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Abstract— Transforming a user interface screenshot developed by 

a designer into computer code is a typical task conducted by a 

developer in order to build customized software, websites. 

Large corporations have the workforce to dedicate separate teams 

for the design and development process, which can take several 

weeks and involve multiple stakeholders to back them up 

financially. 

Small businesses and startups may lack such big resources. As a 

result their user interfaces and ultimately their product may suffer, 

causing them monetary losses. 

Goal of this project is to use modern Deep Learning algorithms such 

as Convolutional Neural Networks [CNNs], Recurrent Neural 

Networks [RNNs] etc to significantly streamline and automate the 

design workflow by converting hand-drawn web page designs into 

HTML code and empower any business to quickly create and test 

web pages. 

 

 

Keywords— GUI, automated HTML code generation, CNN, RNN, 

GRU, frontend 

I. INTRODUCTION 

Creating user-friendly and engaging experiences is the basic 

objective for companies of all sizes and a process driven by rapid 

prototyping, design, and user testing cycles. They need to go 

through an assortment of stages, including drawing concept 

sketches, designing prototypes, and testing the website prior to 

running it live. These procedures are not going to be completed 

right away. Truly, engineers spend weeks and months 

developing a beautiful, responsive website. Enormous 

associations such as Facebook have the resources to commit 

entire teams to the design process, which may take several weeks 

and involve several stakeholders; small organizations may not 

have these resources and can endure as a result of their user 

interfaces. 

But technological advances are making it simpler for them. 

Current innovations, for example, Artificial Intelligence (AI) and 

Machine Learning are driving front-end improvement and 

making the coding and testing of site formats less complex, 

faster, and more powerful. Deep Learning, a component of 

Machine Learning, in particular, plays a crucial role in front-end 

development. 

  Taking motivation from this, we have implemented 3 

components for automating the front-end development. 

● Deep Learning models [CNNs, GRUs]. 

● Compiler. 

● Interface. 

    

    The Deep Learning models are used to identify the elements 

of the web page and generate the Domain Specific Language 

[DSL]. The Compiler is used to convert the DSL to form the 

HTML code. The Interface allows the developer to interact 

with the models, specify the color schemes and acquire the 

output code. This entire flow of HTML Code generation from 

a hand drawn web sketch is depicted by figure 1 

 

 

Fig. 1. Product Perspective 

 

II. RELATED WORK 

Youssef et. al [1] designed a system to develop HTML code 

using W3C XML Schema and Style Sheet.  

Matija et. al. [2] developed a system which was a desktop-to-

web converter. The application converts layout data and form 

event data to generate JAVA web applications.  

Dakhore et. al. [3] designed a system which takes flowchart 

as an input and uses XML parser to generate C code. The 

XML Code is generated using Tree Traversal APIs of 

CDATA. It is a very primitive approach and cannot be 

implemented for complicated applications. 
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Aparna et. al. [4] developed an approach to design an HTML 

page from a hand drawn GUI. To identify the elements of the 

GUI, they have used height, width and diameter as comparing 

parameters. Back Propagation Neural Network (BPNN) and 

Learning Vector Quantization Neural Network (LVQNN) are 

used for character recognition. Discrete Cosine Transform 

(DCT) [5][6] is used to extract the feature for training neural 

network. The system is restricted to the identification of only 

uppercase labels being identified. 

Tony Beltramelli et. al. [7] have proposed a method to generate 

HTML code based on the web page images and a Domain 

Specific Language. The proposed system makes use of the 

Convolutional Neural Networks model to extract information 

from the images and a Recurrent Neural Networks to convert the 

extracted information into a Domain Specific Language. Which 

is then used for the generation of the HTML code.  

The Tech Giant Microsoft is deeply involved with AI to solve 

many problems. Microsoft AI Labs has developed a product 

called Sketch2Code et. al. [8] which implements Deep Learning 

techniques to extract information from the design made by the 

designer on the whiteboard. The information is then converted to 

the HTML code. The product architecture is made of Deep 

Learning models and has been trained on a dataset of millions of 

images, neither of which is open-source 

TABLE 1 SUMMARY OF AUTOMATIC CODE GENERATION 

TECHNIQUE 

Author Input Output 

Youssef et. al. [1] XML Schema and 

Style 

Sheet 

HTML web interface 

Matija [2] GUI/TUI of desktop 

application 

Java web application 

Dakhore et. al. [3] Flow chart  C program code 

Aparna et. al.[4] Scanned image of GUI 

drawn on paper 

HTML page 

Tony Beltramelli et. al. 

