
AuFED - Automated Front End Development

Dr. Bhakti Palkar
Professor, Computer,

K. J. Somaiya College of Engg

Vidyavihar, Mumbai, India

Mr. Abdeali Arsiwala
Student, Computer

K. J. Somaiya College of Engg

 Vidyavihar, Mumbai, India

Mr. Deep Doshi

Student, Computer

K. J. Somaiya College of Engg

Vidyavihar, Mumbai, India

Raj Nathwani

Student, Computer

K. J. Somaiya College of Engg

Vidyavihar, Mumbai, India

Abstract— Transforming a user interface screenshot developed by

a designer into computer code is a typical task conducted by a

developer in order to build customized software, websites.

Large corporations have the workforce to dedicate separate teams

for the design and development process, which can take several

weeks and involve multiple stakeholders to back them up

financially.

Small businesses and startups may lack such big resources. As a

result their user interfaces and ultimately their product may suffer,

causing them monetary losses.

Goal of this project is to use modern Deep Learning algorithms such

as Convolutional Neural Networks [CNNs], Recurrent Neural

Networks [RNNs] etc to significantly streamline and automate the

design workflow by converting hand-drawn web page designs into

HTML code and empower any business to quickly create and test

web pages.

Keywords— GUI, automated HTML code generation, CNN, RNN,

GRU, frontend

I. INTRODUCTION

Creating user-friendly and engaging experiences is the basic

objective for companies of all sizes and a process driven by rapid

prototyping, design, and user testing cycles. They need to go

through an assortment of stages, including drawing concept

sketches, designing prototypes, and testing the website prior to

running it live. These procedures are not going to be completed

right away. Truly, engineers spend weeks and months

developing a beautiful, responsive website. Enormous

associations such as Facebook have the resources to commit

entire teams to the design process, which may take several weeks

and involve several stakeholders; small organizations may not

have these resources and can endure as a result of their user

interfaces.

But technological advances are making it simpler for them.

Current innovations, for example, Artificial Intelligence (AI) and

Machine Learning are driving front-end improvement and

making the coding and testing of site formats less complex,

faster, and more powerful. Deep Learning, a component of

Machine Learning, in particular, plays a crucial role in front-end

development.

 Taking motivation from this, we have implemented 3

components for automating the front-end development.

● Deep Learning models [CNNs, GRUs].

● Compiler.

● Interface.

 The Deep Learning models are used to identify the elements

of the web page and generate the Domain Specific Language

[DSL]. The Compiler is used to convert the DSL to form the

HTML code. The Interface allows the developer to interact

with the models, specify the color schemes and acquire the

output code. This entire flow of HTML Code generation from

a hand drawn web sketch is depicted by figure 1

Fig. 1. Product Perspective

II. RELATED WORK

Youssef et. al [1] designed a system to develop HTML code

using W3C XML Schema and Style Sheet.

Matija et. al. [2] developed a system which was a desktop-to-

web converter. The application converts layout data and form

event data to generate JAVA web applications.

Dakhore et. al. [3] designed a system which takes flowchart

as an input and uses XML parser to generate C code. The

XML Code is generated using Tree Traversal APIs of

CDATA. It is a very primitive approach and cannot be

implemented for complicated applications.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110012
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

17

www.ijert.org
www.ijert.org
www.ijert.org

Aparna et. al. [4] developed an approach to design an HTML

page from a hand drawn GUI. To identify the elements of the

GUI, they have used height, width and diameter as comparing

parameters. Back Propagation Neural Network (BPNN) and

Learning Vector Quantization Neural Network (LVQNN) are

used for character recognition. Discrete Cosine Transform

(DCT) [5][6] is used to extract the feature for training neural

network. The system is restricted to the identification of only

uppercase labels being identified.

Tony Beltramelli et. al. [7] have proposed a method to generate

HTML code based on the web page images and a Domain

Specific Language. The proposed system makes use of the

Convolutional Neural Networks model to extract information

from the images and a Recurrent Neural Networks to convert the

extracted information into a Domain Specific Language. Which

is then used for the generation of the HTML code.

