International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

Atomic Commit in Distributed Database Systems:
the Approaches of Blocking and Non-Blocking
Protocols

'Olowookere Toluwase Ayobami, Asagba Prince Oghenekaro and *Obasi Chinedu Kingsley
123Department of Computer Science,
University of Port Harcourt, Choba,
Port Harcourt, Nigeria.

Abstract - In distributed database systems, the primary need
for commit protocols is to maintain the atomicity of distributed
transactions. Atomic commitment issue is of prime importance
in the distributed system and the issue becomes more necessary
to deal with if some of the sites participating in the execution of
the transaction commitment fail. Several atomic commit
protocols have evolved to terminate distributed transactions.
This paper presents an overview of a distributed transaction
model, and a description of the two phase commit (2PC)
protocol (which is blocking) and the one phase (1PC) commit
protocols (which is non-blocking). This paper further examines
the assumptions of these commit protocols in their bid to
addressing the atomic commitment issue in distributed database
systems. By restricting possible encountered failure to site
failure, drawbacks in the assumptions of these atomic commit
protocols were identified, which clearly show that the non-
blocking protocol studied addresses the drawbacks of the widely
used blocking protocol, 2PC, but in itself is no messiah (as it also
constitutes drawbacks in practice). This work will spur other
researchers to a more vigorous reconsideration of the 1PC non-
blocking protocol.

Keywords— Atomic commit protocols,Blocking,Distributed
Database Systems, Stable database

l. INTRODUCTION

The execution of transactions in a distributed database
system (DDBS) involves accessing data located at different
sites. A transaction is a set of related operations that form a
logicalunit of work. The main idea of a transaction is its
indivisibility, i.e. either all the operations of the transaction
are permanently performed or none of them is, and its partial
results are not visible to other transactions. Transaction
semantic is defined traditionally by the ACID properties:
Atomicity, Consistency, Integrity, and Durability [9, 13]. The
Atomicity property, also called all-or-nothing property,
means that either the transaction successfully executes to
completion and the effects of all of its operations are recorded
in the accessed data (the transaction is said to be committed),
or it fails and it has no effect at all (the transaction is
aborted). Consistency means that the transaction does not
violate the integrity constraints of accessed shared data, while
Isolation means that the intermediate effects of a transaction
are not visible to concurrent transactions (Isolation has been
formalized through the theory of serializability). Durability
means that the updates of a committed transaction are
permanent, e.g., stored on a stable storage that sustains
failures [7].

1JERTV 315100052

Distributed transaction processing systems are designed to
facilitate transactions that span heterogeneous, transaction-
aware resource managers in a distributed environment [1]. A
distributed transaction will consist of a local transaction at
each of the sites participating in the distributed transaction
(such that if any local transaction aborts, the distributed
transaction aborts and if all local transaction commits, the
distributed transaction commits). The execution of a
distributed transaction requires coordination between a global
transaction management system and all the local resource
managers of all the involved systems.

In order to ensure atomicity property of a distributed
transaction, all local sites participating in the transaction must
coordinate their actions so that they either unanimously abort
or unanimously commit the transaction [7], and so the
transaction’s effects either persist at all sites involved in the
transaction or are obliterated from them as if the transaction
has never existed. This is achieved by employing an atomic
commit protocol (ACP) that executes a commit or an abort
operation across multiple sites as a single logical operation
[13].

The Atomic commit protocols (ACP) terminate
distributed transaction by addressing the distributed execution
of the abort and commit commands. A transaction always
terminates, even when there are failures. If the transaction
can complete its tasks successfully, we say that thetransaction
commits. If, on the other hand, a transaction stops without
completing itstasks, we say that it aborts. Transactions may
abort for a number of reasons; a transaction may abort itself
because of a condition that would prevent it from completing
its tasks successfully. Additionally, the database management
system (DBMS) may abort a transaction due to, for example,
deadlocks or other conditions. When a transaction is aborted,
its execution is stopped and all of its already executed actions
are undone by returning the database to the state before their
execution, a situation known as rollback. The importance of
commit is twofold. The commit command signals to the
DBMSthat the effects of that transaction should now be
reflected in the database, therebymaking it visible to other
transactions that may access the same data items. Second,the
point at which a transaction is committed is a “point of no
return.” The results ofthe committed transaction are now
permanently stored in the database (or stable database as
used herein) and cannot be undone [8].