[7] 

Coloured GUI images HTML code 

Akash Bharat Wadje, 

Prof. Rohit Bagh et. al. 

[8] 

Hand Drawn Web 

Sketches  

HTML code 

III. IMPLEMENTATION OVERVIEW 

 

Dataset Generation 

We start with an open-source dataset used by Tony Beltramelli 

in pix2code [7]. It consists of 1,700 PNG screenshots of 

synthetically generated websites along with their corresponding 

GUI file which consists of tokens of Domain Specific Language. 

Since the main aim of this project is to work on hand-drawn 

images, the acquired images are processed and converted to 

hand-drawn like images using OpenCV and the PIL library in 

python. The images are resized to a specific aspect ratio. Then 

the borders of the elements are skewed and the border radius of 

the elements on the page are changed to curve the corners of the 

buttons and divs. The thickness of the borders are also 

adjusted to mimic drawn sketches. The font is changed to one 

that looks like handwriting. Finally we augment these images 

by adding skews and shifts. 

The dataset  used by Tony Beltramelli in pix2code [7] also 

includes a GUI file (corresponding to each PNG Web design 

image) which consists of DSL tokens for the HTML file 

generation. These tokens are used as input to a compiler for 

generating required HTML tags as detected in the image by 

the Deep Learning models. These files are built using a 

vocabulary which is made up using a small set of elements 

such as:- 

 

, { } btn-active btn-inactive 

small-title text <START> btn-orange 

quadruple double <c> btn-green 

row header btn-red single 

The purpose of this DSL is to make the code generation more 

efficient. The simplicity of these DSL tokens reduces the size 

of the total vocabulary of the language decoder thus reducing 

the size of the search space. 

The 1,700 dataset items are then split into training (1360) and 

validation (340) sets. 

 

Deep Learning Models 

We then develop 3 models using Tensorflow and Keras as 

shown in figure 2 to achieve the desired results  

First, A Convolutional Neural Network (CNN) model is used 

to extract image features and data from the source images. 

This data includes the information of the elements present in 

the image. 

Second, A language model built using Gated Recurrent Unit 

(GRU) is used to encode sequences of source code tokens. 

Third, A decoder model (also a GRU), which takes in the 

output from the models in the previous two steps as its input, 

and predicts the next DSL token in the sequence. 

Once the set of predicted tokens is generated from the model,  

we design a compiler which converts the DSL tokens into 

HTML code that can be rendered in any browser. 

 

 

Fig. 2.  Deep Learning Models 

 

CNN - Image Encoder 

This model was trained to detect the features of the images. In 

this case the features are the elements present in the web page 

images. To encode each input image to a fixed-size output 
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vector, we exclusively use small 3 × 3 receptive fields which are 

convolved with stride 2. The width of the first two convolutional 

layers is 16, followed by 2 more layers of size 32, followed by 

two layers of width 64, and finally width 128. All the layers have 

a “relu - rectified linear” activation unit. Two fully connected 

layers of size 1024 applying the “rectified linear” unit activation 

complete the vision model. 

 

GRU - Language Encoder 

We make use of a simple lightweight DSL to describe GUI 

elements. This model is designed to only work with the GUI 

layout of the web page, the different graphical components, and 

their relationships; thus the actual textual value of the labels is 

ignored.  Using the DSL also reduces the size of the search space 

for the language generation, the DSL simplicity also reduces the 

size of the vocabulary. We implement the language model as a 

stack of two GRU layers with 128 cells each. This results in our 

language model performing token-level language modeling with 

a discrete input by using one-hot encoded vectors; eliminating 

the need for word embedding techniques such as word2vec that 

can result in costly computations. 

GRU - Language Decoder 

We train this model in a supervised learning manner by feeding 

an image and a contextual sequence of DSL tokens as inputs; and 

the token as the target label. 

A CNN-based vision model encodes the input image into a 

vectorial representation. The input token is encoded by an GRU-

based language model into an intermediary representation 

allowing the model to focus more on certain tokens and less on 

others. Both the vectors are concatenated into a single feature 

vector which is then fed into a second GRU-based model 

decoding the representations learned by both the vision model 

and the language model. The decoder thus learns to model the 

relationship between objects present in the input GUI image and 

the associated tokens present in the DSL code. Our decoder is 

implemented as a stack of two GRU layers with 512 cells each. 