The Tech Giant Microsoft is deeply involved with AI to solve

many problems. Microsoft AI Labs has developed a product

called Sketch2Code et. al. [8] which implements Deep Learning

techniques to extract information from the design made by the

designer on the whiteboard. The information is then converted to

the HTML code. The product architecture is made of Deep

Learning models and has been trained on a dataset of millions of

images, neither of which is open-source

TABLE 1 SUMMARY OF AUTOMATIC CODE GENERATION

TECHNIQUE

Author Input Output

Youssef et. al. [1] XML Schema and

Style

Sheet

HTML web interface

Matija [2] GUI/TUI of desktop

application

Java web application

Dakhore et. al. [3] Flow chart C program code

Aparna et. al.[4] Scanned image of GUI

drawn on paper

HTML page

Tony Beltramelli et. al.

[7]

Coloured GUI images HTML code

Akash Bharat Wadje,

Prof. Rohit Bagh et. al.

[8]

Hand Drawn Web

Sketches

HTML code

III. IMPLEMENTATION OVERVIEW

Dataset Generation

We start with an open-source dataset used by Tony Beltramelli

in pix2code [7]. It consists of 1,700 PNG screenshots of

synthetically generated websites along with their corresponding

GUI file which consists of tokens of Domain Specific Language.

Since the main aim of this project is to work on hand-drawn

images, the acquired images are processed and converted to

hand-drawn like images using OpenCV and the PIL library in

python. The images are resized to a specific aspect ratio. Then

the borders of the elements are skewed and the border radius of

the elements on the page are changed to curve the corners of the

buttons and divs. The thickness of the borders are also

adjusted to mimic drawn sketches. The font is changed to one

that looks like handwriting. Finally we augment these images

by adding skews and shifts.

The dataset used by Tony Beltramelli in pix2code [7] also

includes a GUI file (corresponding to each PNG Web design

image) which consists of DSL tokens for the HTML file

generation. These tokens are used as input to a compiler for

generating required HTML tags as detected in the image by

the Deep Learning models. These files are built using a

vocabulary which is made up using a small set of elements

such as:-

, { } btn-active btn-inactive

small-title text <START> btn-orange

quadruple double <c> btn-green

row header btn-red single

The purpose of this DSL is to make the code generation more

efficient. The simplicity of these DSL tokens reduces the size

of the total vocabulary of the language decoder thus reducing

the size of the search space.

The 1,700 dataset items are then split into training (1360) and

validation (340) sets.

Deep Learning Models

We then develop 3 models using Tensorflow and Keras as

shown in figure 2 to achieve the desired results

First, A Convolutional Neural Network (CNN) model is used

to extract image features and data from the source images.

This data includes the information of the elements present in

the image.

Second, A language model built using Gated Recurrent Unit

(GRU) is used to encode sequences of source code tokens.

Third, A decoder model (also a GRU), which takes in the

output from the models in the previous two steps as its input,

and predicts the next DSL token in the sequence.

Once the set of predicted tokens is generated from the model,

we design a compiler which converts the DSL tokens into

HTML code that can be rendered in any browser.

Fig. 2. Deep Learning Models

CNN - Image Encoder

This model was trained to detect the features of the images. In

this case the features are the elements present in the web page

images. To encode each input image to a fixed-size output

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110012
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

18

www.ijert.org
www.ijert.org
www.ijert.org

vector, we exclusively use small 3 × 3 receptive fields which are

convolved with stride 2. The width of the first two convolutional

layers is 16, followed by 2 more layers of size 32, followed by

two layers of width 64, and finally width 128. All the layers have

a “relu - rectified linear” activation unit. Two fully connected

layers of size 1024 applying the “rectified linear” unit activation

complete the vision model.

GRU - Language Encoder

We make use of a simple lightweight DSL to describe GUI

elements. This model is designed to only work with the GUI

layout of the web page, the different graphical components, and

their relationships; thus the actual textual value of the labels is

ignored. Using the DSL also reduces the size of the search space

for the language generation, the DSL simplicity also reduces the

size of the vocabulary. We implement the language model as a

stack of two GRU layers with 128 cells each. This results in our

language model performing token-level language modeling with

a discrete input by using one-hot encoded vectors; eliminating

the need for word embedding techniques such as word2vec that

can result in costly computations.

GRU - Language Decoder

We train this model in a supervised learning manner by feeding

an image and a contextual sequence of DSL tokens as inputs; and

the token as the target label.

