Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 11, November-2022

AUFED - Automated Front End Development

Dr. Bhakti Palkar
Professor, Computer,
K. J. Somaiya College of Engg
Vidyavihar, Mumbai, India

Mr. Abdeali Arsiwala
Student, Computer
K. J. Somaiya College of Engg

Mr. Deep Doshi
Student, Computer
K. J. Somaiya College of Engg
Vidyavihar, Mumbai, India

Raj Nathwani
Student, Computer
K. J. Somaiya College of Engg
Vidyavihar, Mumbai, India

Vidyavihar, Mumbai, India

Abstract— Transforming a user interface screenshot developed by
a designer into computer code is a typical task conducted by a
developer in order to build customized software, websites.

Large corporations have the workforce to dedicate separate teams
for the design and development process, which can take several
weeks and involve multiple stakeholders to back them up
financially.

Small businesses and startups may lack such big resources. As a
result their user interfaces and ultimately their product may suffer,
causing them monetary losses.

Goal of this project is to use modern Deep Learning algorithms such
as Convolutional Neural Networks [CNNs], Recurrent Neural
Networks [RNNs] etc to significantly streamline and automate the
design workflow by converting hand-drawn web page designs into
HTML code and empower any business to quickly create and test
web pages.

Keywords— GUI, automated HTML code generation, CNN, RNN,
GRU, frontend

I. INTRODUCTION

Creating user-friendly and engaging experiences is the basic
objective for companies of all sizes and a process driven by rapid
prototyping, design, and user testing cycles. They need to go
through an assortment of stages, including drawing concept
sketches, designing prototypes, and testing the website prior to
running it live. These procedures are not going to be completed
right away. Truly, engineers spend weeks and months
developing a beautiful, responsive website. Enormous
associations such as Facebook have the resources to commit
entire teams to the design process, which may take several weeks
and involve several stakeholders; small organizations may not
have these resources and can endure as a result of their user
interfaces.

But technological advances are making it simpler for them.
Current innovations, for example, Artificial Intelligence (Al) and
Machine Learning are driving front-end improvement and
making the coding and testing of site formats less complex,
faster, and more powerful. Deep Learning, a component of
Machine Learning, in particular, plays a crucial role in front-end
development.

Taking motivation from this, we have implemented 3
components for automating the front-end development.

e Deep Learning models [CNNs, GRUs].
e Compiler.
e Interface.

The Deep Learning models are used to identify the elements
of the web page and generate the Domain Specific Language
[DSL]. The Compiler is used to convert the DSL to form the
HTML code. The Interface allows the developer to interact
with the models, specify the color schemes and acquire the
output code. This entire flow of HTML Code generation from
a hand drawn web sketch is depicted by figure 1

Upload the
web design
image to the

input field

Image Upload

=
T

HTML code

Copy the HTML

source code or

download the
HTML file

Generating
Domain Specific
Language for

Processing the
image and
extracting the
features from
it

Domain
Specific
Language

| Image
Processing

o given image
and compiling it
to HTML

Fig. 1. Product Perspective

Il. RELATED WORK

Youssef et. al [1] designed a system to develop HTML code
using W3C XML Schema and Style Sheet.

Matija et. al. [2] developed a system which was a desktop-to-
web converter. The application converts layout data and form
event data to generate JAVA web applications.

Dakhore et. al. [3] designed a system which takes flowchart
as an input and uses XML parser to generate C code. The
XML Code is generated using Tree Traversal APIs of
CDATA. It is a very primitive approach and cannot be
implemented for complicated applications.

IJERTV111S110012

www.ijert.org

17

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 11 Issue 11, November-2022

Aparna et. al. [4] developed an approach to design an HTML buttons and divs. The thickness of the borders are also
page from a hand drawn GUI. To identify the elements of the adjusted to mimic drawn sketches. The font is changed to one
GUI, they have used height, width and diameter as comparing that looks like handwriting. Finally we augment these images
parameters. Back Propagation Neural Network (BPNN) and by adding skews and shifts.

