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Abstract- Music recordings are usually a mix of several 

individual instrument tracks. Retrieving Stems from a piece of 

music is a common need in the professional music industry and 

music signal researchers. The task of music source separation is: 

given a mix can we recover these separate tracks. This stem 

separation has many potential applications like remixes, active 

listening, educational purposes, and also pre-processing for other 

tasks such as transcription. The manual process of stem 

separation is both expensive and time-consuming. There are 

attempts to automate the Stem separation process to reduce the 

hassle, but the results were not very promising. The pace in the 

recent development of machine learning and deep learning brings 

new approaches to the table. This helps us make some giant leaps 

in the stem separation approaches that will help us construct 

more cleaner, distortion-free stems out of audio signals. 
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I. INTRODUCTION

Stems are unit of an audio signal. When we mix these 
stems, it produces complex and harmonized sounds. Humans 
are excellent in isolating these audio signals and process only 
the sounds we need. With the advancement of technology, it is 
possible to record or create sounds that we can hear later. Now, 
various sectors deal with manipulation and study of the sound 
signals that require stem. Hence, we need algorithms that can 
separate audio signal effectively. Since we can pick up little 
inconsistencies in the sound, the stem separation must be clear 
and crisp as possible. Hence, we would harness the capabilities 
of deep learning, masking and regeneration to recreate 
individual stems. 

II. RELATED WORK

In the first paper, they have attempted the problem of 
identifying the instrumentation of a music signal at any given 
time using several machine learning techniques (logistic 
regression, K-NN, SVM).They approached the problem as a 
series of separate binary classifications (as opposed to a 
multivariate problem) so that we could mix and match the best 
algorithm for each instrument to create the best overall 
classifier. They used examples from multiple recordings in 
order to create a more robust system. An instrument will have 
many unique features on a given recording. Every individual 
instrument has a unique character (due to materials. 
construction process, body shape, age, etc.), and every 
individual performer creates a different sound with the 
instrument. There are also many different playing techniques, 
and then microphone choice and positioning as well as digital 
effects and equalization will all create significant variations 
between recordings. So, in order to effectively analyze an 
arbitrary recording, they needed to train their classifiers with 

multiple examples. The data was first segregated into frames of 
1024 samples each (23 ms). This frame size was selected for its 
wide use in speech processing applications. Once divided, we 
chose to describe each frame with three types of features, 
which were decided based on acoustic knowledge of the 
instruments: 

• Magnitudes of the Discrete Fourier Transform (DFT)

• Mel Frequency Cepstral Coefficients (MFCCs)

• Change in energy from frame to frame

Algorithms used: 

• Logistic Regression

• K-Nearest Neighbors (K-NN)

• Support Vector Machine (SVM) with Linear Kernel

• SVM with Gaussian Kernel

Their resultant accuracy was just under 80% for 2-instrument 
case while for 3-instrument case it dropped to 52% and it 
dropped further for 5-instrument case to around 42%. But this 
result was not satisfactory and a better improved algorithm was 
required for better accuracy. Also, rich set of feature set needs 
to be setup for better accuracy and also more powerful 
computer [1]. 

We managed to overview the latest datasets that we could 
use in our implementation that are rich in sample collections of 
different musical instruments. Our approach is a first step in 
determining the effectiveness of NSynth with the end goal of 
live instrument detection for an entire piece of music or for a 
point in time. There is potential to detect new instruments in 
music as well as non-traditional instruments based on sound 
combinations and we might even be able to identify and predict 
notes in music from a recording [2]. 

We learned how to use Fourier transform. An audio signal 
is a complex signal composed of multiple ‘single-frequency 
sound waves’ which travel together as a disturbance (pressure-
change) in the medium. When sound is recorded, we only 
capture the resultant amplitudes of those multiple waves. 
Fourier Transform is a mathematical concept that can 
decompose a signal into its constituent frequencies. Performing 
deep learning on image samples is easier and hence we used 
Fourier transform to portray important and characteristic 
information in image form. Using Fast Fourier transform we 
can separate our different frequency signals i.e., different 
instrument/vocal and then regenerate separate audio files using 
inverse-Fourier transform. They have proposed a new multi-
channel audio source separation method based on separating 
the waveform directly in the time-domain without extracting 
any hand-crafted features. We introduced a novel multi-
resolution convolutional auto-encoder neural network to 
separate the stereo waveforms of the target sources from the 
input stereo mixed signals. Their experimental results show 
that the proposed approach is very promising. In future work 
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we will investigate combining the multi-resolution concept 
with generative adversarial neural networks (GANs) for 
waveform audio source separation [3]. 

III. METHODOLOGY 
Sound as a data is data in time series. The time-domain 

representation of a signal is a visual representation that 
demonstrates how the loudness (amplitude) of a sound wave 
changes over time. 

 
Fig. 1. Sound amplitude representation 

These amplitudes aren't really useful since they just refer to 
the volume of an audio recording. It is important to convert the 
audio signal into the frequency domain in order to better 
understand it. The frequency-domain representation of an audio 
signal reveals the various frequencies present in the signal. So, 
in comes Fourier Transform [4]. 

 
Fig. 2. Sound frequency domain representation 

The Fourier Transform is a mathematical phenomenon that 
allows you to break down a signal into its individual 
frequencies. The Fourier transform determines the frequencies 
present in the audio signal as well as the magnitude of each 
frequency [5]. 