www.ijert.org 414

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

The two Phase Commit protocol, (2PC) is one of the
atomic commit protocols used in the atomic commitment.
Unfortunately this protocol is blocking in some failure
scenarios, for example, when the initiating coordinating site
fails, and at least, one participating site is waiting for the final
decision. The one Phase Commit protocol (1PC) described
here is non-blocking. A protocol is non-blocking if it permits
a transaction to terminate at the operational sites without
waiting for recovery of the failed site [8]. It is commitment
protocol that ensures that at least some sites of a multi-site
transaction do not block in spite of any single failure [3]. This
would significantly improve the response-time performance
of transactions.

The objective of this paper is the exposition of the
paradigms employed by the blocking 2PC protocol and the
non-blocking 1PC protocol in addressing the commitment
problem.

The rest of this paper is structured as follows. In section
I1, we overview a model of a distributed transactional system.
Section Il describes the two-phase commit (2PC) protocol,
while section 1V discusses the assumptions of the one phase
commit (1PC) protocol. In section V, the paper concludes.

. A CONCEPTUAL MODEL OF
TRANSACTIONAL SYSTEM

This paper considers a distributed database system
composed of a finite set of sites completely connected
through communication channels. Each site has its local
resource manager and transaction manager. We adopt-a
common abstraction: we assume that at the originating site of
a distributed transaction, there is a coordinator process and at
each site where the transaction executes, there are participant
processes. Thus, the ACP protocols are implemented between
the coordinator and the participants.

In a distributed database system, data are typically stored
in disjoint manners at different sites [13]. This distribution of
data is transparent to a distributed transaction that accesses
data by submitting database operations to its coordinator.
When a coordinator receives an operation on a particular data
item, it sends the operation to the appropriate site for
execution. If the coordinator receives an abort request from
the transaction, it sends an abort request to all the participants
which it has earlier involved in the transaction, i.e., the sites
participating in the execution of the transaction. On the other
hand, when the coordinator receives a commit request from
the transaction, it initiates an atomic commit protocol (ACP).

As stated earlier, a distributed transaction will consist of a
local transaction at each of the sites participating in the
distributed transaction. The coordinator reaches a global
termination decision regarding a transaction according to two
rules that govern its decision, which, together, are called the
global commit rule:

1. If even one participant votes to abort the
transaction, the coordinator has to reach a global
abort decision (i.e., if any local transaction aborts,
the distributed transaction aborts).

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

2. If all the participants vote to commit the transaction,
the coordinator has to reach a global commit decision (if all
local transactions commit, the distributed transaction
commits).

Here are the elements involved in our system model;

Resource Manager: The resource manager (RM) is a
database management system (DBMS), such as Oracle or
SQL Server. Resource manager is Responsible for
maintaining and recovering its own resource (the database).

Transaction Manager: The transaction manager (TM) is
responsible for coordinating the operations of its local
resource manager. (A transaction manager may also act as a
transaction coordinator in a circumstance that it starts a
transaction).

Transaction Coordinator: The transaction coordinator
(CTM) is the transaction manager of the site where an
application initiates the distributed transaction. The
transaction coordinator orchestrates the distributed
transaction by communicating with its local resource
manager and with the TMs of the remote sites that are to
participate in the transaction.

The diagram in Figure 1 shows our
transactional system model.

conceptual

I1. DESCRIPTION OF THE BASIC TWO PHASE
COMMIT PROTOCOL (2PC)

The two-phase commit (2PC) is a very simple and elegant
protocol that ensures the atomic commitment of distributed
transactions. It is a set of rules that extends the effects of
localatomic commit actions to distributed transactions by
insisting that all sites (participants) involved in the execution
of a distributed transaction agree to commit the transaction
before its effects are made permanent [8].

