptive gain ak , 

which is used to adjust the output of the PI controller.  The 

adaptive gain ak is used to calculate a total forward loop gain 

given by 

aFG kkk  0                              (36) 

 

1) Computation of error term, re  

The error term is the part which increases the adaptive 

gain, when needed. A reference model is designed to attain the 

desired closed loop performance, similar to second order rigid 

body system that tracks the guidance commands.                                                                                                                 
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dre     r                                   (38) 

where d is the error mixing constant 

2) Computation of damper signal, sdy  

Damper signal is a rectified signal detecting and passing 

undesirable high-frequency dynamics in the loop. Decay of 

adaptive gain is proportional to magnitude of signal. 

                        GHPHP UsHy )(                                      (39) 

 2)( HPLPsd ysHy                                 (40) 

HPy and sdy are outputs of a High pass filter and a Low pass 

filter being used, with transfer functions HPH and 

LPH respectively.  

a) High pass filter 

 A high pass Chebyschev filter is used with a cut off 

frequency approximately twice of that of the rigid body 

frequency. 

b) Low pass filter 

A maximally flat Butterworth filter of cut off frequency 

approximately nearing the rigid body control frequency is 

chosen here. The frequency responses of High pass and Low 

pass filter chosen are shown in fig 5. 

 
Fig.5.  Frequency response of High Pass & Low Pass Filter 

 

V. VALIDATION OF ADAPTIVE AUGMENTATION 

CONTROL DESIGN 

 

In order to validate the proposed control scheme, 

simulations of attitude control of launch vehicle are 

presented. The controller is tested on the typical discretized 

launch vehicle model to check whether the design criteria are 

met. 

A. Adaptive Controller Parameters 

The tuned adaptation gains are given in table 1. 

                      Table 1. Adaptive Control Parameters 

Gains Symbol Value 

Error gain a 0.001 

Damper gain b 100 

Nominal gain c 0.2 

Error mixing constant d 25 

Maximum adaptation gain 
maxk  1.5 

Minimum adaptation gain 
0k  0.5 

B. Test Cases 

    The four credible test failure scenarios selected are 

 

1. Minimal adaptation during nominal plant situation 

2. Low thrust/high inertia (dispersed by 20%) 

3. First bending mode frequency decreased by 30% 

4. High thrust/Low Inertia  

C. Short Period Simulations 

The above mentioned test cases are tested on the modeled 

linear time invariant plant on short period basis initially, 

subjected to a steering step command, c   

 12

max

max 
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Fig.6.  Nyquists & step response for case 1 

 
Fig.7.  Nyquists & step response for case 2 

 

 

 

Fig.8.  Nyquists & step response for case 3 

 

 
Fig.9.  Nyquists & step response for case 4 

 

 
Fig.10: short period-Variation in adaptive gain for all cases 

D. Planar Simulations 

A long period planar simulation is carried out using 

vehicle data from 40 to 90 seconds with proper gain 

scheduling and performance of adaptation is evaluated. Here, 

the steering command generated by guidance is applied to the 

plant with time varying parameters. The plant parameters, the 

steering command signal and the reference model vary at 

each instant. Fig.11 shows the variation in scheduled gains 

RA KK &   

 
Fig. 11: Variation of scheduled gains, 

RA KK &  

 
 

 

 

Fig. 12: Case 1: Attitude Plot 

 
Fig. 13: Case 3: Attitude Plot 

 
Fig. 14: Case 4: Attitude Plot 
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      Fig.15: long period-Variation in adaptive gain for all cases 

 

E. Analysis of Simulation Results 

The simulation results for different test cases selected 

show that PI controller with suitable compensation works 

satisfactorily for nominal cases as well as for dispersions upto 

20% in plant parameters. For extreme off-nominal situations 

tested, AAC takes the control. 

In the first test case, the nominal plant is simulated. Here, 

the baseline controller renders reasonable performance. Thus, 

the contribution from AAC is minimal, as expected. From the 

nyquist plot shown in fig. 6, the rigid body margins obtained 

from short period simulation are Gain margin = 7 dB; Phase 

margin= 48 deg; Aero margin = 12.3 dB. For slosh mode, 

Phase margin= 30 deg. For first bending mode, phase 

margin= 47.8 deg. Step response shows an acceptable 

overshoot of less than 30 percent and tracking error less than 

1 deg. In the planar simulation also (fig. 12), commanded 

attitude profile is followed satisfactorily. In Fig 10 and fig 15, 

ak is maintained close to 0.5, so that total adaptive loop gain, 

FGk  is equal to 1. 