Assume we're developing a speech recognition system. We 
have a narration audio file (for example: How are you). These 
three terms should be predicted in the same order by our 
recognition scheme. We've decomposed the audio signal into 
its frequency values. We'll use this frequency value as a 
function in our recognition scheme. However, converting the 
audio signal to frequency domain removes the previously 
present time information. As a result, our machine is unable to 
determine the order in which the audio signals arrived. As a 
result, we must devise a new method of calculating 
characteristic for our system so that it has frequency values that 
correspond to the time observed. And this is where 
spectrograms come into play [6]. Our plan is to divide the 
audio signal into smaller frames (windows) and measure the 
FT for each one. By monitoring the order of the windows, we 
now have frequency characteristics as well as time information. 
Window one appears first, followed by window two, and so on. 

 
Fig. 3. Phase spectrogram 

We discovered that almost all of the critical frequency data 
is below 12,500 Hz in this spectrogram. As a result, this does 
not reflect how humans interpret frequencies. We sense 
frequencies on a logarithmic scale in addition to loudness. 
We'd listen to the same frequency range between 50 and 100 
Hz as we would between 400 and 800 Hz. The difference 
between 500 and 1000 Hz is obvious, while that between 7500 
and 8000 Hz is barely discernible [7]. 

 
Fig. 4. Mel Spectrogram 

In mathematical terms, the Mel Scale is the result of a non-
linear transformation of the frequency scale. In comparison to 
the Hz scale, the Mel Scale is composed in such a way that the 
scale of loudness is close to how humans interpret it. We now 
know what a Spectrogram and Mel Scale are. Hence, by that 
knowledge, a Mel Spectrogram is a spectrogram with Mel scale 
in the vertical axis. Consider this spectrogram to be an image. 
We've turned our audio file into an image. As a result, we've 
narrowed it down to an image classification problem. Although 
it is not yet possible to classify raw audio waveform data, 
image classifiers are commonly used against Mel 
spectrograms, and they work very well. To use this method, we 
must first convert our entire dataset to image files. 

Artificial neural networks are the first thing that comes to 
mind when we talk about deep learning. Let's pretend we're 
using an Artificial Neural Network. As a result, this approach 
simulates timbre features over several time frames. That is, 
they do not take advantage of local time-frequency 
functionality. Rather, they depend on global characteristics that 
span the entire frequency range. CNNs use less memory and 
resources than fully linked neural networks, making the model 
faster and more efficient [8]. 

In the field of image processing, CNNs accept a two-
dimensional vector of pixel intensities across the spatial 
dimension and learn localised features by exploiting local 
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spatial correlation among input neurons. In our model for the 
audio signal, we use a two-dimensional representation called 
the Short-Time Fourier Transform (STFT), which has 
frequency and time dimensions. As a result, the filters will 
adapt to the FT representation of audio using CNNs [9]. 

 
Fig. 5. Block diagram 

To sum up the procedure, STFT was used to create a phase 
spectrogram and a Mel spectrogram from input audio. After 
that, an optimal filter is used to mask the Mel spectrogram. A 
CNN was used to build this filter. Now, we will generate a new 
stem boosted spectrogram image. 

When it came to training the model, we first considered 
separating the four stems (vocals, bass, drums, and other). We 
used U-net, which is a skip-connected encoder/decoder 
Convolutional Neural Network architecture. We used U-nets 
with 12 layers (6 layers for the encoder and 6 for the decoder). 
For each source, a U-net was used to estimate a soft mask 
(stem). Between masked input mix spectrograms and source-
target spectrograms, training loss is an L1-norm. The model 
was trained using the Musdb18 dataset. The musdb18 dataset 
contains 150 full-length music tracks (10 hours in length) from 
various genres, along with isolated drums, bass, vocals, and 
other stems. On a single GPU, training took approximately a 
week. Soft masking Wiener filtering is then used to separate 
the approximate source spectrograms. Tensorflow was used to 
perform the training and inference. It enables the code to run 
on a Central Processing Unit (CPU) or a Graphics Processing 
Unit (GPU). 

IV. RESULTS AND DISCUSSION 
The model inference is fast since the entire separation 

pipeline can run on a GPU and the model is based on a CNN 
(which allows for very efficient computation parallelization). 
For example, our model can divide the entire musdb18 test 
dataset (approximately 3 hours and 27 minutes of audio) into 
four stems in under 6 minutes, including model loading time 
(approximately 55 seconds) and audio.wav file export. 
Following are the comparisons of our model with some other 
models: 

 
Fig. 6. Results Comparison 

We present our findings using standard source separation 
metrics. Signal to Distortion Ratio (SDR), Signal to Artifacts 
Ratio (SAR), Signal to Interference Ratio (SIR), and source 
Image to Spatial Distortion Ratio were the parameters used 
(ISR). We compared the findings to Open-Unmix, which is the 
only publicly available system that, to the authors' knowledge, 
performs well. Soft masking and multichannel Wiener filtering 
results are presented (applied using Norbert). As can be seen, 
our model is competitive with Open-Unmix for the majority of 
the metrics, and particularly on SDR for all instruments. 

V. CONCLUSION 

So, after conducting literature surveys and gathering the 
required details, we were able to design the process workflow. 
Our model also appears to have shown competitive results. A 
prototype implementation of this also shows good results 
when trying to perform stem separation. We are also 
considering exploring more applications of this technology as 
a future goal. 
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