Site A

Coordnator
Resource

(Transaction
Manager)

PN

Manager

=

Transaction
Manager

Transaction
Manager

Resouce Resource

Manager

Manager

Site B Site C

Figure 1: A High Level Conceptual Transactional System
Model.

Simply, the 2PC guarantees that every single transaction
in a distributed system is executed to its completion or none
of its operations is performed, i.e., all-or-nothing.

Ensuring atomicity in a distributed system requires a

transactioncoordinator, which is responsible for the
following;
1JERTV 315100052 www.ijert.org 415

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

i. Starting the execution of the transaction.

ii. Breaking the transaction into a number of sub-
transactions, and distributing these sub-transactions
to the appropriate sites for execution.

iii. Coordinating the termination of the transaction,
which may result in the transaction being committed
at all sites or aborted at all sites [12].

Just as its name indicates, 2PC [6] is formed of two
phases, namely a Voting phase (phase 1) and a Decision
phase (phase2) as shown in Figure 2, the basic two phase
commit protocol. During the voting phase, the coordinator of
a distributed transaction requests all the sites participating in
the transaction’s execution to prepare to commit by sending a
“Prepare” message, whereas, during the decision phase, the
coordinator either decides to commit the transaction if all
theparticipants are prepared to commit (“vote-commit™), or to
abort if any participant has decided to abort (“vote-abort”). If
a participant has decided a “vote-commit”, it can neither
commitnor abort the transaction at this stage until it receives
the final decision from the coordinator [13].

Coordinator Participant

Prepare

v
o
_\ t
i
n
g

L NN]

Force Write

Y Prepared Record

Farce Write
Decision Record

Decision

T~

Ack

[N]

Force Write
Decision Record

Hornrr-aoo

Write non-forced
End Record

Figure 2: The basic two phase commit protocol. (Source: Ozsu, et al., 2011)

In details, as shown in Figure 3, the 2PC protocol actions
[8], the coordinator writes a begin_commit record in its log (it
must be a forced write, because the coordinator must have a
record of the transaction in its log prior to any of the
participants), then sends a ‘“prepare” message to all
participant sites, and enters the WAIT state. When a
participant receives a “prepare” message, it checks if it could
commit the transaction. If so, the participant writes a ready
record in its log, sends a “vote-commit” message to the
coordinator, and enters READY state; otherwise, the
participant writes an abort record and sends a “vote-abort”
message to the coordinator. If the decision of the site is to
abort, it can forget about that transaction, since an abort
decision serves as a veto (i.e., unilateral abort). After the
coordinator has received a reply from every participant, it

1JERTV 315100052

Www.ijert.org

decides whether to commit or to abort the transaction. If even
one participant has registered a negative vote, the coordinator
has to abort the transaction globally. So it writes an abort
record, sends a “global-abort” message to all participant sites,
and enters the ABORT state; otherwise, it writes a commit
record, sends a “global-commit” message to all participants,
and enters the COMMIT state. The participants either commit
or abort the transaction according to the coordinator’s
instructions and send back an acknowledgment and releases
all the resources held by the transaction (i.e., releases the
locks held by the transaction, removes the transaction’s
control block from its table, etc.). At the reception of the
acknowledgement, the coordinator terminates the transaction
by writing an end_of_transaction record in the log [8, 13].

A. Implementing the basic 2pc in the
transactional system model

conceptual

When an application starts a distributed transaction, the
TM on the same node becomes the CTM. Following are the
steps that are involved in consummating the distributed
transaction.

a. The CTM first checks that the TM software is running on
all the nodes participating in the transaction. If the TM
software is not running, the CTM returns an error and
does not start the distributed transaction.

b. . If all the TM’s are available, the CTM generates a
distributed transaction identifier and associates the
identifier with all the participants in that particular
transaction. When the application is ready to commit all
the changes to the RMs involved in the distributed
transaction, all the sites in the transaction must execute
both phases of the two-phase commit protocol, the voting
phase and the decision phase.