Compiler - HTML File Generation  

This compiler converts the generated DSL tokens into an HTML 

file, which can then be rendered into any browser. The input to 

this compiler is the GUI layout / DSL tokens generated by the 

GRU-decoder model. Colours are hard coded in the compiler 

based on the styling option provided at the start of processing 

with the Default scheme being Black & White and other schemes 

being Blue, Pink, Green, Purple, Red, Brown, Yellow, Orange, 

Grey. 

 

Training of models 

An important factor that has to be taken into account while 

language encoding and decoding is the size or length T of the 

sequences used for training to train on long term dependencies. 

After the empirical experiments conducted by Tony Beltramelli 

[7], the sliding window of size 48 was selected; in other words. 

Taking that into consideration AuFED’s language model also 

makes use of sequences of length 48. The trade-off between the 

computational costs and the long-term dependencies learning 

was acceptable. In other words for every new token generation 

the model will consider the image features and contextual 

sequence of previous 48 tokens. The special tokens <START> 

and <END> are used to respectively prefix and suffix the DSL 

files signifying the start and end of DSL files respectively. 

Training is performed by computing the partial derivatives of 

the loss with respect to the network weights calculated with 

backpropagation to minimize the multiclass log loss: 

 

𝐿(𝐼, 𝑋) =  − ∑

𝑇

𝑡=1

𝑥 𝑡 + 1 𝑙𝑜𝑔(𝑦𝑡) 

 

With xt+1 the expected token, and yt the predicted token. The 

model is optimized and  the loss L is minimized w.r.t all the 

parameters of all layers in the CNN model and both GRU 

models. Models were trained with the RMSProp algorithm 

which gave the best results with a Learning Rate of 1e − 4. To 

prevent overfitting, the dropout regularization was set to 25% 

for the vision model after each max-pooling operation and at 

30% after each fully-connected layer. In the GRU-based 

models, dropout is set to 10% and only applied to the non-

recurrent connections. Our model was trained with mini-

batches of 64 images.  

 

Fig. 3. Model Training  

As we can see in Figure 4 which denotes the training and 

validation loss at the end of each epoch. Both the training 

and validation losses decrease with each epoch denoting that 

the  models are becoming more and more accurate in 

learning about the features of the input image and predicting 

the next token for the GUI File. Also the validation loss is 

decreasing which suggests that the models are performing 

properly on unseen data as well. 

 

 

Fig.4. Training  and Validation Loss 
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Sampling 

To generate DSL code while sampling, we feed the GUI image I 

and a contextual sequence X of T = 48 tokens where tokens xt . 

. . xT −1 are initially set empty and the last token of the sequence 

xT is set to the special < START > token. The predicted token yt 

is then used to update the next sequence of contextual tokens. 

That is, xt . . . xT −1 are set to xt+1 . . . xT (xt is thus discarded), 

with xT set to yt. The process is repeated until the token < END 

> is generated by the model. The generated DSL token sequence 

is then fed to the compiler to convert it to HTML code. 

Fig. 5. Model Sampling 
 

User Interface  

In order to make this project accessible to all and easy to use, we 

develop a Web Interface which doesn’t require any external 

dependency as such. Using simple HTML, CSS, and Javascript, 

we design a UI for the AUFED web application. We use the 

Django framework ( Python-based free and open-source web 

framework that follows the model-template-views architectural 

pattern.) as a backend service and for integrating the trained deep 

learning models with the frontend UI. The UI consists of 6 

elements in total which are - Upload Image Button, Colour 

Scheme Dropdown, Submit Button, Preview button, Download 

button, Code Editor 

 

 
 

Fig. 6. AuFED User Interface 

 

IV. RESULTS & DISCUSSION 

In order to measure the accuracy of the models and 

the entire architecture we use the accuracy metric of BLEU or 

the Bilingual Evaluation Understudy Score. In simple terms 

the BLEU Score is a quality measure which calculates the 

difference between the machine translation and the human 

translation. It can be used to evaluate text generated for a suite 

of natural language processing tasks. BLEU Score compares 

the n-grams of the machine translation with the n-grams of the 

human translation. The greater the number of matches 

between both the translations the better the translation is. For 

every training epoch the validation loss of the models was 

decreasing which suggests that the BLEU Score is increasing. 