A CNN-based vision model encodes the input image into a

vectorial representation. The input token is encoded by an GRU-

based language model into an intermediary representation

allowing the model to focus more on certain tokens and less on

others. Both the vectors are concatenated into a single feature

vector which is then fed into a second GRU-based model

decoding the representations learned by both the vision model

and the language model. The decoder thus learns to model the

relationship between objects present in the input GUI image and

the associated tokens present in the DSL code. Our decoder is

implemented as a stack of two GRU layers with 512 cells each.

Compiler - HTML File Generation

This compiler converts the generated DSL tokens into an HTML

file, which can then be rendered into any browser. The input to

this compiler is the GUI layout / DSL tokens generated by the

GRU-decoder model. Colours are hard coded in the compiler

based on the styling option provided at the start of processing

with the Default scheme being Black & White and other schemes

being Blue, Pink, Green, Purple, Red, Brown, Yellow, Orange,

Grey.

Training of models

An important factor that has to be taken into account while

language encoding and decoding is the size or length T of the

sequences used for training to train on long term dependencies.

After the empirical experiments conducted by Tony Beltramelli

[7], the sliding window of size 48 was selected; in other words.

Taking that into consideration AuFED’s language model also

makes use of sequences of length 48. The trade-off between the

computational costs and the long-term dependencies learning

was acceptable. In other words for every new token generation

the model will consider the image features and contextual

sequence of previous 48 tokens. The special tokens <START>

and <END> are used to respectively prefix and suffix the DSL

files signifying the start and end of DSL files respectively.

Training is performed by computing the partial derivatives of

the loss with respect to the network weights calculated with

backpropagation to minimize the multiclass log loss:

𝐿(𝐼, 𝑋) = − ∑

𝑇

𝑡=1

𝑥 𝑡 + 1 𝑙𝑜𝑔(𝑦𝑡)

With xt+1 the expected token, and yt the predicted token. The

model is optimized and the loss L is minimized w.r.t all the

parameters of all layers in the CNN model and both GRU

models. Models were trained with the RMSProp algorithm

which gave the best results with a Learning Rate of 1e − 4. To

prevent overfitting, the dropout regularization was set to 25%

for the vision model after each max-pooling operation and at

30% after each fully-connected layer. In the GRU-based

models, dropout is set to 10% and only applied to the non-

recurrent connections. Our model was trained with mini-

batches of 64 images.

Fig. 3. Model Training

As we can see in Figure 4 which denotes the training and

validation loss at the end of each epoch. Both the training

and validation losses decrease with each epoch denoting that

the models are becoming more and more accurate in

learning about the features of the input image and predicting

the next token for the GUI File. Also the validation loss is

decreasing which suggests that the models are performing

properly on unseen data as well.

Fig.4. Training and Validation Loss

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110012
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

19

www.ijert.org
www.ijert.org
www.ijert.org

Sampling

To generate DSL code while sampling, we feed the GUI image I

and a contextual sequence X of T = 48 tokens where tokens xt .

. . xT −1 are initially set empty and the last token of the sequence

xT is set to the special < START > token. The predicted token yt

is then used to update the next sequence of contextual tokens.

That is, xt . . . xT −1 are set to xt+1 . . . xT (xt is thus discarded),

with xT set to yt. The process is repeated until the token < END

> is generated by the model. The generated DSL token sequence

is then fed to the compiler to convert it to HTML code.

Fig. 5. Model Sampling

User Interface

In order to make this project accessible to all and easy to use, we

develop a Web Interface which doesn’t require any external

dependency as such. Using simple HTML, CSS, and Javascript,

we design a UI for the AUFED web application. We use the

Django framework (Python-based free and open-source web

framework that follows the model-template-views architectural

pattern.) as a backend service and for integrating the trained deep

learning models with the frontend UI. The UI consists of 6

elements in total which are - Upload Image Button, Colour

Scheme Dropdown, Submit Button, Preview button, Download

button, Code Editor

Fig. 6. AuFED User Interface

IV. RESULTS & DISCUSSION

In order to measure the accuracy of the models and

the entire architecture we use the accuracy metric of BLEU or

the Bilingual Evaluation Understudy Score. In simple terms

the BLEU Score is a quality measure which calculates the

difference between the machine translation and the human

translation. It can be used to evaluate text generated for a suite

of natural language processing tasks. BLEU Score compares

the n-grams of the machine translation with the n-grams of the

human translation. The greater the number of matches

between both the translations the better the translation is. For

every training epoch the validation loss of the models was

decreasing which suggests that the BLEU Score is increasing.