During the voting phase, the CTM asks each RM
participating in the transaction whether or not it is
prepared to commit the transaction. If the TC receives a
“vote-commit” response from all the RMs, the CTM
instructs the participants in the transaction to enter its
decision phase.

During the commit phase, the CTM instructs the RM to
make permanent changes to its data, i.e. to commit the
changes. The RM then commits the changes and the
transaction is completed.

In failure scenarios, more precisely; when the coordinator
fails, and at least, one participant keeps waiting for the final
decision of the coordinator, such scenario depicts the 2PC as
blocking, this means that participants cannot terminate the
transaction (neither commit the transaction, nor abort it)
pending the recovery of the coordinator.

Although 2PC is the most widely used Atomic Commit
Protocol (ACP), it has two major drawbacks. First, it is

416

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Coordinator

write ,_J-F"'”—
begin_commit (=~ write abort ¢ No Ready to
in lag _~="| inlg commit?
i N E-Fff»'/
- Yes
i
READY
<
Ne

-",-l

Participant

~¥
-
——

‘)“_\vﬂf—_;—"‘ -

VorE-commit wirite ready

‘nlag

!

write abort GioBal-ABok

inlog

READY

o
e

M«GQEL”
GoBT -
e
- -]
write commit |~ 2
; il
inlag I
B
£
2
ABORT |4 Ack wiite abort Commit
¥ inlag
"‘\\\
= Ack write: commit
'(inlog
write 4‘
end_of_transaction Y

inlog
ABORT COMMIT

Figure 3: The 2PC protocol actions. (Source: Ozsu, et al., 2011)

blocking: as earlier stated in this article, if the coordinator
crashes between the voting phase and the decision phase, a
transaction can hold system resources for an unbounded
period. Second, it incurs three sequences of message rounds
(request for vote, vote and decision) that introduce a
substantial time delay (two phases to commit) in the system
even in the absence of failures. This makes 2PC not adequate
to today's highly reliable distributed platforms [12].

The next section discusses one phase commit protocol
(1PC) as it addresses some major drawbacks of the 2PC.

V. DESCRIPTION OF THE BASIC ONE PHASE
COMMIT PROTOCOL (1PC)

In section 3 we have discussed the ideas of the 2PC
protocol and it was emphasized that the 2PC protocol can
guarantee transaction atomicity by walking through two
phases (voting phase and decision phase) and by logging state
information as well as data item updates to stable storage, it is
however plagued with its blocking activity.Several optimized
protocols and non-blocking protocols have been proposed.
Optimized protocols generally violate site autonomy while
non-blocking protocols are inherently more costly in time and
increase communication overhead. Here we discuss the one
phase commit (1PC) protocol which reduces the number of
these phases from two to one, thus minimizing the
communication overhead introduced by the 2PC protocol and
the number of forced log writes. This is achieved by cutting
off the voting phase and by piggybacking the transaction
execution onto the decision/commit phase. Indeed, the aim of
the voting phase is to collect the PREPARED messages by

1JERTV 315100052

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

the coordinator from all the involved participants and to
allow the coordinator to make a decision about what
becomes of the distributed transaction.

By eliminating the need for votes, 1PC protocol indeed
achieve better performances than 2PC protocols. As have
been observed, the basic assumption underlying 1PC is that a
participant does not need to vote. This does not however
mean that the transaction’s outcome is known in advance.
Commit is decided if all operations have been acknowledged
and no failure occurs, and Abort might be decided otherwise.
However, in most cases (i.e., commit cases) the coordinator
just has to send a single message to the participants asking
them to commit.

Unlike 2PC, participants here do not vote. In other words,
1PC does not take care of also ensuring the ACID properties
of the corresponding local branches of the transaction. This
means that before triggering the commit protocol, the
coordinator makes sure that these properties are locally
ensured at all participants. This means that the coordinator
acts as a liberal dictator and makes sure that no participant
can have any tenable reason to “vote-abort”.