For calculation of the BLEU Score we use the NLTK 

Library’s sentence_bleu function. Finally the trained models 

were evaluated on a few hand-drawn web page images and 

the results are as shown below.  

Fig. 7. The hand-drawn test image. 

 

Fig. 8. The output generated by the model. 

The figure 7 is the IMG-3 mentioned in TABLE-2 provided 

as an input to our model; and  the figure 8 is the result 

generated by the models which gives an acceptable BLEU 

Score of 0.919. 

The BLEU Score was calculated and the result data is as 

shown in the Table 2 

TABLE 2 BLEU SCORE FOR TEST IMAGES 

Image File BLEU Score Time required for Output 

Generation (in sec) 

IMG-1 0.77 26 

IMG-2 0.66 28 

IMG-3 0.919 30 
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The model performed satisfactorily on unseen data as well. 

Though the model is not fit for real world applications, it still did 

a good job in its predefined scope and limited number of HTML 

elements.. 

V. CONCLUSION & FUTURE SCOPE 

    In this paper, we have proposed a novel way of automatically 

generating the HTML code from hand-drawn website 

wireframes in a few seconds. We leveraged Deep Learning 

techniques such as CNN and GRU to convert hand drawn images 

into DSL tokens and finally used a compiler to convert those 

tokens to corresponding HTML code with the user-inputted color 

style. Our application also allowed the user to copy as well as 

render and view the HTML code in the browser.  

Since the model was trained on a vocabulary of just 16 elements, 

which include only divs and buttons, it can’t predict tokens 

outside of what it’s seen in the data. Our model can be further 

improvised by generating additional website examples using 

more elements, such as dropdown menus, checkboxes, radio 

buttons etc and then training the model using a similar approach. 

Moreover, one can also implement Generative Adversarial 

Networks [GANs] for the same task. They are also capable of 

tackling the exposure bias problem of MLE and can generate 

better quality tokens for a DSL having larger vocabulary. GAN 

architecture consists of a Discriminator model which 

differentiates between the generated samples and the original 

samples. Thus the Generator model will create a DSL token file, 

from which the compiler can generate the HTML file and the 

discriminator can compare the final web page with the image 

provided in the input stage. GAN can handle many more 

parameters and generate better results as compared to other Deep 

Learning models. 

 

 

REFERENCES 

[1] Youssef Bassil ,Mohammad Alwani, “Autonomic HTML 
InterfaceGenerator for Web Applications” International Journal of Web & 
Semantic Technology (IJWesT) Vol.3, No.1, January 2012,PP 33-47 

[2] Matija Tomaškovic, Ruben Picek, “Automatic Conversion of Desktop 

Applications to Java Web Technology”, Central European Conference on 

Information and Intelligent Systems, Varaždin, Croatia, September 19-21, 
2012, Page 473 of 493 

[3] Dakhore,Mahajan,“Generation of C-Code Using XML Parser”Available 
at http://www.rimtengg.com/iscet/proceedings/pdfs/advcom p/149.pdf 

[4] Aparna Halbe, Dr. Abhijit R. Joshi, “A Novel Approach to HTML Page 

Creation Using Neural Network” International Conference on Advanced 
Computing Technologies and Applications (ICACTA2015), Procedia 

Computer Science 45 ( 2015 ) 197 – 204 

[5] Anuja Nagare, “Licence Plate Character Recognition System UsingNeural 
Network”, International journal of Computer Application, Volume 25– 
No.10, July 2011 

[6] Dipti Pawade, Pranchal Chaudhari, Harshada Sonkamble, "Comparative 

Study of Different Paper currency and coin currency Recognition 

Method", International Journal of Computer Application (IJCA) , vol. 66, 
no. 23, Mar 2013, ISSN 0975-8887, pp. 26-31.. 

[7] Tony Beltramelli, “pix2code: Generating Code from a Graphical User 
Interface Screenshot”,  preprint, 2017 

[8] Akash Wadje, Prof. Rohit Bagh, “Sketch2Code: From Sketch Design on 
Paper to Website Interface”, IJIRT, 2020 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110012
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

21

www.ijert.org
www.ijert.org
www.ijert.org