In the second case, a model error is created by decreasing 

torque and increasing inertia by 30%. Here, PI controller 

deteriorates in its performance. AAC increases the adaptive 

gain owing to model error and improves performance and 

stability margins. The increase in adaptation gain is visible in 

both fig. 10 and fig. 15.  

An unstable situation is created in third test case by 

introducing an unexpected extreme dispersion (30% 

decrease) in first bending mode frequency and mass. The PI 

controller degrades here to retain stability. There is a chance 

that the command signal gets in phase with the excited plant, 

increasing its amplitude further till stability is lost. AAC 

decreases the adaptive gain and maintains stability. Planar 

simulation (fig. 13) supports the short period analysis. The 

decrease in adaptation gain is shown in both fig. 10 and fig. 

15. 

In the last case, a high thrust/low inertia situation is 

experimented, which leads to complete loss of stability of 

vehicle as the PI controller gain becomes excessive.  AAC 

decreases gain and stability is gained back. Same result is 

established during planar simulation as well (fig. 14). 

VI. CONCLUSIONS 

 

An adaptive augmenting strategy has been incorporated 

into the designed pitch axis dynamics of a typical launch 

vehicle to back support the classical controller (PI) designed, 

so as to improve performance and handle extreme off-

nominal situations. Several credible test cases were selected 

for validating the performance supremacy of proposed 

controller. Simulation results show that adaptive 

augmentation provided sufficient performance improvement, 

and avoided loss of vehicle for extreme off-nominal cases. By 

acting as augmenting controller, classical control is 

maintained as the primary controller thereby preserving the 

strength and legacy of classical control for nominal as well as 

bounded dispersion cases. The method is proved to be 

suitable for ensuring safety of new generation launch vehicles 

designed for advanced missions during their initial flight 

testing phase. As forward work, a strict assessment of 

proposed scheme in a full six-degree of freedom nonlinear 

environment may be done to validate its use in a relevant 

flight environment. 
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APPENDIX 

Notations used 
 

A = reference area; D = drag 

nC =normal force coefficient 
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 zF = total force acting parallel to vehicle body axis, Z 

yyI  = moment of inertia of reduced about pitch axis 

0I = moment of inertia of rocket engine about its c.g. 

rI  = moment of inertia of rocket engine about swivel point  

AK  = servo amplifier gain 

IK = integrator gain 

RK = rate gyro gain;  

w
V = wind velocity parallel to Z ' axis  

cl  = distance from origin of body axis to engine swivel point  

rl = distance from c.g. of rocket to engine swivel point 

l =distance from c.p. in pitch plane to origin of body axis   

pil =distance from hinge point of ith pendulum to axis origin  

L =length of vehicle 

piL =length of ith pendulum  


L =aerodynamic toad per unit angle of attack 

 lm = reduced mass/length along vehicle longitudinal axis 

0m = reduced mass of vehicle 

pim  = mass of ith pendulum 

Tm = total mass of vehicle 

Rm = mass of rocket engine 

 i
M = generalized mass of ith bending mode 


X

M = total perturbation moment about pitch axis 

)(i
q = generalized coordinate of ith bending mode 

)(i
Q = generalized force (moment) of ith bending mode  

cT =control thrust 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sT = ungimballed thrust 

TT  =total thrust  

0UV  = forward velocity of vehicle 

0U =acceleration 

z  = perturbation velocity of vehicle parallel to Z axis 

 = perturbation angle of attack 

 = flight path angle 

pi
  = pendulum angle 

 = rocket engine deflection angle 

c = command signal to rocket engine 

N = nozzle deflection angle 

A = actuator deflection angle 

a
 , 

N
 = relative damping factor for actuator, nozzle 

 i
 = relative damping ratio for ith bending mode 

 = perturbation attitude angle 

 c= attitude command signal 

),( tl =bending deflection 

 i
 =slope of ith bending mode  

 i
 = normalized mode function for the ith bending mode 

a
 , N  = undamped natural frequency for actuator, nozzle 

i ,
pi

 =frequency of the ith bending mode,  pendulum 
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