This observation leads to better understanding of the
assumptions usually made (explicitly or implicitly) by 1PC
protocols. More precisely:

1. 1PC protocol [1, 14] assumes that all the transaction
operations have been acknowledged (i.e., all operations have
been successfully executed till completion) before the
protocol is launched. This means that the Atomicity of all the
local transaction branches (i.e., local Atomicity) is already
ensured at commit time.

2. 1PC protocol assumes that integrity constraints are
checked after each update operation and before
acknowledging the operation. Thus, Consistency is ensured
for all the local transaction branches at commit time (e.g., the
possibility of discovering, at commit time, that there is not
enough money for a bank account withdrawal is excluded).

3. 1PC protocols assume that all participants serialize
their transactions using a pessimistic concurrency control
protocol that avoids cascading aborts (i.e., strict two phase
locking [3]). In this context, a transaction that executes
successfully all its operations can no more be aborted due to a
serialization problem. This actually means that serializability
(Isolation) of all the local transaction branches is already
ensured at commit time (e.g., optimistic concurrency control
protocols that check serializability at commit time are
excluded).

4. 1PC protocols assume that, at commit time, the effects
of all the local transaction branches are logged on stable
storage, and hence the Durability property is ensured [15]. In
the Coordinator Log protocol, participants do not maintain
their updates in a local stable log. Instead, they send back,
within the acknowledgment message of every update
operation, all the log records (undo and redo log records)
generated during the execution of the operation. The
coordinator is thus in charge of logging the transaction
updates before performing the commit protocol (local log
externalization). To recover from a crash, a participant asks
the coordinator for the log records it needs to reestablish a
consistent state of its database.

www.ijert.org 417

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

A. How come the Non-Blocking 1PC?

Several solutions have been proposed to eliminate the
voting phase of the 2PC. The early prepare protocol [10]
forces each participant to enter in a prepare state after the
execution of each operation. A participant is thus ready to
commit a transaction at any time, thereby making its vote
implicit. The main drawback comes from the fact that each
operation has to be registered in the participant's log on disk,
thus introducing a blocking 1/0O. The coordinator log protocol
[10] exploits the early prepare idea and avoids the blocking
I/0 on the participants by centralizing the participant's log on
the coordinator. However, this violates site autonomy by
forcing participants to externalize their log records. More
recently, the 1YV (implicit yes-vote) protocol [13] has been
proposed to exploit the performance and reliability properties
of future gigabit-networked database systems. 1YV
capitalizes on the early prepare and coordinator log
protocols. Participants in a transaction pass in the
acknowledgment messages their redo log files and read locks
to the coordinator. Thus the coordinator can forward recover
a transaction on failed participants. Although well adapted to
gigabit-networked DBMSs, this protocol (i) does not preserve
site autonomy by forcing participants to externalize logging
and locking information, (ii) puts strong hypothesis on the
network bandwidth and (iii) increases the probability of
blocking since a coordinator crash that occurs at any time
during the transaction processing will block the participants
until the coordinator's recovery.

A number of non-blocking commit protocols have been
proposed in the literature. The simplest is the three phase
commit protocol (3PC) [8]. 3PC is non-blocking at the
expense of two extra message rounds needed to terminate a
transaction even in the absence of failures. This high latency
makes the 3PC not adapted to today’s systems with long
mean time between failures.

In [10], Pucheral et al. proposed an atomic commitment
protocol, noted NB-SPAC (Non-Blocking Single-Phase
Atomic Commit) protocol. NB-SPAC has a low latency (one
phase to commit), is non-blocking and preserves site
autonomy. During normal execution as well as in case of one
or more site failures, a transaction is committed in a single
phase under the assumption that participating DBMSs are
ruled by a rigorous concurrency control protocol. This
assumption is exploited to eliminate the voting phase of the
2PC. Non-blocking is achieved by using a reliable broadcast
primitive to deliver the decision messages. Finally, NB-
SPAC preserves site autonomy by exploiting techniques
introduced in multidatabase systems to recover from failures.