Learning Vector Quantization Neural Network (LVQNN) are The dataset used by Tony Beltramelli in pix2code [7] also
used for character recognition. Discrete Cosine Transform includes a GUI file (corresponding to each PNG Web design
(DCT) [5][6] is used to extract the feature for training neural image) which consists of DSL tokens for the HTML file
network. The system is restricted to the identification of only generation. These tokens are used as input to a compiler for
uppercase labels being identified. generating required HTML tags as detected in the image by
Tony Beltramelli et. al. [7] have proposed a method to generate the Deep Learning models. These files are built using a
HTML code based on the web page images and a Domain vocabulary which is made up using a small set of elements
Specific Language. The proposed system makes use of the such as:-

Convolutional Neural Networks model to extract information

from the images and a Recurrent Neural Networks to convert the ; e

. SO ; T h , btn-active btn-inactive
extracted information into a Domain Specific Language. Which {3
is then used for the generation of the HTML code. small-title text <START> btn-orange

The Tech Giant Microsoft is deeply involved with Al to solve
many problems. Microsoft Al Labs has developed a product

called Sketch2Code et. al. [8] which implements Deep Learning quadruple double <c> btn-green
techniques to extract information from the design made by the)
designer on the whiteboard. The information is then convertedto ~ row header btn-red single

the HTML code. The product architecture is made of Deep The purpose of this DSL is to make the code generation more
Learning models and has been trained on a dataset of millions of gtficient. The simplicity of these DSL tokens reduces the size
images, neither of which is open-source of the total vocabulary of the language decoder thus reducing
the size of the search space.

The 1,700 dataset items are then split into training (1360) and
validation (340) sets.

TABLE 1 SUMMARY OF AUTOMATIC CODE GENERATION
TECHNIQUE

Author Input Output

Deep Learning Models
Youssef et. al. [1] XML Schema and HTML web interface We then develop 3 models using Tensorflow and Keras as

gﬁg‘; shown in figure 2 to achieve the desired results
First, A Convolutional Neural Network (CNN) model is used
Matija [2] GUI/TUI of desktop Java web application to extract image features and data from the source images.
application This data includes the information of the elements present in
the image.
Dakhore et. al. [3] Flow chart C program code Second, A language model built using Gated Recurrent Unit
. (GRU) is used to encode sequences of source code tokens.
Aparna et. al.[4] Scanned image of GUI | HTML page

Third, A decoder model (also a GRU), which takes in the
output from the models in the previous two steps as its input,
Tony Beltramelli et. al. | Coloured GUI images | HTML code and predicts the next DSL token in the sequence.
[71 Once the set of predicted tokens is generated from the model,
we design a compiler which converts the DSL tokens into
HTML code that can be rendered in any browser.

drawn on paper

Akash Bharat Wadje, Hand Drawn Web HTML code
Prof. Rohit Bagh et. al. | Sketches

8]

. IMPLEMENTATION OVERVIEW

= 5
o
F Prediction:

Dataset Generation ' *header”
We start with an open-source dataset used by Tony Beltramelli | X

in pix2code [7]. It consists of 1,700 PNG screenshots of —-—-""

synthetically generated websites along with their corresponding [PAD,<START> eader,

GUI file which consists of tokens of Domain Specific Language. """ ——

Since the main aim of this project is to work on hand-drawn
images, the acquired images are processed and converted to
hand-drawn like images using OpenCV and the PIL library in
python. The images are resized to a specific aspect ratio. Then
the borders of the elements are skewed and the border radius of
the elements on the page are changed to curve the corners of the

Fig. 2. Deep Learning Models

CNN - Image Encoder

This model was trained to detect the features of the images. In
this case the features are the elements present in the web page
images. To encode each input image to a fixed-size output

| JERTV11IS110012 www.ijert.org 18
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 11, November-2022

vector, we exclusively use small 3 x 3 receptive fields which are
convolved with stride 2. The width of the first two convolutional
layers is 16, followed by 2 more layers of size 32, followed by
two layers of width 64, and finally width 128. All the layers have
a “relu - rectified linear” activation unit. Two fully connected
layers of size 1024 applying the “rectified linear” unit activation
complete the vision model.

GRU - Language Encoder

We make use of a simple lightweight DSL to describe GUI
elements. This model is designed to only work with the GUI
layout of the web page, the different graphical components, and
their relationships; thus the actual textual value of the labels is
ignored. Using the DSL also reduces the size of the search space
for the language generation, the DSL simplicity also reduces the
size of the vocabulary. We implement the language model as a
stack of two GRU layers with 128 cells each. This results in our
language model performing token-level language modeling with
a discrete input by using one-hot encoded vectors; eliminating
the need for word embedding techniques such as word2vec that
can result in costly computations.

GRU - Language Decoder

We train this model in a supervised learning manner by feeding
an image and a contextual sequence of DSL tokens as inputs; and
the token as the target label.

A CNN-based vision model encodes the input image into a
vectorial representation. The input token is encoded by an GRU-
based language model into an intermediary representation
allowing the model to focus more on certain tokens and less on
others. Both the vectors are concatenated into a single feature
vector which is then fed into a second GRU-based model
decoding the representations learned by both the vision model
and the language model. The decoder thus learns to model the
relationship between objects present in the input GUI image and
the associated tokens present in the DSL code. Our decoder is
implemented as a stack of two GRU layers with 512 cells each.