For calculation of the BLEU Score we use the NLTK

Library’s sentence_bleu function. Finally the trained models

were evaluated on a few hand-drawn web page images and

the results are as shown below.

Fig. 7. The hand-drawn test image.

Fig. 8. The output generated by the model.

The figure 7 is the IMG-3 mentioned in TABLE-2 provided

as an input to our model; and the figure 8 is the result

generated by the models which gives an acceptable BLEU

Score of 0.919.

The BLEU Score was calculated and the result data is as

shown in the Table 2

TABLE 2 BLEU SCORE FOR TEST IMAGES

Image File BLEU Score Time required for Output

Generation (in sec)

IMG-1 0.77 26

IMG-2 0.66 28

IMG-3 0.919 30

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110012
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

20

www.ijert.org
www.ijert.org
www.ijert.org

The model performed satisfactorily on unseen data as well.

Though the model is not fit for real world applications, it still did

a good job in its predefined scope and limited number of HTML

elements..

V. CONCLUSION & FUTURE SCOPE

 In this paper, we have proposed a novel way of automatically

generating the HTML code from hand-drawn website

wireframes in a few seconds. We leveraged Deep Learning

techniques such as CNN and GRU to convert hand drawn images

into DSL tokens and finally used a compiler to convert those

tokens to corresponding HTML code with the user-inputted color

style. Our application also allowed the user to copy as well as

render and view the HTML code in the browser.

Since the model was trained on a vocabulary of just 16 elements,

which include only divs and buttons, it can’t predict tokens

outside of what it’s seen in the data. Our model can be further

improvised by generating additional website examples using

more elements, such as dropdown menus, checkboxes, radio

buttons etc and then training the model using a similar approach.

Moreover, one can also implement Generative Adversarial

Networks [GANs] for the same task. They are also capable of

tackling the exposure bias problem of MLE and can generate

better quality tokens for a DSL having larger vocabulary. GAN

architecture consists of a Discriminator model which

differentiates between the generated samples and the original

samples. Thus the Generator model will create a DSL token file,

from which the compiler can generate the HTML file and the

discriminator can compare the final web page with the image

provided in the input stage. GAN can handle many more

parameters and generate better results as compared to other Deep

Learning models.

REFERENCES

[1] Youssef Bassil ,Mohammad Alwani, “Autonomic HTML
InterfaceGenerator for Web Applications” International Journal of Web &
Semantic Technology (IJWesT) Vol.3, No.1, January 2012,PP 33-47

[2] Matija Tomaškovic, Ruben Picek, “Automatic Conversion of Desktop

Applications to Java Web Technology”, Central European Conference on

Information and Intelligent Systems, Varaždin, Croatia, September 19-21,
2012, Page 473 of 493

[3] Dakhore,Mahajan,“Generation of C-Code Using XML Parser”Available
at http://www.rimtengg.com/iscet/proceedings/pdfs/advcom p/149.pdf

[4] Aparna Halbe, Dr. Abhijit R. Joshi, “A Novel Approach to HTML Page

Creation Using Neural Network” International Conference on Advanced
Computing Technologies and Applications (ICACTA2015), Procedia

Computer Science 45 (2015) 197 – 204

[5] Anuja Nagare, “Licence Plate Character Recognition System UsingNeural
Network”, International journal of Computer Application, Volume 25–
No.10, July 2011

[6] Dipti Pawade, Pranchal Chaudhari, Harshada Sonkamble, "Comparative

Study of Different Paper currency and coin currency Recognition

Method", International Journal of Computer Application (IJCA) , vol. 66,
no. 23, Mar 2013, ISSN 0975-8887, pp. 26-31..

[7] Tony Beltramelli, “pix2code: Generating Code from a Graphical User
Interface Screenshot”, preprint, 2017

[8] Akash Wadje, Prof. Rohit Bagh, “Sketch2Code: From Sketch Design on
Paper to Website Interface”, IJIRT, 2020

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110012
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

21

www.ijert.org
www.ijert.org
www.ijert.org