B. Implementing the 1PC (NB-SPAC) in the Conceptual
System model

1JERTV 315100052

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

TM directly receives the decision of the CTM for a
transaction after the transaction’s last operation invocation.
The CTM informs the participants in a transaction (TMs) of
its decision through a simple broadcast primitive. Participant
(i.e., TM) decides on a transaction when it delivers the
decision message to the local DBMS, whereas a local DBMS
decides on a transaction when it executes the decision
received from its TM. Local DBMSs eventually conform to
the decision of their corresponding TM even in the case of
failures. A key step in the NB-SPAC is the dissemination of
the decision message to all the participants by the CTM. In
order to achieve non-blocking, the NB-SPAC assumes a
reliable (broadcast) communication between the sites.
Reliable broadcast guarantees the following properties:

Uniform Agreement: if any Participating TM, correct or
not, delivers a message m, then all correct Participating TMs
will eventually deliver m.

Timeliness: There exists a known constant A such that if
the broadcast of a message m is initiated at time t, then no
participant receives m after time t+A.

The reliable broadcast, noted R_broadcast can be
implemented as follows. Every participant (TMs) relays the
message it receives for the first time to all the others before
delivering it to the local DBMS. It is obvious that this
implementation satisfies the Uniform Agreement property.

When a TM detects a CTM crash, a time-out is set. The
value of this time-out is the constant delay A of the reliable
broadcast by which the delivery of a decision message must
occur. If the delivery of a commit decision does not occur by
the specified time, a participant can safely deduce that no
other participant, correct or not, will deliver a commit
decision (i.e., it can safely decide abort). This is due to the A-
timeliness property of the reliable broadcast.

An atomic commit protocol is said to be non-blocking if it
satisfies the following property that:

Every correct participant involved in the atomic commit
protocol eventually decides.

V. CONCLUSION

In this paper, we discussed some basic atomic commit
protocols involved in ensuring atomic commitment in
distributed transaction management system. Having explored
the studied protocols (2PC and 1PC), we conclude that both
guarantee the atomicity and durability of distributed
transactions even when failures occur. Blocking ACPs
penalize system resources, which usually becomes heightened
in a distributed database system. The one-phase protocols
(1PC) can be made non-blocking, which would permit each
site to continue its operation without waiting for recovery of
the failed site. However, the performance of the NB-SPAC
protocol depends on the performance of the reliable broadcast
primitive; and concerning the 1/O cost, the NB-SPAC protocol
generates a single blocking 1/O at the coordinator, to log the
coordinator's decision along with the operations executed by
the transaction that is being committed. Thus, there is no extra
1/0 compared with 2PC. But the size of this I/O increases with
the transaction’s update activity.

www.ijert.org 418

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

REFERENCES

[1] A. Wilson, “Distributed Transaction and Two-phase Commit,”
SAP white paper, USA, 2003.

[2] B. Lampson, “Atomic Transaction Distributed Systems:
Architecture and Implementation- An Advanced Course, LNCS
vol. 105, pp. 246-265, 1981.

[3] D. Duchamp, “A Non-blocking Commitment protocol” Lecture
Notes in Computer Science, New York, 1989.

[4] G. Congiu, M. Grawinkel, S. Narasimhamurthy, A. Brinkmann,
“One Phase Commit: A Low Overhead Atomic Commitment
Protocol for Scalable Metadata Service,” in: Proceedings of
IEEE International Conference on Cluster Computing
Workshops, 2012, pp. 16-24.

[5] H. Dubey, A. Srivastava, R. Misra, “Enhancer- A Time
Commit Protocol,” International Journal of Advanced Research
in Computer Engineering & Technology, 1 (10), 2012.

[6] J. Gray, Notes on data base operating systems, in: R. Bayer,
R.M. Graham, G. Seegmuller (Eds.), “Operating Systems: An
Advanced Course,” Lecture Notes in Computer Science, vol.
60, Springer, Berlin, 1978, pp. 393-481.