Compiler - HTML File Generation

This compiler converts the generated DSL tokens into an HTML
file, which can then be rendered into any browser. The input to
this compiler is the GUI layout / DSL tokens generated by the
GRU-decoder model. Colours are hard coded in the compiler
based on the styling option provided at the start of processing
with the Default scheme being Black & White and other schemes
being Blue, Pink, Green, Purple, Red, Brown, Yellow, Orange,
Grey.

Training of models

An important factor that has to be taken into account while
language encoding and decoding is the size or length T of the
sequences used for training to train on long term dependencies.
After the empirical experiments conducted by Tony Beltramelli
[7], the sliding window of size 48 was selected; in other words.
Taking that into consideration AuFED’s language model also
makes use of sequences of length 48. The trade-off between the
computational costs and the long-term dependencies learning
was acceptable. In other words for every new token generation
the model will consider the image features and contextual
sequence of previous 48 tokens. The special tokens <START>

and <END> are used to respectively prefix and suffix the DSL
files signifying the start and end of DSL files respectively.
Training is performed by computing the partial derivatives of
the loss with respect to the network weights calculated with
backpropagation to minimize the multiclass log loss:

T

L(I,X) = —Z X¢41log(ye)

t=1

With xt+1 the expected token, and yi the predicted token. The
model is optimized and the loss L is minimized w.r.t all the
parameters of all layers in the CNN model and both GRU
models. Models were trained with the RMSProp algorithm
which gave the best results with a Learning Rate of le — 4. To
prevent overfitting, the dropout regularization was set to 25%
for the vision model after each max-pooling operation and at
30% after each fully-connected layer. In the GRU-based
models, dropout is set to 10% and only applied to the non-
recurrent connections. Our model was trained with mini-
batches of 64 images.

:
| ! ¥
| ! |
Lo H

GRU”

I
|
III

GUIT AuFED

Fig. 3. Model Training

As we can see in Figure 4 which denotes the training and
validation loss at the end of each epoch. Both the training
and validation losses decrease with each epoch denoting that
the models are becoming more and more accurate in
learning about the features of the input image and predicting
the next token for the GUI File. Also the validation loss is
decreasing which suggests that the models are performing
properly on unseen data as well.

AuFED MODEL LOSSES

== Training Loss

Validation Loss
0.4

0.3

Losses

0.2
0.1

0.0
0 2 B 6 8 10

Epochs

Fig.4. Training and Validation Loss

IJERTV111S110012

www.ijert.org 19

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 Issue 11, November-2022

Sampling

To generate DSL code while sampling, we feed the GUI image |
and a contextual sequence X of T = 48 tokens where tokens xt .
..xT —1 are initially set empty and the last token of the sequence
XT is set to the special < START > token. The predicted token yt
is then used to update the next sequence of contextual tokens.
That is, xt ... xT —1 are set to xt+1 . . . XxT (xt is thus discarded),
with XT set to yt. The process is repeated until the token < END
> is generated by the model. The generated DSL token sequence
is then fed to the compiler to convert it to HTML code.

i
|
1l
- |
.
: |
X]
-
empty -
contex AuFED .
context y - Cﬂmpllcr
t
-
-
__IF
I DSL
— code
—

GuU1
Fig. 5. Model Sampling

User Interface

In order to make this project accessible to all and easy to use, we
develop a Web Interface which doesn’t require any external
dependency as such. Using simple HTML, CSS, and Javascript,
we design a Ul for the AUFED web application. We use the
Django framework (Python-based free and open-source web
framework that follows the model-template-views architectural
pattern.) as a backend service and for integrating the trained deep
learning models with the frontend Ul. The Ul consists of 6
elements in total which are - Upload Image Button, Colour
Scheme Dropdown, Submit Button, Preview button, Download
button, Code Editor

AuFED

(Automated Front End Development)

G Upload Image Color scheme v v)

<htmi>
<header>

<meta charset="utf-8">

<meta name="viewport" content="width=c

<link rel="stylesheet" href="https://maxcdi
<link rel="stylesheet" href="https://maxcdn.t
<style>body{background-color: #E8E9EE;}.h«

<title>Scaffold</title>

©ONDUN B WN

IV. RESULTS & DISCUSSION

In order to measure the accuracy of the models and
the entire architecture we use the accuracy metric of BLEU or
the Bilingual Evaluation Understudy Score. In simple terms
the BLEU Score is a quality measure which calculates the
difference between the machine translation and the human
translation. It can be used to evaluate text generated for a suite
of natural language processing tasks. BLEU Score compares
the n-grams of the machine translation with the n-grams of the
human translation. The greater the number of matches
between both the translations the better the translation is. For
every training epoch the validation loss of the models was
decreasing which suggests that the BLEU Score is increasing.
For calculation of the BLEU Score we use the NLTK
Library’s sentence_bleu function. Finally the trained models
were evaluated on a few hand-drawn web page images and
the results are as shown below.