[7]1 M. Abdallah, R. Guerraoui, P. Pucheral, “One-Phase Commit:
Does It Make Sense?,” in: Proceedings of International
Conference on Parallel and Distributed Systems, 1998.

[8] M. Ozsu, P. Valduriez, “Principles of Distributed Database
Systems,” (3ed), Springer, New York, 2011, pp. 427-455.

[9] N. Nouali, H. Drias, A. Doucet, “A Mobility-Aware Two-
Phase Commit Protocol,” The International Arab Journal of
Information Technology, 3(1), 2006, pp.1-8.

[10] P. Pucheral, M. Abdallah, “A Non-Blocking Single-Phase
Commit Protocol for Rigorous Participants.”

[11] T. Lemlouma, N. Badache, “Non Atomic Commitment
Problem: A comparative study between the 2PC and a new
protocol based on the consensus paradigm,”

[12] T. Taibi, A. Abid, W. Jiann, Y. Chiam, C. Ng, “Design and
Implementation of a Two -Phase Commit Protocol Simulator,”
The International Arab Journal of Information Technology, 3
(1), 2006, pp.20-27.

[13] Y.J. Al-Houmaily, P.K. Chrysanthis, “An atomic commit
protocol for gigabit-networked distributed databases systems,”
Journal of systems architecture, vol. 46, 2000, pp. 809-833.

[14] Y.J. Al-Houmaily, P.K. Chrysanthis, “1-2PC: The One-Two
Phase Atomic Commit Protocol,” in: Proceedings of the ACM
Annual Symposium on Applied Computing, 2004

[15] Y.J. Al-Houmaily, R. Conticello, J. Pike, P.K. Chrysanthis,
“Performance of Five Atomic Protocols in Gigabit-Networked
Database Systems,” Journal of System Architecture, 48, 2002.

1JERTV 315100052

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 3 Issue 10, October- 2014

Authors’ Brief

OLOWOOKERE, Toluwase
Ayobami received a
B.Tech.(Hons.) degree in
Computer Engineering from
Ladoke Akintola University of
Technology, Ogbomoso,
Nigeria, in 2010. He is
currently concluding his M.Sc.
degree in Computer Science at
University of Port Harcourt,

i\ Nigeria. His research interest
I|es within the areas ofComputer Modeling and Simulation,
Text and Data Mining, Virtualization, Distributed
Computing, and Cloud Computing. He is a member of
Institute of Electrical and Electronics Engineers, IEEE-
Computer Society and a graduate member of Nigeria Society
of Engineers. He can be reached via

ASAGBA Prince Oghenekaro
had his B.Sc. degree in
Computer Science at the
University of Nigeria, Nsukka,
in 1991, M.Sc. degree in
Computer Science at the
University of Benin in April,
1998, and a Ph.D degree in
Computer Science at the
University of Port Harcourt in
March, 2009. He is a Senior Lecturer and a visiting lecturer
to several Universities in Nigeria since 2010. His research
interest includes: Network Security, Information Security,
Network Analysis, Modeling, Database Management
Systems, Object-oriented Design, and Programming. He has
published several articles in Learned Journals both in Nigeria
and Internationally. He has authored and coauthored several
books in Computer Science. He is a member of Nigeria
Computer Society (NCS) and Computer Professional
Registration Council of Nigeria (CPN).

OBASI, Chinedu
Kingsleyholds a B.Sc (Hons)

in Computer Science from
Nnamdi Azikiwe University,
Awka, Anambra State,
Nigeria, in 2008. He is
currently concluding his M.Sc
Degree programme in
Computer Science at

University of Port Harcourt,

research interest area includes Machine

Nigeria. His
Learning, Distributed systems, and Cloud Computing. He is a

certified professional in international certifications like
CCNA, MCTS and STS. He is a member of IEEE and IEEE-
Computer Society. He can be reached via .

www.ijert.org 419

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