[rmn o LILE %]

) (ﬁ—ﬁ r

Tyt | [

‘ i . | Durawe | IJ Bhatn | Thickijn

-) bk I

I s B B I e | [s e e | [memmnes
= e \ l
e

- ——

Fig. 8. The output generated by the model.

The figure 7 is the IMG-3 mentioned in TABLE-2 provided
as an input to our model; and the figure 8 is the result
generated by the models which gives an acceptable BLEU
Score of 0.919.

The BLEU Score was calculated and the result data is as
shown in the Table 2

2 <headers ® Previe TABLE 2 BLEU SCORE FOR TEST IMAGES
<DO >
n <ma¥n class="container”>
[| =dteclasseheaden cleariix & Download Image File BLEU Score Time required for Output
14 <ul class="nav nav-pills pull-left"> - Generation (in sec)
15 Fdumdj Jic
16 Tjnu Uwgbg
1‘; s IMG-1 0.77 26
19 </nav>
20 </div>
21 <div class="row"><div class="col-la-3"> IMG-2 0.66 28
22
IMG-3 0.919 30
Fig. 6. AUFED User Interface
| JERTV11IS110012 www.ijert.org 20

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 11 Issue 11, November-2022

The model performed satisfactorily on unseen data as well.
Though the model is not fit for real world applications, it still did
a good job in its predefined scope and limited number of HTML
elements..

V. CONCLUSION & FUTURE SCOPE

In this paper, we have proposed a novel way of automatically

generating the HTML code from hand-drawn website
wireframes in a few seconds. We leveraged Deep Learning
techniques such as CNN and GRU to convert hand drawn images
into DSL tokens and finally used a compiler to convert those
tokens to corresponding HTML code with the user-inputted color
style. Our application also allowed the user to copy as well as
render and view the HTML code in the browser.
Since the model was trained on a vocabulary of just 16 elements,
which include only divs and buttons, it can’t predict tokens
outside of what it’s seen in the data. Our model can be further
improvised by generating additional website examples using
more elements, such as dropdown menus, checkboxes, radio
buttons etc and then training the model using a similar approach.
Moreover, one can also implement Generative Adversarial
Networks [GANS] for the same task. They are also capable of
tackling the exposure bias problem of MLE and can generate
better quality tokens for a DSL having larger vocabulary. GAN
architecture consists of a Discriminator model which
differentiates between the generated samples and the original
samples. Thus the Generator model will create a DSL token file,
from which the compiler can generate the HTML file and the
discriminator can compare the final web page with the image
provided in the input stage. GAN can handle many more
parameters and generate better results as compared to other Deep
Learning models.

REFERENCES

[1] Youssef Bassil ,Mohammad Alwani, “Autonomic HTML
InterfaceGenerator for Web Applications” International Journal of Web &
Semantic Technology (IJWesT) Vol.3, No.1, January 2012,PP 33-47

[2] Matija Tomaskovic, Ruben Picek, “Automatic Conversion of Desktop
Applications to Java Web Technology”, Central European Conference on
Information and Intelligent Systems, Varazdin, Croatia, September 19-21,
2012, Page 473 of 493

[3] Dakhore,Mahajan,“Generation of C-Code Using XML Parser”Available
at http://www.rimtengg.com/iscet/proceedings/pdfs/advcom p/149.pdf

[4] Aparna Halbe, Dr. Abhijit R. Joshi, “A Novel Approach to HTML Page
Creation Using Neural Network” International Conference on Advanced
Computing Technologies and Applications (ICACTA2015), Procedia
Computer Science 45 (2015) 197 — 204

[5] AnujaNagare, “Licence Plate Character Recognition System UsingNeural
Network”, International journal of Computer Application, Volume 25—
No.10, July 2011

[6] Dipti Pawade, Pranchal Chaudhari, Harshada Sonkamble, *Comparative
Study of Different Paper currency and coin currency Recognition
Method", International Journal of Computer Application (IJCA) , vol. 66,
no. 23, Mar 2013, ISSN 0975-8887, pp. 26-31..

[7]1 Tony Beltramelli, “pix2code: Generating Code from a Graphical User
Interface Screenshot”, preprint, 2017

[8] Akash Wadje, Prof. Rohit Bagh, “Sketch2Code: From Sketch Design on
Paper to Website Interface”, IJIRT, 2020

| JERTV11IS110012 www.ijert.org 21
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

